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Understanding of the interaction of antiferromagnetic solitons including domain walls and skyrmions with
boundaries of chiral antiferromagnetic slabs is important for the design of prospective antiferromagnetic
spintronic devices. Here, we derive the transition from spin lattice to micromagnetic nonlinear σ model with
the corresponding boundary conditions for a chiral cubic G-type antiferromagnet and analyze the impact
of the slab boundaries and antisymmetric exchange (Dzyaloshinskii-Moriya interaction) on the vector order
parameter. We apply this model to evaluate modifications of antiferromagnetic domain walls and skyrmions
upon interaction with boundaries for different strengths of the antisymmetric exchange. Due to the presence
of the antisymmetric exchange, both types of antiferromagnetic solitons become broader when approaching the
boundary and transform to a mixed Bloch-Néel structure. Both textures feel the boundary at the distance of about
five magnetic lengths. In this respect, our model provides design rules for antiferromagnetic racetracks, which
can support bulklike properties of solitons.

DOI: 10.1103/PhysRevB.103.134413

I. INTRODUCTION

The requirement for high storage densities and operation
speed of devices stimulates the development of antiferro-
magnetic (AFM) spintronics and spin orbitronics [1–4]. The
envisioned devices rely on AFM textures moving in spatially
confined channels [5–10] similarly to ferromagnetic race-
tracks [11]. One of the most efficient ways to control their
dynamics is spin-orbit staggered torques, which require spe-
cific symmetry of antiferromagnets rendering them chiral with
Dzyaloshinskii-Moriya interaction (DMI) [12–15]. In this re-
spect, the technological progress in design and optimization of
AFM racetracks requires a fundamental understanding of the
interaction of magnetic solitons with boundaries of a chiral
AFM slab.

Similarly to ferromagnets [16,17], sample boundaries in
antiferromagnets usually act as an injector of solitons [18]
and alter the shape of a spatially confined domain wall in
the media with patterned surfaces [19]. The inhomogeneous
DMI of the surface type leads to the surface twist of the order
parameter in a two-dimensional (2D) antiferromagnet [20].
If a homogeneous DMI is present in addition, an enhanced
surface magnetization accompanies the deviation of the Néel
vector from the collinear state [20].

To understand properties of the ground state and AFM
solitons in confined geometries, it is necessary to make a
proper transition from the Heisenberg spin lattice to the mi-
cromagnetic model [21]. The behavior of AFM lattices can
be described using two alternative approaches. Historically,
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the first one was proposed in the seminal works of Louis
Néel (for review we refer the reader to Ref. [22]). This
framework utilizes a representation of antiferromagnetically
coupled ferromagnetic sublattices M1 and M2 with |M1,2| =
MS being the saturation magnetization [23]. The correspond-
ing boundary conditions are derived for each of the sublattices
[24–27] also allowing us to take into account demagnetiz-
ing fields [24,25]. Within the second approach, the equations
of motion for M1,2 are rewritten in terms of dimensionless
vectors of Néel n = (M1 − M2)/(2MS) and ferromagnetism
m = (M1 + M2)/(2MS). For many practical cases, the rela-
tion |m| � |n| ≈ 1 is fulfilled and it is possible to exclude
the vector of ferromagnetism as being a slave variable. Then,
the resulting model of the AFM contains a single vector order
parameter instead of two [28]. The same can be obtained using
purely symmetrical approach [29]. Importantly, although they
are different in methodology, both approaches lead to the same
soliton equations [30].

The micromagnetic formulation of the behavior of n in one
dimension (1D) can be done by splitting the spin lattice into
dimers [31–34]. A straightforward procedure shows that the
continuum Lagrangian contains the topological term propor-
tional to m · ∂xn, which determines differences between the
quantum integer and half-integer spin chains [35], e.g., the
Haldane gap. It originates from the choice of dimer pairs: The
Hamiltonian of a spin chain is not invariant with respect to
the sublattice exchange. The latter also leads to the intrin-
sic magnetization of 1D textures [33]. For the case of 2D
AFM lattices, the terms m · ∂in are not as important as for
spin chains [31]. However, the dimerization in 2D bipartite
lattices is ambiguous since it can be performed along one
of two independent directions (i = x or i = y) and may lead
to spurious effects due to the choice of spin pairs [36,37].
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This issue can be overcome by splitting, e.g., of the square
lattice into tetramers [38,39]. While still there are only two
order parameters, the master Néel vector (director) n and the
slave ferromagnetism vector m, this procedure requires two
additional auxiliary fields behaving as spatial derivatives of
the Néel vector. This transition allows us to build a nonlinear
σ model of a chiral 2D antiferromagnet preserving the spatial
invariance within the lattice plane [38,39].

Although 1D and 2D cases are fairly well understood, there
is no rigorous transition from a spin lattice description to a
three-dimensional (3D) micromagnetic model. This leads to
a gap in our understanding of the impact of boundary con-
ditions on the ground state and antiferromagnetic solitons in
spatially confined chiral AFMs. The boundary of a sample is
an additional source of the symmetry break in AFM lattices.
Thus, a unit antiferromagnetic cell should be properly chosen
to correctly determine the boundary conditions for the order
parameters.

