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Spin Hall effect generated by fluctuating vortices in type-II superconductors

Takuya Taira,1 Yusuke Kato,2 Masanori Ichioka ,3,1 and Hiroto Adachi 3,1

1Department of Physics, Okayama University, Okayama 700-8530, Japan
2Department of Basic Science, University of Tokyo, Meguro, Tokyo 153-8902, Japan

3Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan

(Received 25 November 2020; revised 26 March 2021; accepted 29 March 2021; published 12 April 2021)

We theoretically investigate the vortex spin Hall effect, i.e., a novel spin Hall effect driven by the motion
of superconducting vortices, by focusing on the role of superconducting fluctuations. Within the BCS-Gor’kov
microscopic approach combined with the Kubo formula, we find a strong similarity between the vortex spin
Hall effect and the vortex Nernst/Ettingshausen effect. Calculated temperature dependence of the voltage signal
due to the inverse vortex spin Hall effect exhibits a strong enhancement by vortex fluctuations. This result not
only provides a possible explanation for a prominent peak found in the spin Seebeck effect in a NbN/Y3Fe5O12

system but also leads to a proposal of new experiments using other superconductors with strong fluctuations,
such as cuprate or iron-based superconductors.
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I. INTRODUCTION

Since Aronov discussed spin injection into superconduc-
tors [1], spin transport in superconductors has been a subject
of intense research both theoretically [2–13], and experimen-
tally [14–21], leading to the emergence of superconducting
spintronics [22–24]. Although the order parameters in a
spin-triplet superfluid are spin polarized and therefore the
condensate itself can carry spins [25], most of the supercon-
ductors have spin-singlet pairing with zero spin polarization.
So, at first glance, a spin current in a spin-singlet supercon-
ductor is inevitably carried by the excitations of Bogoliubov
quasiparticles, and the dynamics of the superconducting order
parameter does not seem to play a major role. For this reason,
pursuing a spin current that is carried by the condensate in
an abundant spin-singlet superconductors is one of the most
challenging issues in superconducting spintronics.

As stated above, a spin-singlet Cooper pair does not host
a nonzero spin polarization, and it is not so easy to think
of a spin current carried by the superconducting order pa-
rameter. The situation is similar to that of a heat current
in a superconductor. It is known that in the Meissner state,
no entropy is transferred by the supercurrent [26], and the
heat is carried only by Bogoliubov quasiparticles. However,
in the vortex state of a type-II superconductor, the situation
is drastically changed. In this case, the vortices can host a
nonzero entropy, and the vortex motion can contribute to the
heat transport. Since the vortices move approximately trans-
verse to the charge current direction following the Josephson
equation [27,28], this vortex motion produces a transverse
heat flow. Therefore, the vortex motion is the source of a large
Nernst/Ettingshausen effects in the superconducting vortex
state [29,30]. Because the superconducting vortex can host a
spin polarization as well by a static bias due to the paramag-
netic effect [31–34] or by a dynamic stimulus due to the spin

pumping [10], it is natural to think about replacing the vortex
entropy by a vortex spin polarization in order to discuss a spin
current in the vortex state (Fig. 1).

Recently, along the lines of the idea mentioned above, the
spin polarization moving with superconducting vortices is dis-
cussed by focusing on the flux flow regime [35]. Although the
idea having recourse to the flux flow picture is conceptually
transparent, when comparing the theoretical result with exper-
iments, one faces the following difficulty [36]. That is, the flux
flow theory does not explain temperature dependence of the
resistivity in a type-II superconductor under magnetic fields.
Instead, it is the fluctuation theory [37,38] that can explain
a broadening of the resistive transition, as proven not only
in conventional superconductors [39,40] but also in cuprate
superconductors [41,42]. Therefore, instead of referring to
this phenomenon as flux flow spin Hall effect, it is more
adequate to call it vortex spin Hall effect. Then, it is highly
demanded to analyze the vortex spin Hall effect on the basis
of the fluctuation theory.

In this paper, we theoretically explore the vortex spin Hall
effect, with special focus on the influence of superconducting
fluctuations. Using the Kubo formula, we microscopically
calculate the spin Hall conductivity in a vortex fluctuation
region. A similar physical situation has been dealt with in
Ref. [43] but the discussion is highly phenomenological,
which is contrasted to our microscopic approach. Specifi-
cally, by microscopically calculating the spin current vertex,
we reveal that there is a similarity between this vortex spin
Hall effect and the well-known vortex Nernst/Ettingshausen
effect [29,30]. The origin of this similarity is explained by
an intuitive picture that the spin polarization is transported
by vortices in the former, whereas the spin polarization is
replaced by entropy in the latter (Fig. 1). Furthermore, we
calculate temperature dependence of the voltage signal gen-
erated by the inverse vortex spin Hall effect. This allows us
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FIG. 1. Schematic drawing of the vortex spin Hall effect
discussed in this paper. A superconducting vortex hosts spin accu-
mulation in the core, which moves transverse to the charge current
following the Josephson equation [27,28]. Compare the drawing with
Fig. 1 of Ref. [29].

to compare the theory with experiments. In doing so, we pay
attention to the fact that the validity of the fluctuation theory
grows substantially in the vortex state as the fluctuations ac-
quire one-dimensional character, such that we need to include
non-Gaussian fluctuations [44,45].

This work is motivated by a recent longitudinal spin See-
beck experiment in a bilayer of a superconductor NbN and
a ferrimagnetic insulator Y3Fe5O12 (YIG) [20]. There, a pro-
nounced peak in the inverse spin Hall signal was observed at
the superconducting transition, and the result was interpreted
in terms of the coherence peak effect predicted for the spin
pumping into superconductors [10]. However, the interpreta-
tion in terms of the coherence peak effect was subsequently
questioned [13], since the coherence peak effect exists only
in an extremely low energy scale much less than the super-
conducting gap, whereas the spin Seebeck effect consists of
spectrally broad components extended up to an energy scale
much greater than the superconducting gap. This means that
the coherence peak effect is expected to be drowned out com-
pletely in the case of the spin Seebeck effect. The present
work provides us with an alternative interpretation of the
experiment [20] in terms of the vortex spin Hall effect.