Here, we rigorously derive a transition from the clas-
sical spin-lattice Heisenberg Hamiltonian to the nonlinear
σ -model for a 3D chiral AFM slab with a simple cubic
lattice by means of the octamerization process. We avoid
spurious parity-breaking effects and show the influence of
boundary conditions and DMI on the ground state in the lat-
erally confined sample. We apply this model for two types of
magnetic solitons, namely, a translational AFM domain wall
and skyrmion, and demonstrate their modification due to the
sample boundaries. These textures possess twists in the order
parameter as well as the deformation of their shape near the
surface, which is analyzed quantitatively.

This paper is structured as follows. The spin-lattice Hamil-
tonian and derivation of the corresponding nonlinear σ

model with boundary conditions is described in Sec. II A.
In Sec. II B, this micromagnetic model is applied for the
description of the ground state of a chiral uniaxial AFM slab.
Properties of the domain wall and skyrmion in a confined
geometry are described in Secs. II C and II D, respectively.
The main results of the paper are summarized in Sec. III.
Further details describing the transition from the spin lattice to
the continuum description are provided in Appendices A and
B. Appendices C and D contain the description of spin-lattice
simulations. The models for the domain wall and skyrmion
are discussed in Appendices E and F, respectively.

II. RESULTS AND DISCUSSION

A. Nonlinear σ model

We consider a chiral, uniaxial G-type antiferromagnet with
a simple cubic lattice with the lattice constant a0. It can
be characterized by the following Hamiltonian including ex-
change, anisotropy, and DMI terms

H = J S2

2

∑
ρ,ρ′

μρ · μρ′ − K S2

2

∑
ρ

(
μz

ρ

)2

+ S2

2

∑
ρ,ρ′

dρ,ρ′ · [μρ × μρ′]. (1a)

Here, J > 0 is the exchange integral, S is the spin length,
μ is the unit magnetic moment in the lattice site enumerated

by vector index ρ = {i, j, k} with ρ′ running over all near-
est neighbors, K is the constant of uniaxial anisotropy and
dρ,ρ′ = −dρ′,ρ is the DMI vector [40–42]. The dynamics of
the magnetic moments is described by the Landau-Lifshitz
equation [43]

∂tμρ = 1

h̄S
μρ × ∂H

∂μρ

(1b)

with h̄ being the Planck constant. The characteristic length
scale for the spin lattice is given by the magnetic length � =
a0

√
J /|K |.

To develop the continuum counterpart of (1), we divide
the 3D spin lattice by groups of spin octamers with spins
being labeled from Aρ to Hρ within the given octamer, see
Fig. 1(a) and Appendix A. This approach is a 3D counterpart
of the tetramerization scheme used for the case of a 2D AFM
[38,39]. The magnetic state of each spin octamer is described
by vectors of the total magnetic moment mρ, the Néel vector
(staggered magnetic moment) nρ, and auxiliary fields uρ i,
uρ i, i = x, y, z, see Fig. 1(c). In the following, we perform
the analysis in a long-wave approximation (i.e., spatial and
temporal variations of the vector fields are slow) using ε =√|K |/J = a0/� → 0 as a scaling parameter. This implies
that while K ∼ ε2, the DMI dρ,ρ′ , and time derivatives are of
the order of ε. The ground state is given by |nρ| = 1. This
suggests that the length of the magnetization and auxiliary
vectors is of the order of ε, see details in Appendix A. Then,
the relation between the continuum counterparts of the order
parameters and auxiliary fields is given by the linear expan-
sion of Eq. (1b) with respect to ε

m = − 1

12

h̄

J S
n × ∂t n, ui = −a0

2
∂in, ui = 0. (2)

Thus, three auxiliary vectors are determined by the spatial
derivatives of the Néel vector and other are zero due to the
lattice symmetry. This is similar to the case of a 2D anti-
ferromagnet [36,37,39], where the unit cell consists of four
neighboring spins arranged in square.

In the main text, we focus on the chiral AFM slabs with
the DMI of the bulk type which is commonly found in AFM
crystals [40,41]. For completeness, the case of the surface
DMI is discussed in Appendix B. For the case of bulk DMI,
the DMI vector is dρ,ρ′ = d0eρ,ρ′ with eρ,ρ′ being the unit
vector in the direction from the spin ρ to ρ′, see Figs. 1(d)
and 1(e). The dynamics of the Néel vector is governed by the
equation, obtained within the harmonic expansion of Eq. (1b)
with respect to ε

n ×
[

M2
S

γ 2
0 �

∂tt n − A�n − Knzez + D∇ × n
]

= 0 (3a)

with n ≡ n(r, t ) being a continuum (micromagnetic) counter-
part of nρ, A = J S2/(2a0) is the exchange stiffness, K =
K S2/(2a3

0) is the anisotropy constant, and D = d0S2/a2
0 is

the micromagnetic DMI constant. The saturation magneti-
zation of each sublattice is MS = gμBS/(2a3

0) with g being
Landé factor, μB is the Bohr magneton, and γ0 = gμB/h̄ is the
gyromagnetic ratio. The characteristic scales of the magnetic
field for K > 0 are the spin-flop field Bsf = √