The rest of this paper is organized as follows. In Sec. II,
we explain the formalism we use and present a microscopic
calculation of the spin current vertex by comparing it with the
charge and heat current vertices. In Sec. III, we present our mi-
croscopic calculation of the vortex spin Hall conductivity. In
Sec. IV, taking account of the vortex fluctuation effects which
are indispensable to explain temperature dependence of the
resistive transition, we calculate temperature dependence of
the inverse spin Hall voltage. Finally, in Sec. V, we summarize
our result.

We use the unit h̄ = kB = c = 1 throughout this paper.

II. FORMULATION AND CURRENT VERTICES

We begin this section with the following Hamiltonian for
an s-wave superconductor [46–48]:

H = H0 − |g|
∫

d3r�†(r)�(r), (1)

where |g| is the BCS attractive interaction parameter, and
�(r) = ψ−(r)ψ+(r) is the pair field with electron field

operator ψσ (r) for spin projection σ = ±. In Eq. (1),

H0 =
∑

σ

∫
d3rψ†

σ (r)

[
(−i∇ + |e|A)2

2m
+ U (r)

]
ψσ (r) (2)

is the single particle Hamiltonian, where A is the vector po-
tential, m and |e| are the mass and absolute value of charge
of an electron. The potential U (r) = ∑

a Uimp(r − ra) is due
to impurities at fixed positions ra, and after the impurity av-
erage denoted by an overline, it has zero mean and variance
U (r)U (r′) = (2πN (0)τ )−1δ(r − r′), where N (0) and τ are the
density of states per spin and electron lifetime, respectively.
Note that the above model does not include any spin-orbit
interactions.

For the calculation of the spin Hall conductivity in a fluc-
tuating vortex state, we use the Kubo formula [49–51]:

σ (SH)
xy = 1

i�

(
K (SH)R

xy (�) − K (SH)R
xy (0)

)∣∣
�→0, (3)

where the retarded correlation function K (SH)R
xy (�) is obtained

from the Matsubara correlation function,

K (SH)
xy (i�m) = 1

V

∫
d3r

∫
d3r′

∫ β

0
duei�mu

× 〈
Tu J (s)

x (r, u)J (c)
y (r′, 0)

〉
, (4)

through the analytic continuation K (SH)R
xy (�) = K (SH)

xy (i�m →
� + i0+). In Eq. (4), V is the volume of the system, β = 1/T
is the inverse temperature, u is the imaginary time, and Tu

is the time ordering operator. The charge and spin current
operators are, respectively, given by

J (c) = −|e|
2m

∑
σ

ψ†
σ (−i∇ + |e|A)ψσ + H.c., (5)

J (s) = −|e|
2m

∑
σ

σψ†
σ (−i∇ + |e|A)ψσ + H.c., (6)

where H.c. denotes Hermitian conjugate. Note that, following
convention, we define the spin current so as to have the same
dimension as the charge current.

We assume the dirty limit 1/(2πTc0τ ) � 1, where Tc0 is
the superconducting transition temperature under zero mag-
netic field. In our diagrammatic calculation, we use the
familiar quasiclassical approximation [48] for the impurity-
averaged electron Green’s function for spin projection σ under
a magnetic field H = H ẑ:

GH
εn,σ

(r, r′) = Gεn,σ (r − r′) exp

(
i|e|

∫ r′

r
A · ds

)
, (7)

where Gεn,σ (r − r′) is the impurity-averaged Green’s func-
tion under zero magnetic field. This quantity is given by the
Fourier transform of

Gp,σ (εn) = 1

ĩεn − εp + μσ

= 1

ĩεn − ξp + σμs/2
, (8)

where ε̃n = εn + sgn(εn)/2τ , and εn = 2πT (n + 1/2) is a
fermionic Matsubara frequency. In Eq. (8), εp = p2/(2m),
μσ is the spin-dependent chemical potential, ξp = εp − μ0,
μ0 = (μ+ + μ−)/2, and μs = (μ+ − μ−) is the spin accu-
mulation. Note that we assume the presence of a nonzero spin
accumulation μs by a stimulus of the spin pumping or the spin
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FIG. 2. (a) Diagrammatic representation of the process consid-
ered in this work. A wavy line represents the fluctuation propagator, a
solid line with an arrow is the electron Green’s function. Dashed lines
connected to a filled circle and an open circle are the fermionic spin
current and charge current vertices, respectively. A dashed ladder
denotes a Cooperon vertex [Eq. (11)]. (b) Diagram representing the
bosonic spin current vertex acting on the pair field. In the case of the
charge current vertex, the filled circle is replaced by an open circle.

Seebeck effect. In the following, we consider a particle-hole
symmetric case, and we investigate terms up to the linear order
with respect to the spin accumulation μs.

For the calculation of the vortex spin Hall effect in the
fluctuating vortex state, we focus on the process shown
in Fig. 2(a). If a Gaussian approximation valid above the
mean-field transition temperature is used for the fluctuation
propagator, the process coincides with the Aslamazov-Larkin
contribution [52]. If, on the other hand, a one-loop self-
energy correction to the fluctuation propagator is taken into
account in a self-consistent way (see Fig. 2(a) of Ref. [41]),
the process gives us the so-called self-consistent Hartree
approximation [42] that is valid both above and below the
mean-field transition temperature in the vortex state. In
this work we adopt the latter approximation, i.e., the self-
consistent Hartree approximation [42]. As we show below,
there is a similarity between the vortex spin Hall effect under
discussion and the well-known vortex Nernst/Ettingshausen
effect [53–56]. For the latter effect, the process shown in
Fig. 2(a), which coincides with the Aslamazov-Larkin process
within the Gaussian approximation, is known to be domi-
nant among other contributions [57]. Therefore, considering
the similarity between the vortex spin Hall effect and vor-
tex Nernst/Ettingshausen effect, we focus on this process
[Fig. 2(a)]. The Maki-Thompson process and the density of
states process are disregarded.

In the remaining part of this section, we calculate the
bosonic current vertex acting on the pair field, which is
constructed from the fermionic triangle shown in Fig. 2(b)
[57–59]. Note that in our calculation, we use the following
identity [48]:

exp

(
2i|e|

∫ r

r′
A · ds

)
�(r′) = e−i(r−r′ )·Q(r)�(r), (9)

where � is the pair field, and Q(r) = −i∇ + 2|e|A is the
gauge-invariant gradient.

With these in mind, let us first review the calculation of the
bosonic charge current vertex shown in Fig. 2(b) [59]. Starting
from the position representation of the fermionic charge cur-
rent vertex [58,60] and then use Eq. (9), the fermion triangle
in the Matsubara representation can be calculated as

J(c) = |e|T
∑
εn

∑
σ

∫
p
vp(GQ−p,−σ (−εn)

× Gp,σ (εn + ω1)Gp,σ (εn + ω2))

×CQ,σ (εn + ω1,−εn)CQ,σ (εn + ω2,−εn), (10)

where vp = p/m, and we introduced the shorthand notation∫
p = ∫

d3 p/(2π )3. In this equation,

CQ,σ (εn + ων,−εn) = τ−1�(εn(εn + ων ))

dQ(2εn + ων ) − iσμssgn(εn)
(11)

is the Cooperon vertex, where �(x) is the step function,
dQ(2εn + ων ) = |2εn + ων | + DQ2 with D = v2

F τ/3 being
the diffusion coefficient.

We first notice that dependence on the small bosonic
Matsubara frequency ω1,2(� εn) is unimportant in the present
case, such that we can safely set ω1,2 → 0. Then, the momen-
tum integral for the product of three Green’s functions yields
−4πN (0)τ 2DQ, and the charge current vertex up to the linear
order in Q can be expressed as [57,59]

J(c) = t (c)N (0)Q, (12)

where the amplitude t (c) is given by

t (c) = −16π |e|DT
∞∑

n=0

(
1

2εn

)2

= −4|e|ξ 2
0 , (13)

where ξ 2
0 = πD/(8Tc0) is the coherence length, and in moving

to the last line we used Ψ (1)(1/2) = π2/2 for the tri-gamma
function Ψ (1)(z).

Let us now calculate the bosonic spin current vertex acting
on the pair field. The expression for the spin current vertex in
the Matsubara representation is given by

J(s) = |e|T
∑
εn

∑
σ

σ

∫
p
vp(GQ−p,−σ (−εn)

× Gp,σ (εn + ω1)Gp,σ (εn + ω2))

×CQ,σ (εn + ω1,−εn)CQ,σ (εn + ω2,−εn), (14)

where the essential change from Eq. (10) is the presence of an
additional σ in the summand. Although the expression does
not seem to differ so much from that of the charge current
vertex J(c) [Eq. (10)], the crucial difference is that now the
frequency dependence is of great importance. This is because
if we only consider a spin current vertex independent of ω1,2,
then the result becomes quite similar to that of the vortex Hall
effect [61], which is known to vanish in the present particle-
hole symmetric case [59]. Therefore, we need to evaluate
the spin current vertex that is proportional to the frequency
ω1 and ω2.
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FIG. 3. Four regions A , B , C , and D for Matsubara sum-
mation in the complex plane. (a) When ω1 > 0, ω2 < 0, and (b) ω1 >

0, ω2 > 0.

Then, expanding the spin current vertex up to the linear
order in Q, J(s) can be expressed as

J(s) = t (s)(iω1, iω2)N (0)Q, (15)

where t (s)(iω1, iω2) is the amplitude in the Matsubara space.
Now we consider how the analytic continuation with respect
to iω1 and iω2 is performed. As detailed in Appendix A, the
way of analytic continuation needed here is that iω1 (iω2)
is from the upper (lower) half plane to the real axis, i.e.,
iω1,2 → ω ± i0+, just like the case of the Coulomb drag [62]
(see Fig. 3(b) of Ref. [62]). This means that ω1 and ω2 have
opposite signs in the Matsubara space.

In performing the εn summation in Eq. (14), we have four
regions separated by three branch cuts as shown in Fig. 3.
Because the Cooperon enhancement is the most effective in
regions A and D , it is enough to evaluate the contri-
bution from these two regions. Carrying out the Matsubara
summation over εn and then performing the relevant analytic
continuation, whose procedure is detailed in Appendix A, the
spin current vertex is obtained as

J(s)(ω) = t (s)RA(ω,ω)N (0)Q. (16)

Here, the amplitude t (s)RA(ω,ω) = t ′(s)ω is linear in ω with
the slope given by

t ′(s) = −4|e|ξ 2
0

μs

8T 2
, (17)

where the superscript RA in t (s)RA(ω,ω) denotes how the
analytic continuation with respect to iω1 and iω2 is performed.

It is important to note that we can relate this expression for
J(s) to the charge current vertex J(c) by

J(s)(ω) = μs

8T 2
ωJ(c), (18)

which should then be compared to the expression for the heat
current vertex J(h) [57],

J(h)(ω) = 1

−2|e|ωJ(c). (19)

Note also that the spin current vertex in Eq. (16) vanishes
when ω1 and ω2 have the same sign. Therefore it survives only
in region F in Fig. 4 (see the next section). Keeping the latter
constraint in mind, we have an important relation between the

FIG. 4. Contour of integration in the complex zω plane, and three
regions E , F , and G .

spin current vertex and the heat current vertex,

J(s)(ω) = −|e|μs

4T 2
J(h). (20)

This result suggests that the vortex spin Hall effect (given
by the spin current-charge current correlation function) has a
similarity to the vortex Nernst/Ettingshausen effect (given by
the heat current-charge current correlation function). Besides,
we see that the spin current vertex is nonvanishing only in the
presence of the spin accumulation μs. Note that, in this work,
the presence of a nonzero μs due to the spin pumping or the
spin Seebeck effect is assumed, such that μs is not the quantity
to be determined self-consistently.