�K/MS with
� = 6J S2/a3

0 being the constant of the uniform exchange
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FIG. 1. Chiral G-type antiferromagnet. Simple cubic crystal lattice with antiferromagnetically coupled spins (a) at the edge of a slab (b).
The highlighted octamer ρ = {i, j, k} contains eight spins, labeled as A, . . . , H (index ρ is omitted). Less neighbors at the edge as compared
to the bulk results in a tilt of spin moments from the anisotropy direction due to the exchange and DMI. (b) AFM slab is schematically colored
to show two chiral domain walls, tilted at the edges of the slab. (c) The continuum counterpart of the octamer (a) with the Néel vector n,
magnetization vector m, and auxiliary vector fields ux,y,z. (d) The spin octamer in the bulk and its continuum counterpart possess no tilt from
the anisotropy direction. The DMI vector is shown for the bulk DMI type. (e) Parametrization of the Néel vector n in the local spherical
reference frame with the polar and azimuthal angles θ and φ, respectively.

and spin-flip field Bx = �/MS, see Appendices C and D for
comparison with spin-lattice simulations. The critical DMI
value is Dc = 4

√
AK/π .

The complete formulation of the micromagnetic problem
includes boundary conditions for the vector n. A conventional
way to obtain the boundary conditions within the model of
multiple sublattices is to consider the difference in torques
acting on the boundary spins and bulk spins [25,27,44] and
matching the equations of motion for both of them. The linear
in ε analysis of the discrete equations of motion Eq. (1b)
for (100), (110), and (111) surfaces provides the following
boundary conditions

n × [2A(ν̂ · ∇ )n − Dν̂ × n] = 0 (3b)

with ν̂ being the surface normal. We note that when consider-
ing other crystallographic cuts, Eq. (3b) is not changed within
the linear approximation.

In contrast to antiferromagnets, the influence of boundary
conditions is well addressed in ferromagnetism. The behavior
of ferromagnets is governed by the Rado-Weertman boundary
conditions [45–49] with the DMI related term [50]. The lat-
eral confinement alters the shape of chiral domain walls [51]
and leads to the nonreciprocal domain wall dynamics [52].
The surface twist of the ground state [50,53] and vortexlike
textures at the surface [50,53–57] are observed in chiral fer-
romagnets. This behavior of antiferromagnetic solitons is not
known yet and will be addressed in the following.

To study static properties of the ground state and magnetic
solitons, we analyze the micromagnetic energy. The contin-
uum micromagnetic functional of the potential energy for
the σ model, corresponding to the spin-lattice Hamiltonian

Eq. (1a), reads

E =
∫

E dr,

E = A(∂in)(∂in) − Kn2
z + Dn · ∇ × n.

(4)

As follows from Eq. (2), the magnetization m is a slave vari-
able, m = −MS/(γ0�)n × ∂t n. In contrast to the case of 1D
spin chains [31,33], the symmetry breaking term of m · ∂in
structure is absent in (4). Generally, the impact of the lifting
term is twofold: (i) it requires a local smoothness of the
antiferromagnetic texture by producing the energy penalty
upon the sublattice exchange and (ii) can lead to the finite
magnetization of noncollinear textures. In our description, we
assume that the spatial variation of the magnetic moments
is smooth, which takes into account the first aspect. In 1D
spin chains, noncollinear textures like domain walls always
possess intrinsic magnetization [33,38]. In 2D and 3D the
static noncollinear textures do not produce the local magneti-
zation because of compensation of neighboring lattice planes.
This is the reason that in the case of locally smooth textures,
the tetramerization procedure for 2D lattices [38,39] and oc-
tamerization in 3D do not lead to the explicit appearance
of the parity-breaking term. The dynamic equation (3a) and
boundary conditions (3b) can be recovered by the variation of
the Lagrangian

L = M2
S

γ 2
0 �

∫
(∂t n)2dr − E (5)

taking into account orthogonality of m and n within O(ε).
A similar procedure can be applied to other types of lattices
to derive a direct correspondence between the parameters
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FIG. 2. Ground state of a chiral antiferromagnetic slab. (a) Schematic representation of the changes of the ground state in confined AFM
sample (width 2w < ∞ along ey direction). At side faces, the Néel vector is tilted with the surface twist angle θst. The ground state in the interior
of the domain is shown within the transparent part of the sample. (b) Vertical component of the Néel vector at the center of the sample along
the y axis: for different strength of the bulk DMI D. Symbols and solid lines correspond to simulations and analytics [Eq. (6)], respectively.
(c) Surface twist angle θst for different strength of the bulk DMI. The simulations are carried out for a rectangular slab of 120 × 120 × 160
spins (24� × 24� × 32�) with the magnetic length � = 5a0.

of the micromagnetic model and the spin lattice parameters
including the boundary conditions.