III. VORTEX SPIN HALL CONDUCTIVITY

Since the expressions for the spin and charge current ver-
tices are obtained in the previous section, we are now in a
position to calculate the vortex spin Hall conductivity. Let us
begin with the expression for the total spin Hall conductivity:

σ (SH)
xy = σ

(SH)
xy,N + δσ (SH)

xy , (21)

where σ
(SH)
xy,N is the normal state contribution, whereas δσ (SH)

xy
is the fluctuation contribution. Correspondingly, we have two
correlation functions K (SH)

xy,N for the former and δK (SH)
xy for the

latter. Then, starting from the Kubo formula [Eq. (4)] and
perform the integral over the position variable, we have for
the process shown in Fig. 2(a)

δK (SH)
xy (i�m) = 1

2πr2
H

∑
N1,N2

〈N1|Qx|N2〉〈N2|Qy|N1〉

× T
∑
ων

t (s)(iων+, iων )t (c)

×
∫

q
LN1,q(iων+ )LN2,q(iων ), (22)

where ων = 2πT ν is a bosonic Matsubara frequency with
integer ν, and ων+ = ων + �m. Here, rH = 1/

√
2|e|H is the

magnetic length,
∫

q = ∫
dq/2π , and the Landau levels |N〉

are defined by

â+â−|N〉 = N |N〉, (23)
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where â± = rH√
2
(Qx ± iQy). In Eq. (22),

LN,q(iων ) = 1

αN,q + |ων |/γ (24)

is the Matsubara fluctuation propagator of the pair field for the
N-th Landau level. Here, γ = 8Tc0/π , αN,q = αN + ξ 2

0 q2, and

αN = T − Tc0

Tc0
+ h(2N + 1), (25)

where h = H/Hc2(0) with Hc2(0) = 1/(2|e|ξ 2
0 ) being the up-

per critical field at zero temperature. Using

〈N1|Qx|N2〉 =
√

N1δN1,N2+1 + √
N2δN1+1,N2√

2rH

, (26)

〈N2|Qy|N1〉 =
√

N1δN1,N2+1 − √
N2δN1+1,N2

−i
√

2rH

, (27)

which result from Qx = (
√

2rH )−1(̂a+ + â−) and Qy =
(i
√

2rH )−1(̂a+ − â−), we obtain

δK (SH)
xy (i�m) = iT

∑
N,ων

(N + 1)t (s)(iων+, iων )t (c)

4πr4
H

×
∫

q
(LN+1,q(iων+ )LN,q(iων ) − (ων+ ↔ ων )).

(28)

We next transform the Matsubara sum into the contour
integral by using the well-known identity

T
∑
ων

F (iων ) =
∫

C

dzω

4π i
coth

(
zω

2T

)
F (zω ), (29)

where the contour C is shown in Fig. 4. During the transfor-
mation, it is quite important to recall that, as stated at the end
of the previous section, t (s) has a nonzero value only within
the F region in Fig. 4. Then, t (s) is analytically continued to

t (s)RA(ω,ω) in this region F . Substituting this into Eq. (3),
we have

δσ (SH)
xy = t ′(s)t (c)

8πTr4
H

∑
N

(N + 1)

×
∫

q

∫
ω

ω

sinh2
(

ω
2T

) Im
[
LR

N,q(ω)LA
N+1,q(ω)

]
, (30)

where
∫
ω

= ∫ ∞
−∞

dω
2π

.
To proceed further we take the classical limit ω/T � 1,

which is valid near a superconducting transition at finite tem-
peratures. Then, the integration over ω can be done as follows:∫

q

∫
ω

ω

sinh2
(

ω
2T

) Im
[
LR

N,q(ω)LA
N+1,q(ω)

]
≈ 2T 2

∫
q

αN+1,q − αN,q

αN,qαN+1,q(αN,q + αN+1,q)

= T 2

ξ0h

⎛⎝ 1√
αN

+ 1√
αN+1

− 2√
αN +αN+1

2

⎞⎠, (31)

where we used the relation αN+1,q − αN,q = 2h. Introduc-
ing quantum resistance RQ = 2π h̄/4|e|2 (which is written
as π/2|e|2 in the present unit, h̄ = 1), the vortex spin Hall
conductivity is finally given by

δσ (SH)
xy = μsh

8RQξ0T

∑
N

(N + 1)

×
⎛⎝ 1√

αN
+ 1√

αN+1
− 2√

αN +αN+1

2

⎞⎠, (32)

where we used h = ξ 2
0 /r2

H .

IV. TEMPERATURE DEPENDENCE OF VORTEX SPIN
HALL EFFECT

In this section, by extending the Gaussian fluctua-
tion theory (Aslamazov-Larkin theory [52], Eq. (32)) to
the non-Gaussian fluctuation theory (self-consistent Hartree
approximation [42]), we calculate temperature dependence of
the vortex spin Hall effect. Here, it is important to note that
we are concerned with the vortex fluctuation regime showing
a broadening of the resistive transition, where the Landau
quantization of the order parameter fixes the length scale
of fluctuations transverse to the applied magnetic field, to
the magnetic length rH . Therefore, only the long-wavelength
fluctuations along the magnetic field are left. This leads to
the dimensional reduction of the fluctuations, by which the
renormalized transition temperature is shifted to a temperature
much lower than the mean-field one, and the valid region of
fluctuation theory is substantially widened [42].

Before going into details, we briefly discuss the width
of the fluctuation region where the self-consistent Hartree
approximation, used in the present work, is valid. For a rough
estimate of the width of the fluctuation region, we use the
Ginzburg criterion [63]:

|Tc0 − T |
Tc0

� Gi (33)

by which the (non-Gaussian) fluctuation region is defined,
where Gi is the Ginzburg number [38]. In a three-dimensional
superconductor under zero magnetic field, Gi is of the or-
der of 10−12 and hence the fluctuation region is negligibly
small [38]. By contrast, as mentioned above, fluctuations in
the vortex state acquire one-dimensional character. In an ef-
fectively one-dimensional superconductor, Gi can be of the
order of unity [38]. Therefore, in the vortex state of a three-
dimensional superconductor, the fluctuation region spans the
whole part of the resistive transition, i.e., from the onset point
of the resistivity drop to the accomplished point of zero resis-
tivity. Note, however, that as soon as the vortex pinning effect
sets in that establishes the zero resistivity state, the present
self-consistent Hartree approximation breaks down. Note also
that the self-consistent Hartree approximation deals with the
interaction among fluctuations in a non-perturbative way, in
that a partial but infinite-order summation of the self-energy
for the fluctuation propagator is carried out.

In the fluctuation region of the vortex state, only the lowest
Landau level (N = 0) becomes critical among other Landau
levels, since higher Landau levels (N > 0) have a gap [41,64].
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Because of this fact (αN1 � α0 for N1 � 1), the non-Gaussian
fluctuations substantially renormalize the mass in the lowest
Landau level (α0) as

α0 → α̃0, (34)

whereas the mass in higher Landau levels (αN1 ) are almost
unaffected. Therefore we can approximate Eq. (32) by

δσ (SH)
xy ≈ μsh

8RQξ0T

1√
α̃0

, (35)

where the relation αN1 � α̃0 for N1 � 1 has been used. To
calculate the renormalized mass α̃0 in the lowest Landau level,
we adopt the so-called self-consistent Hartree approximation
[40,42], which is known to be a minimal approach that takes
into account the fluctuation effects in the superconducting
vortex state [40,42].

We consider the following Ginzburg-Landau free energy
functional:

FGL = N (0)
∫

d3r

(
a|�|2 + ξ 2

0 |Q�|2 + b

2
|�|4

)
, (36)

which are obtained from the BCS Hamiltonian [Eq. (1)]
[48]. Here, � is the superconducting pair field, Q is the
gauge-invariant gradient defined below Eq. (9), and a = (T −
Tc0)/Tc0, b = 7ζ (3)/(8π2T 2). To simplify the calculation,
we rescale the length and the pair field as r/ξ0 → r and

�

√
N (0)ξ 3

0
T → �, so that the free energy functional divided by

T now reads

FGL

T
=

∫
d3r

(
a|�|2 + |Q�|2 + b′

2
|�|4

)
, (37)

where the coefficient for the rescaled quartic term, b′, is re-
lated to the specific heat jump �C under zero field as b′ =
1/(�Cξ 3

0 ).
The orbitals which diagonalize the quadratic terms of the

above free energy are the Landau levels. Since only the low-
est Landau level (N = 0) becomes critical in the fluctuation
regime as mentioned above [41,64], and since the lowest
Landau level has a macroscopic degeneracy corresponding to
the number of vortices Nv = LxLy/2πr2

H with Lx and Ly being
the system dimensions in the x and y directions, we expand
the pair field into the lowest Landau level orbitals [41,42,44]:

�(r) = 1√√
πrH LyLz

∑
p,q

φp,qup,q(r), (38)

where we use the Landau gauge A = Hxŷ, and up,q(r) is
defined by

up,q(r) = e
− 1

2r2
H

(x+pr2
H )2+i(py+qz)

. (39)

Note that any length here is measured in unit of ξ0. Within the
lowest Landau level expansion, the free energy becomes

FGL

T
=

∑
K

(α0 + q2)φ∗
KφK

+ g

2

∑
K1,K2,K3,K4

δK1+K3,K2+K4 Vp1−p2Vp3−p2

×φ∗
K1

φK2φ
∗
K3

φK4 , (40)

where α0 is the N = 0 component of αN defined in Eq. (25),
g = b′√

2πrH LyLz
, Vp−p′ = exp[− (p−p′ )2

2h ], and K stands for a pair

K = (p, q).
The self-consistent Hartree approximation [40,42] is a self-

consistent one-loop renormalization for the model in Eq. (40)
in the absence of quantum fluctuations. Note that, in the
present lowest Landau level approach, vortex fluctuations are
naturally taken into account owing to the degeneracy within
the lowest Landau level (zeros of the lowest Landau level
wave function) that corresponds to the vortex degrees of free-
dom. After calculating the one-loop self-energy correction for
the fluctuation propagator (see Fig. 2(a) of Ref. [41]), we
obtain the following self-consistent equation for the mass:

α̃0 = α0 + h

2π

b′
√

α̃0
, (41)

which should be solved for α̃0.
Before discussing temperature dependence of the vortex

spin Hall conductivity, it is instructive to examine the behavior
of diagonal charge conductivity σxx, since this quantity is
needed later to evaluate the inverse spin Hall voltage. Per-
forming calculations detailed in Appendix B, the expression
for σxx is given by

σxx ≈ σN + π

16RQξ0

1√
α̃0

, (42)

where σN is the normal state conductivity. Note that, in the
absence of vortex pinning effects that leads to the vortex glass
ordering, not only that the vortex liquid state we are dealing
with is a resistive state, but also that the Abrikosov vortex
lattice without pinning exhibits the flux flow resistivity in
response to the applied electric field [65]. As emphasized and
clarified in Ref. [42], the self-consistent Hartree approxima-
tion is applicable to such resistive states, as well as able to
describe a smooth crossover from the normal state to the flux
flow state.