B. Ground state

The ground state of an achiral bipartite antiferromagnet
corresponds to the direction of the order parameter along
the easy axis of the anisotropy ez. This is also true for the
boundary spins in the absence of DMI. The presence of
the bulk DMI alters the order parameter upon approaching
the side faces. The order parameter acquires a tilt at the
face surfaces, indicated with a surface twist angle θst in the
schematics in Fig. 2(a). To describe this twist, we consider
a slab of the width 2w along the y axis assuming the origin
in the center of the sample. Using the parametrization n =
{sin θ cos φ, sin θ sin φ, cos θ} in Cartesian reference frame
with θ = θ (y) = arccos nz and φ = φ(y) being polar and az-
imuthal angles, see Fig. 1(e), the minimum of the energy (4)
is reached with

nz = tanh

⎡
⎣arctanh

√
1 −

(
2

π

D

Dc

)2

+ w − |y|
�

⎤
⎦,

φ = −π

2
,

(6)

where the requirement ∂yθ (|y| = w) = D/(2A) comes from
the boundary conditions (3b). We note that for the case of
the AFM order parameter (director), the states with (θ, φ)
and (π − θ, φ ± π ) are equivalent. The ground state is sig-
nificantly altered by the boundary at the distance about 2�.
The order parameter possesses a twist by the angle θst =
arccos nz(w) at the boundary, determined by the strength
of the bulk DMI, see lines in Fig. 2(b). The surface twist
angle θst grows almost linearly with D and can reach 30◦
when approaching the critical DMI Dc, see line in Fig. 2(c).
The surface twist angle is determined by the relation D/Dc

only because the critical DMI Dc holds the exchange and
anisotropy scales in the first term in (3b), while D gov-
erns the twist itself. The observed effect is similar to
the boundary twists observed in ferromagnets [50,53]. The

analytical results shown in Figs. 2(b) and 2(c) are confirmed
by spin-lattice simulations, performed for a rectangular slab
containing 120 × 120 × 160 spins with the magnetic length
� = 5a0, see Appendix C for details.

C. Domain wall

A G-type antiferromagnet supports translational or so-
called phase domain states [58], where the wall separates
domains with the swapped order of sublattices on the atom-
istic level [Fig. 1(b)]. These domains schematically colored
in red and blue, are shown in Fig. 3(a). We consider the
translational domain wall initially located in yz plane with the
origin of the reference frame lying at the center of the top
surface. In the absence of DMI, the domain wall plane is flat
and perpendicular to the side faces of the sample being quasi-
1D texture with cos θ = p tanh(x/�) and φ = const, where
� = � is the domain wall width and p = ±1 is the domain
wall polarity. In the absence of additional anisotropies or chi-
ral interactions, the phase φ is not determined. A finite D leads
to the preferred domain wall chirality. Namely, the last term
in the energy density E = A(∂xθ )2 + K sin2 θ + D sin φ∂xθ

forces the stabilization of a Bloch-type domain wall with the
favorable chirality sin φ = C = sign(pD).

A lateral confinement of the domain wall leads to its de-
formation (bent and broadening) and change of its internal
structure, see Figs. 3(a) and 3(b). We start with the de-
scription of the internal structure of the domain wall near
the top surface and far from the side faces of the sample.
The domain wall profile can be described using a 2D ansatz
cos θ (x, z) = p tanh[x/�(z)] and φ(z) = Cπ/2 + δφ(z) with
x ∈ (−∞,∞) and z ∈ (−∞, 0], see Fig. 3(c). The twist of the
domain wall near the top surface reads

δφ(z) = φ0 exp
z

λ
(7)

with the parameter λ characterizing the penetration depth.
The boundary conditions (3b) require ∂zφ(0) = D/(2A) and
∂z�(0) = 0 at the top surface, while free boundary conditions
at z = −∞ are assumed for both functions. The substitution
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FIG. 3. Chiral domain walls in antiferromagnetic slabs. (a) Schematics of the domain wall (DW) in a confined sample of a constant width
2wy < ∞ along ey axis. (b) At the sample’s edge, the domain wall acquires a tilt indicated with the angle β 
= 0. The tilt vanishes (β = 0)
in the bulk. The panel (b) shows the simulation results for D/Dc = 0.8 with geometry and other material parameters the same as in Fig. 2.
Dashed line represents the center of the domain wall. Arrows schematically show the surface twist δφ of the domain wall phase φ far from the
side faces. (c) Domain wall profile with p = −1 is shown for the component of the order parameter nz along ex axis. (d) Domain wall width �

expands at the surface z = 0 in comparison with the bulk. Solid lines and symbols correspond to the analytics (9) and simulations, respectively.
(e) Domain wall phase φ = −π/2 + δφ [see panel (b)] at the sample’s surface far from edges. (f) Tilt angle β for different DMI. Dashed lines
are guides to the eye.

of the ansatz in (4) gives the following effective energy density
after integration along the x axis:

Edw = 2K� + A
12 + π2(∂z�)2

6�
+ π pCD cos

(
λD

2A
ez/λ

)

− D2

2A
�ez/λ(2 − ez/λ), z � 0. (8)

Here, the first and the second terms correspond to the
anisotropy and the part of the exchange energy density de-
pendent on the derivatives of θ . The third term represents
the part of the DMI energy density related to the ∂xθ . It
determines C in the same way as for the Bloch domain wall
in the infinite medium. The last term in (8) originates from
parts of the exchange and DMI energy densities related to the
∂zφ. The domain wall width � is determined by the following
variational equation, independent of C and p:

π2

6

A

�2

[
2�∂zz� − (∂z�)2

] + 2A

�2

+ D2

2A
ez/λ(2 − ez/λ) = 2K, z � 0 (9)

with λ being an unknown parameter to be found from the
energy minimization, see Appendix E for details. We find that
the domain wall becomes wider near the top surface up to
about 10% in comparison with the bulk value, see lines in
Fig. 3(d). The function � has a Gaussian-like shape. Its char-

acteristic half-width z0 of the � is 1.7� for Dc and grows with
the decrease of D being 2.7� at D = 0.2Dc. The twist of the
domain wall at the top surface, φ, increases with the strength
of the DMI, see line in Fig. 3(e). The penetration depth of the
phase λ behaves in a similar way as z0. It equals � for D = Dc

and becomes 2.1� for D = 0.2Dc. Note, that the increase of λ

and z0 for smaller values of DMI are accompanied by a rapid
reduction of φ0 and width �(0) at the top surface.

We elaborate the model of the AFM domain wall in a
slab using spin-lattice simulations. They show a reasonable
quantitative agreement with the analytical predictions, see
symbols in Figs. 3(c), 3(d) and 3(e). The value of � for
|z| � 6� obtained in simulations is slightly larger than � due to
effects of discreteness and is reduced with smaller ε used for
numerical investigations. In addition, we numerically analyze
the domain wall behavior near the sample edges. The domain
wall plane possesses a twist, which is observed as an “S-
shaped” profile at the top surface, see Figs. 3(a) and 3(b) for
schematics and simulations. We characterize this distortion by
the angle β with respect to the edge normal within the plane of
the top surface. While β = 0 in the absence of DMI, a finite
D leads to the increase of β up to 20◦, see Fig. 3(f). There
is a slow reduction of β to the equilibrium value βeq = 0 far
from the sample’s edges with about 60% of the surface value
at the depth z = −5�. Thus, taking into account the variation
of the domain wall width near the surface and bend at the
edges of the sample, the bulklike properties of this texture
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Symbols and solid lines correspond to simulations and analytics (11), (13), respectively. Dashed line is guide to the eye. (d) Skyrmion radius
for different axial cross sections of the sample. Solid lines correspond to the ansatz of the skyrmion of small radius. (e) Width of the skyrmion
of large radius measured at Rbulk

sk . (f) Skyrmion isosurfaces nx,y,z(r) = 0 in the center and at the bottom of the slab. While this is a purely Bloch
skyrmion in the bulk, the n is tilted when approaching the surface. (g),(h) Phase φ at the top surface for different strengths of the DMI at the
distance x = Rsurf

sk from the origin. Symbols and solid lines correspond to simulations and analytics, respectively. Dashed line is a guide to the
eye. (i),(j) Phase φ of n at the distance Rbulk

sk from the origin for skyrmions of small and large radius, respectively. Notations are the same as in
panel (d).

are preserved for samples significantly thicker and wider than
10�.

D. Skyrmion

A skyrmion is a chiral texture stabilized by the DMI
[31,59]. In this section, we consider impact of the 3D con-
finement on individual skyrmions in a chiral AFM slab with
the focus on the modification of the shape and phase of the
skyrmion, see Fig. 4(a). Even for ferromagnets, a rigorous
description of skyrmions of small [60] and large [61] radius is
a complicated task, which is usually addressed by asymptotic
analysis or numerically. Often, models of circular domain
walls or numerical integration are utilized, which allows us
to explain current-driven dynamics [9,39,62] and excitations
[63]. To address a 3D skyrmion texture, we describe them

qualitatively using an axially symmetric ansatz θ = θ (r, z)
and φ = φ(χ, z). To highlight the peculiarities of the confined
geometry, we consider a semi-infinite slab with z ∈ (−∞, 0]
in analytics and a sufficiently thick and wide rectangular box
in simulations.

We start with the analysis of skyrmions of small radius.
Their bulk properties can be addressed with the linear ansatz
[64]

θsk sm(r) =
{
π

(
1 − r

2Rbulk
sk sm

)
r � 2Rbulk

sk sm,

0 r > 2Rbulk
sk sm,

φ(χ ) = χ + φ̃

(10)

where the phase φ̃ = const. Here and below we use the defini-
tion of the skyrmion radius Rsk as θ (Rsk) = π/2. The energy
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(4) integrated with (10) reaches minimum at

Rbulk
sk sm = �

π

2

|D|
Dc

, sin φ̃ = C = signD, (11)

see Appendix F for details. This corresponds to a Bloch
skyrmion with the radius linearly growing with D, see red
line in Fig. 4(b). The skyrmion of small radius in the sample
with a sufficiently large lateral size is influenced only by
the top surface z = 0. To address this spatial confinement in
the vertical dimension, we modify the ansatz (10) adding the
dependence on the longitudinal coordinate z, namely Rbulk

sk sm →
Rsk sm(z) and using the phase φ(χ, z) = χ + Cπ/2 + δφ(z)
with the definition of δφ(z) according to (7). The boundary
conditions (3b) lead to ∂zRsk sm(0) = 0 and ∂zφ(0) = D/(2A).
Substitution of this ansatz into energy (4) and integration
along the radial direction allows us to obtain a variational
equation for Rsk sm(z) with the parameter λ similar to the
case of the domain wall (9), see Appendix F for details. The
solution of the obtained equation shows that the skyrmion
possesses a Gaussian-like bottleneck shape. The skyrmion is
narrow in the bulk and becomes wider when approaching the
surface, see red line in Fig. 4(d). The skyrmion shows a mixed
Bloch-Néel texture at the surface due to the twist governed by
the boundary conditions, see red line in Fig. 4(i). Note that a
similar shape distortion is observed for vortices in easy-plane
ferromagnets with surface anisotropy [65,66].