Figure 5 shows the resistivity ρ = 1/σxx calculated using
Eq. (42) as a function of temperature, where the resistivity is
normalized by the normal state value ρN = 1/σN . In viewing
the figure, it is important to recall that the mean-field transition
temperature under magnetic field is given by T MFA

c (h)/Tc0 =
1 − h, and that the lower temperature side below T MFA

c (h)
is still a fluctuation region due to the dimensional re-
duction of fluctuations as emphasized at the beginning of
this section. This fluctuation region, i.e., the vortex liquid
region, can be well discribed by the self-consistent Hartree
approximation [42].

In Fig. 5(a), temperature dependence of ρ/ρN is plotted
for a fixed strength of magnetic field h with several different
choices of the coefficient b′ in Eq. (37). Since the b′ value
is known to measure the magnitude of the fluctuations [63],
with the increase of b′, the fluctuation region is widened.
In Fig. 5(b), the resistivity is plotted for a fixed value of b′
[Eq. (37)] with several different strengths of the magnetic
field h. From the figure we see that, with increasing the mag-
netic field, the onset of superconducting fluctuation is shifted
to lower temperatures, as well as the width of the fluctua-
tion region is enlarged. Note that such behaviors are well
known not only in cuprate superconductors [66] but also in
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FIG. 5. (a) Temperature dependence of the resistivity ρ/ρN for a
fixed strength of magnetic field h = 0.1 with several different values
of b′. (b) Temperature dependence of ρ/ρN for a fixed value b′ =
0.1 [Eq. (37)] with several different strengths of magnetic field h.
In both figures, ρN/(RQξ0 ) = 0.1 is used, and the horizontal axis is
chosen to be T/Tc0, where Tc0 is the transition temperature under zero
magnetic field.

conventional superconductors [67] (see Fig. 2 therein). The
present calculation qualitatively captures these features.

Now we discuss the vortex spin Hall conductivity δσ (SH)
xy .

Figure 6 shows the vortex spin Hall conductivity calculated
using Eqs. (35) and (41) as a function of reduced temperature
α0 = T/Tc0 − 1 + h. In Fig. 6(a), the b′ value is varied as
b′ = 0.1, 0.05, 0.03 while the strength of the magnetic field
h = 0.01 is fixed. From Fig. 6(a), we see that the magni-
tude of b′ does not affect the fluctuation region of the vortex
spin Hall conductivity so much, but it controls the growth of
δσ (SH)

xy below the mean-field transition temperature (α0 = 0).
In Fig. 6(b), the strength of the magnetic field is varied as
h = 0.5, 0.1, 0.01 while the value b′ = 0.1 is kept constant.
From the figure we find that the strength of the magnetic field
enlarges the fluctuation region as well as the magnitude of the
vortex spin Hall conductivity.

Next, we discuss temperature dependence of the inverse
spin Hall voltage, i.e., electric voltage produced by the inverse
spin Hall effect, which can be directly compared with experi-
ments. The linear response equation for the charge current j (c)

x
in the presence of electric field Ex and spin voltage gradient
∇yμs is given by [8]

j (c)
x = σxxEx + σ (SH)

xy (−∇yμs), (43)

where Ex is the x component of the electric field. Under the
open circuit condition j (c)

x = 0, the electric voltage produced

FIG. 6. (a) The vortex spin Hall conductivity
δσ (SH)

xy (T )/δσ (SH)
xy (Tc0 ) as a function of reduced temperature

α0 = T/Tc0 − 1 + h for a fixed strength of the magnetic field h =
0.01 with several different values of b′. (b) δσ (SH)

xy (T )/δσ (SH)
xy (Tc0 )

for a fixed b′ = 0.1 value with several different strengths of the
magnetic field h.

by the inverse spin Hall effect is given by

VISHE = wσ (SH)
xy

σxxσ (s)
j (s)
y , (44)

where w is the distance of the two contacts to detect the Hall
voltage, and j (s)

y = σ (s)(−∇yμs) is the injected spin current.
Note that there is no divergent contribution to the diagonal
spin conductivity σ (s) from superconducting fluctuations, as
the situation is similar to the absence of divergent contribution
to the thermal conductivity from superconducting fluctuations
[68,69]. Therefore we can safely set σ (s) = σN in the vortex
fluctuation region. Keeping this note in mind and substituting
Eq. (21) into Eq. (44), the inverse spin Hall voltage can be
rewritten as

VISHE = w

σxx

(
θ

(SH)
N + δσ (SH)

xy

σN

)
j (s)
y , (45)

where the first term on the right-hand side arises from the
normal-state spin Hall conductivity,

σ
(SH)
xy,N = θ

(SH)
N σN , (46)

where θ
(SH)
N is the spin Hall angle in the normal state. Eq. (45)

means that, in the absence of the spin-orbit interaction, there
is no normal state contribution to the spin-Hall conductivity,
such that the vortex spin Hall effect is dominant as in the
case of vortex Nernst/Ettingshausen effect. In the presence

134417-7



TAIRA, KATO, ICHIOKA, AND ADACHI PHYSICAL REVIEW B 103, 134417 (2021)

FIG. 7. (a) Temperature dependence of the inverse spin Hall voltage VISHE, normalized by the normal state value V (N )
ISHE, for a fixed strength

of the magnetic field h = 0.05 with several different values of b′. Here, ρN/(RQξ0 ) = 0.1, μs/Tc0 = 2.0, and θ
(SH)
N = 0.001 are used, where

θ
(SH)
N is the spin Hall angle in the normal state. (b) Temperature dependence of VISHE for a fixed value b′ = 0.1 with several different strengths

of the magnetic field h. (c) Magnetic field dependence of VISHE at T/Tc0 = 0.8 for several different choices of b′. Note that the vortex pinning
effects are disregarded in all plots.

of the spin-orbit interaction, however, the ratio of the vortex
contribution to the normal state contribution depends on the
magnitude of the spin Hall angle in the normal state.