Large radius skyrmions in bulk samples can be described
as circular domain walls using the ansatz [63]

cos θsk lar = tanh
r − Rbulk

sk lar

�
, φ(χ ) = χ + φ̃ (12)

assuming � � Rbulk
sk lar. The energy (4) reaches minimum with

this ansatz at [67]

Rbulk
sk lar ≈ |D|/Dc√

1 − D2/D2
c

, � ≈ |D|
Dc

,

sin φ̃ = C = signD,

(13)

see black line in Fig. 4(b). While it is expected that the
skyrmion radius should not be significantly influenced by the
sample’s boundary, its width � and phase φ are altered due
to confinement. Therefore, the 3D texture can be described
by the replacement � → �(z) and φ(χ ) → φ(χ, z) = χ +
Cπ/2 + δφ(z) in (12). We find that the structure of the circu-
lar domain wall stabilized by the DMI is similar to the straight
one, considered in Sec. II C, see Figs. 4(e) and 4(j).

To obtain a quantitative description of the skyrmion shape
in a confined geometry, we elaborate the above analytics
by spin-lattice simulations performed for a slab consisting
of 150 × 150 × 100 spins with � = 5a0. The stability of the
skyrmion is influenced by the discreteness of the system
and 3D shape of the texture. We find that the skyrmion can
be relaxed for D � 0.64Dc with the smallest bulk radius
Rbulk

sk ≈ 3.4a0, see Fig. 4(b). The skyrmion radius in the bulk
grows with D up to 8.2� at 0.997Dc. The largest size of the
skyrmion is limited by the lateral dimensions of the sample
[50]. The ratio of the skyrmion radius at the surface and in
the bulk Rsurf

sk /Rbulk
sk found numerically is in agreement with

the analytical model: It is large for small D and reduces to 1
when approaching Dc, see Fig. 4(c). The skyrmion possesses

a complex structure in the bulk as well as at the surface. The
longitudinal profile shows two maximal radii at the distance
of about � from the top and bottom surfaces, see symbols
in Fig. 4(g). The phase of n possesses a radially dependent
asymmetric surface twist, which is changed with DMI, see
Figs. 4(g) and 4(h). While analytics quantitatively capture
the spatial profile of the phase φ [Figs. 4(i) and 4(j)], only
qualitative agreement is obtained for the bulk and surface
skyrmion radii.

III. CONCLUSIONS

We derive a nonlinear σ model with boundary conditions
for a uniaxial chiral antiferromagnet of G type with a simple
cubic lattice and DMI of surface and bulk types. We establish
a correspondence between the spin lattice and micromagnetic
parameters relying on the approach with the Néel vector order
parameter n. The transition between spin lattice and micro-
magnetic models requires six auxiliary fields, determined by
the spatial derivatives of the Néel vector. The micromagnetic
boundary conditions for the Néel vector match the variational
derivation from the micromagnetic Lagrangian and are similar
to the Rado-Weertman ones with the DMI term for ferromag-
nets [45,47,50]. The difference lies in the symmetry of the
order parameter: the states of vector-director n and −n are
indistinguishable. A procedure described here for the case
of 3D antiferromagnets with a simple cubic lattice can be
straightforwardly extended to other types of lattices.

The obtained model is applied to analyze the ground state
and magnetic solitons in a spatially confined sample. In this
discussion, we focused on the case when the AFM slabs
possess a bulk DMI. The order parameter in the ground state
acquires a chiral surface twist at the boundaries due to the
lack of neighboring spins and competing exchange and DMI
energy terms. Depending on the DMI strength, the value of the
surface twist angle can reach up to 30◦. The noncollinear tex-
tures, such as domain walls and skyrmions, become modified
near the boundary with the characteristic penetration depth of
about 5 magnetic lengths. The domain wall, being laterally
constrained, possessed an S-shaped bend at the surface. Both
the domain wall and skyrmion become of the mixed, Bloch-
Néel type at the surface. The DMI forces the skyrmions and
domain walls to become broader near the surface. In partic-
ular, for skyrmions of small radius, the radius becomes 10%
larger when approaching the face of the sample.

The here discussed impact of the confined geometry and
DMI on the static magnetic textures provides an estimate for
the minimal dimensions of AFM samples hosting chiral mag-
netic solitons with bulklike properties. Furthermore, we note
that the change of the size of the textures when approaching
the boundaries is expected to alter their dynamic properties.
In this respect, the presented model can be applied for per-
spective design of AFM racetracks and description of AFM
textures in structured samples [19].
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APPENDIX A: DESCRIPTION OF THE SPIN LATTICE

To describe a G-type antiferromagnet, we split the lattice
into groups of octamers. Within a single octamer enumerated
by the vector index ρ = {i, j, k}, the spins are labeled by the
Latin letters Aρ,...,Hρ, see Fig. 1(a). Then, the coordinate of
each spin is ρ + {α, β, γ }, with α, β and γ running 0, 1.
In the following, we use η, ζ ∈ {x, y, z} for subscripts and
spatial derivatives and η, ζ ∈ {α, β, γ } in exponents. For ex-
ample,

∑
η(−1)ηuη = (−1)αux + (−1)βuy + (−1)γ uz takes

eight different values for different α, β, γ . The single index
ρ is omitted for simplicity. Then, the unit magnetic moment
within an octamer reads

μρ+{α,β,γ } = m + (−1)ξ n + p(α, β, γ ),

p(α, β, γ ) = (−1)ξ+ηuη + (−1)ηuη,
(A1)

where ξ = α + β + γ , the triple {α, β, γ } enumerate the spin
within the given octamer, and Einstein summation rule is used.
In the following, we apply a multiscale analysis to describe
the micromagnetic transition from the spin lattice approach
(1) using ε = √|K |/J as a scaling parameter.

To describe the behavior of the spin system in the contin-
uum limit, the following relations for the neighboring spins
along η direction are used:

V ρ±�η
= V (r) ± 2ε�∂ηV (r) + 2ε2�2∂2

ηV (r),

V = A, . . . , H.
(A2)

Considering slow spatial and temporal variations of the mag-
netic moments, we rewrite the equations of motion (1b) using
dimensionless time τ = ε�t with � = J S/h̄.

The rescaled anisotropy and DMI coefficients are k0 = ε2

and δ0 = εd0. This also implies that m and auxiliary fields uη

and uη are of the order of ε for the Néel ground state in the
bulk.

The linear expansion of (1b) at the site {α, β, γ } reads

ṅ = − 12m × n + 2�n × (−1)η∂ηn

+ 4n × [p + (−1)ηuη], (A3)

where overdot means the derivative with respect to τ . The
expression (A3) represents eight equations with respect to
different values of α, β, γ . The solution of (A3) within each
octamer is given by Eq. (2). It provides the relations between
the primary and auxiliary vector fields, describing each oc-
tamer.

The harmonic expansion of Eq. (1b) provides equations of
motion for m. For the given {α, β, γ }, they read

ṁ + (−1)ξ+ηu̇η + (−1)ηu̇η = −n × (nzez )︸ ︷︷ ︸
anisotropy

+2�d0n × [∇ × n]︸ ︷︷ ︸
DMI

−�2n × �n − 2m × p︸ ︷︷ ︸
exchange

−2[m + p] × [p + (−1)ξ+ηuη] − (−1)ξ+ζ �n × ∂ζ [m + (−1)1+ξ+η+δ[η,ζ ]uη + (−1)η+δ[η,ζ ]uη]︸ ︷︷ ︸
exchange

,

(A4)

where δ[η, ζ ] is the Kronecker delta with respect to symbols
η and ζ . Summation of (A4) for all possible values of α, β, γ

within each octamer and excluding m leads to Eq. (3a).
The boundary conditions can be rigorously obtained from

the equations of motion of the boundary spins. The equations
of motion within the continuum limit are the same in the bulk
and at the surfaces, while the spins have different numbers
of neighbors and experience different torques. The boundary
conditions arise as the match between boundary and surface
torques. For example, considering a (111) surface with the
normal vector ν̂ = {1, 1, 1}/√3, the boundary spin is Hρ with
absent neighbors Gρ+{1,0,0}, Eρ+{0,1,0}, and Cρ+{0,0,1}. This
implies

H × (Gi+1 + E j+1 + Ck+1)

+ d0(Gi+1 × ex + E j+1 × ey + Gk+1 × ez ) = 0. (A5)

Substitution of the expressions for spins (A1) allows us to
reduce (A5) to (3b). The total energy of the σ model reads

Etot =
∫ (

M2
S

γ 2
0

ṅ2 + E

)
dr, (A6)

where E is the potential energy density introduced in (4).

APPENDIX B: DMI OF THE SURFACE TYPE

The DMI of the surface type can be obtained for the DMI
vector dρ,ρ′ = d0ez × eρ,ρ′ . In this case, the energy of the
surface DMI reads

E surf
DM = hD

∫
[nz(∇xy · n) − (n · ∇xy)nz]dS, (B1)

where h is the sample thickness, D has the same value as for
the DMI of the bulk type, and the magnetic texture is assumed
to be homogeneous along ez. The derivation of (B1) implies
d0 = 0 for eρ,ρ′ ‖ez. This allows us to derive the equation of
motion and boundary conditions for the Néel vector similarly
to the case of the bulk DMI:

n ×
{

M2
S

γ 2
0 �

∂tt n − A�n − Knzez − D[(∇ · n)ez − ∇nz]