Figure 7(a) shows temperature dependence of the inverse
spin Hall voltage VISHE calculated from Eq. (45) for a fixed
strength of the magnetic field h = 0.05, whereas Fig. 7(b)
shows the same quantity for a fixed value of b′ = 0.1. From
these two figures we find that the general tendency of VISHE

is essentially the same as that in Figs. 5 and 6, namely, an in-
crease of the magnetic field h as well as that of the coefficient
b′ enlarges the fluctuation region of VISHE, which makes an
experimental detection of the signal more tractable. Besides,
in Fig. 7(c), we show magnetic field dependence of VISHE at a
fixed temperature T/Tc0 = 0.8. Recalling that the upper criti-
cal field in the mean-field approximation is given by hMFA

c2 =
0.2 at T/Tc0 = 0.8, a magnetic-field window below hMFA

c2
still belongs to a fluctuation region due to the dimensional
reduction of fluctuations as discussed at the beginning of this
section. Therefore, in superconductors without vortex pinning
effects, the peak seen in Fig. 7(c) is within the valid region
of the present self-consistent Hartree approximation. Note
however that, when comparing the theoretical result with ex-
periments, care must be taken that vortex pinning effects that
exist in a real material may reduce the signal at lower fields,
thus narrowing the width of the peak.

Finally, in Fig. 8, we try to interpret the experimental
result of Ref. [20] in terms of the vortex spin Hall effect.
Figure 8(a) shows temperature dependence of the inverse spin
Hall voltage VISHE calculated from Eq. (45), which includes
the spin Hall effect in the normal state of NbN [70–72]. Here,
the parameters are chosen in such a way that the result is
comparable with Ref. [20]. (See the resistivity calculation
in Fig. 8(b), which should be compared with Fig. 3(a) of
Ref. [20].) From the result for VISHE [solid line in Fig. 8(a)] we
find that, with decreasing temperature, there is a steep growth
of VISHE accompanied by a saturation at lower temperatures,
whose features are consistent with Ref. [20]. In the figure, we
also draw an expected behavior when we take into account
the vortex pinning effects, which forms a peak around the
superconducting transition [dotted line in Fig. 8(a)].

This drawing (dotted line) is based on the following ar-
guments. First, the (inverse) vortex spin Hall effect under

discussion is a process where the spin diffusion concomitant
with the vortex motion produces a time-dependent phase vari-
ation of the pair-field, thus generating the transverse voltage
in accordance with the Josephson equation [27,28]. Therefore,
once the vortex pinning effect sets in, the vortex motion and
the phase variation start to freeze, leading to a decrease in the
transverse voltage. Second, as already pointed out in Sec. I,
there is a strong similarity between the vortex spin Hall effect
and the vortex Nernst/Ettingshausen effects. In the case of
the vortex Nernst effect, the voltage signal is known to form a
peak as a function of temperature [67]. Therefore, considering
the similarity to the vortex Nernst effect, the inverse spin Hall
voltage due to the vortex spin Hall effect is expected to show
a peak structure as drawn by the dotted line.

As emphasized in Sec. I, the calculated temperature depen-
dence of the inverse spin Hall voltage [Fig. 8(a)] may provide

FIG. 8. (a) Temperature dependence of the inverse spin Hall
voltage VISHE, normalized by the normal state value V (N )

ISHE, for a
fixed strength of the magnetic field h = 0.015. Here, Tc0 = 10.0 K,
b′ = 0.02, ρN/(RQξ0 ) = 0.155, μs/Tc0 = 2.0, and θ

(SH)
N = 0.005 are

used [70–72], where θ
(SH)
N is the spin Hall angle in the normal state.

The solid line is a result calculated using Eq. (45), whereas the
dotted line is an expected behavior once taking account of the vortex
pinning effects (see the main text). (b) Temperature dependence of
the resistivity with the same parameter as (a).

134417-8



SPIN HALL EFFECT GENERATED BY FLUCTUATING … PHYSICAL REVIEW B 103, 134417 (2021)

a possible explanation for a prominent peak found in the spin
Seebeck effect in a NbN/Y3Fe5O12 system [20].

V. DISCUSSION AND CONCLUSION

In this paper, we have theoretically examined the spin
Hall effect driven by the motion of superconducting vortices,
which we term the vortex spin Hall effect. Focusing on the
influence of superconducting fluctuations that are known to
play a crucial role in the resistive transition of type-II super-
conductors, we have clarified the following two points. First,
we have shown through a diagrammatic calculation that there
is a strong similarity between the vortex spin Hall effect under
discussion and the well-known vortex Nernst/Ettingshausen
effect [29,30]. Second, we have demonstrated that the spin
Seebeck effect in a superconductor/ferromagnetic insulator
system can exhibit a prominent peak as a function of tem-
perature [20], not due to the coherence peak effect [10], but
due solely to the (inverse) vortex spin Hall effect. The same
conclusion applies to the inverse spin Hall voltage for a spin
pumping in a superconductor/ferromagnetic insulator system.

The vortex spin Hall effect which we have examined here
offers a new means of spin-to-charge current interconversion
[73,74] in superconductors. As is seen from Figs. 7 and 8,
this effect is most conspicuous in the fluctuation region of the
superconducting vortex state where the vortex pinning effects
do not set in. Since a superconductor with strong fluctuations
exhibits a wider fluctuation region, it is tempting to carry out
a spin pumping/Seebeck experiment using cuprate supercon-
ductors or iron-based superconductors.

We emphasize that the vortex spin Hall effect does not
require the spin-orbit scattering, but requires a non-zero spin
accumulation inside the vortex core. Therefore, the signal is
not proportional to the strength of the spin-orbit interaction
in the system, but proportional to the magnitude of the spin
accumulation. In this respect, in a superconductor with no
spin-orbit interactions, the vortex spin Hall effect can be easily
identified because there is no normal state contribution.

To summarize, we have developed a microscopic the-
ory of the vortex spin Hall effect, i.e., the spin Hall effect
driven by the motion of superconducting vortices. We have
pointed out a strong similarity between the vortex spin Hall
effect and the well-known vortex Nernst/Ettingshausen effect,
and shown that the spin Seebeck effect in a ferromagnetic
insulator/superconductor system can exhibit a prominent
peak as a function of temperature [20]. Since the predicted
signal is most visible in a superconductor with strong fluctua-
tions, we hope that a spin pumping/Seebeck experiment using
cuprate or iron-based superconductors is performed in future.
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APPENDIX A: DERIVATION OF THE SPIN CURRENT
VERTEX

In this Appendix, we sketch the derivation of the spin
current vertex [Eq. (16)]. We first consider the case ω1 > 0,

ω2 < 0 [Fig. 3(a)]. The momentum integral for the product of
three Green’s functions yields −4πN (0)τ 2DQ as in the case
of charge current vertex. Then, after considering a contribu-
tion from the two Cooperons, we obtain

J(s) = −4π |e|N (0)DQ(SA + SD), (A1)

where

SA =
∑

−ω2<εn<∞,σ

σT

(|2εn + ω1| − iσμs)(|2εn + ω2| − iσμs)

comes from region A in Fig. 3(a), whereas

SD =
∑

−∞<εn<−ω1,σ

σT

(|2εn + ω1| + iσμs)(|2εn + ω2| + iσμs)

comes from region D . After shifting the Matsubara fre-
quency εn → εn − ω2, SA is transformed to

SA =
∑

0<εn<∞,σ

σT

(2εn − ω2 + ω12 − iσμs)(2εn − ω2 − iσμs)

= T

(4πT )2

∑
σ

σΨ (1)

(
1

2
+ −ω2 − iσμs

4πT

)
, (A2)

where ω12 = ω1 − ω2, which becomes zero upon analytic
continuation ω1,2 → −iω ± 0+ and hence can be safely set
to zero in the argument of tri-gamma function. Similarly, after
reversing the sign of the Matsubara frequency εn → −εn, SD

is transformed to

SD =
∑

ω1<εn<∞,σ

σT

(2εn − ω2 + iσμs)(2εn − ω1 + iσμs)
,

which corresponds to the expression of SA under the exchange
σμs ↔ −σμs and ω1 ↔ −ω2. Therefore SD is obtained as

SD = T

(4πT )2

∑
σ

σΨ (1)

(
1

2
+ ω1 + iσμs

4πT

)
. (A3)

Then, after the analytic continuation ω1,2 → −iω ± 0+, the
sum SA + SD is calculated to be

SA + SD = T

(4πT )2

∑
σ

σ

[
Ψ (1)

(
1

2
+ iω − iσμs

4πT

)

+Ψ (1)

(
1

2
+ −iω + iσμs

4πT

)]

= 4T μsω

(4πT )4
Ψ (3)

(
1

2

)
, (A4)

where Ψ (3) is the penta-gamma function, and we expanded the
result to linear order in ω as well as in μs.

In the case ω1, ω2 > 0 [Fig. 3(b)], the contributions from
region A and D cancel as long as we are concerned with
the spin current vertex proportional to the frequency ων . Using
Ψ (3)(1/2) = π4, we obtain Eq. (16) in the main text.
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APPENDIX B: CALCULATION OF THE FLUCTUATION
CONDUCTIVITY

Here, we review the calculation of the fluctuation charge
conductivity [52]:

σxx = 1

i�

(
KR

xx(�) − KR
xx(0)

)∣∣
�→0, (B1)

where the retarded current correlation function KR
xx(�) is ob-

tained from the Matsubara function,

Kxx(i�m) = − 1

V

∫
d3r

∫
d3r′

∫ β

0
duei�mu

×〈Tu J (c)
x (r, u)J (c)

x (r′, 0)〉 (B2)

by an analytic continuation i�m → � + i0+.
As in the case of the spin Hall conductivity [Eq. (21)],

the diagonal conductivity can be divided into the normal state
contribution σxx,N and the superconducting fluctuation contri-
bution δσxx as

σxx = σN + δσxx, (B3)

where the former (latter) is obtained from the correlation func-
tion KN (δKxx). Writing down the process shown in Fig. 2(a)
with the current vertex given in Sec. II, we have

δKxx(i�m) = (t (c) )2

2πr2
H

T
∑
ων

∑
N1,N2

〈N1|Qx|N2〉〈N2|Qx|N1〉

×
∫

q
LN1,q(iων+ )LN2,q(iων )

= (t (c) )2

4πr4
H

∑
N

(N + 1)T
∑
ων

×
∫

q
(LN+1,q(iων+ )LN,q(iων ) + (ων+ ↔ ων )),

(B4)

where ων = 2πT ν is a bosonic Matsubara frequency with in-
teger ν, and ων+ = ων + �m. After performing the Matsubara
sum as well as the analytic continuation, we obtain

δσxx = (t (c) )2

4πr4
H T

∑
N

(N + 1)

×
∫

q

∫
ω

1

sinh2
(

ω
2T

) ImLR
N,q(ω)ImLA

N+1,q(ω). (B5)

Taking the classical limit ω/T � 1 and then performing the
integral over ω and q, we obtain

δσxx = π

16RQξ0

∑
N

(N + 1)

×
⎛⎝ 1√

αN
+ 1√

αN+1
− 2√

αN +αN+1

2

⎞⎠. (B6)

Using the lowest Landau level approximation (αN1 � α0 for
N1 � 1), and combining Eq. (B6) with Eq. (B3), we obtain
Eq. (42) in the main text.
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