}
= 0

(B2a)

n × {2A(ν̂ · ∇ )n + D[nzν̂ − (ν̂ · n)ν̂]} (B2b)

with all derivatives within the ex,y plane.
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APPENDIX C: SPIN-LATTICE SIMULATIONS

We numerically solve the Landau-Lifshitz equation (1b)
with the Gilbert relaxation torque T relax = αGμρ × ∂tμρ and
αG being the relaxation constant for the Hamiltonian (1a)
using the spin lattice simulator SLaSi [68]. To analyze the
spin-flop and spin-flip behavior, an additional term Hzee =
−∑

μ gμBSμρ · Bzee with Bzee being the external magnetic
field is included in (1a). To model an infinite medium, pe-
riodic boundary conditions are applied. We use the following
parameters: the spin length S = 1, the exchange integral J =
2.34 × 10−22 J, the constant of a single-ion anisotropy K =
9.36 × 10−23 J, the Gilbert constant αG = 0.5 to accelerate the
relaxation by overdamping, and the absolute value of the DMI
vector d0 is varying from 0 to 2.98 × 10−22 J. The integration
is performed using the midpoint algorithm at GPU with the
time step δt = 0.01 ps. The relaxation is performed during
2 ns. Simulations were carried out using the high performance
clusters at the HZDR [69] and TSNUK [70]. Figures 1(b) and
1(c) are built taking into account that the geometrical width of
the sample is 2w = 24� and the position of the Néel vectors at
the boundary in simulations correspond to the effective width
2weff = 23.6�.

APPENDIX D: EXTERNAL MAGNETIC FIELD

The Hamiltonian describing the interaction of the spin lat-
tice with the external magnetic field Bzee reads

Hzee = −gμBS
∑
μ

μρ · Bzee (D1)

with the corresponding continuum counterpart

Ezee = −2MS

∫
m · Bzeedr. (D2)

We relaxed the spin lattice exposed to an external magnetic
field using two staggered initial states: along and perpen-
dicularly to the anisotropy axis. The energies of the stable
states are compared to determine the phase transition. The
spin-flop and spin-flip transitions, for the case when Bzee is
applied along the anisotropy axis ez, are shown in Fig. 5.
Figure 5(c) shows the dependency of the spin-flop field Bsf

on the boundary conditions in simulations. Smaller samples
have smaller Bsf, while the sample with periodic boundary
conditions, equivalent to the infinite system, shows the exact
agreement with theory. We note that the auxiliary fields ux,y,z

and ux,y,z do not influence the spin-flop and spin-flip even for
the case of finite ε for the homogeneous texture.

APPENDIX E: ANALYSIS OF THE DOMAIN
WALL NEAR THE TOP SURFACE

To obtain the domain wall shape, we numerically solve
the variational equation for the domain width �(z) (9) using
the test value λ = �. The obtained function is substituted into
the expression of the energy density (8) and integrated as a
function of λ. This allows us to determine the value of the
penetration depth λ in the second order and substitute it back
into (9) to repeat the iteration process until convergence. The
relative accuracy of 10−3 for the domain wall parameters can
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FIG. 5. Spin-flop and spin-flip transitions. (a) Symbols corre-
spond to spin-lattice simulations and the line is a guide to the eye.
Dashed lines correspond to the analytically found values of the spin-
flop and spin-flip fields Bsf and Bx. Insets (b) and (c) show a zoom
of spin-flip and spin-flop regions in (a). Solid blue and dotted orange
lines correspond to the samples with dimensions 50 × 50 × 20 and
100 × 100 × 50 spins, respectively. Dashed red and solid green lines
correspond to simulations with periodic boundary conditions (BC).
The field is tilted by 1◦ angle from ez in the xz plane.

be obtained within 3–5 iterations. The same procedure is used
to analyze skyrmions of small and large radii.

APPENDIX F: ANALYSIS OF THE SKYRMION SHAPE

The energy (4) in the cylindrical reference frame (r, χ, z)
reads

Esk = A
[
(∂rθ )2 + (∂zθ )2 + sin2 θ (∂zφ)2

] + K sin2 θ

+ D

[
sin 2θ sin(φ−χ )

2r
+ sin(φ−χ )∂rθ− sin2 θ∂zφ

]
.

(F1)

To analyze skyrmions of small radius, we substitute the ansatz
(10) into (F1), which leads to the effective energy density

E bulk
sk sm ≈ 38.7A + 2πA

[(
Rbulk

sk sm

)2

�2
− 4C

D

Dc

Rbulk
sk sm

�

]
. (F2)

The condition of the minimum of this expression gives (11).
The 3D ansatz gives the effective energy density

Esk sm ≈ 38.7A + 2π3A(∂zRsk sm)2 + 2πKR2
sk sm

− 2π2DRsk sm cos

(
λD

2A
ez/λ

)

− π
D2

2A
R2

sk smez/λ(2 − ez/λ) (F3)

with the variational equation for Rsk sm

2π2A∂zzRsk sm + D2

2A
ez/λ(2 − ez/λ)Rsk sm

= 2KRsk sm − πD cos

(
λD

2A
ez/λ

)
(F4)
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and the boundary conditions ∂zRsk sm(0) = 0, ∂zRsk sm(−∞) =
0.

The effective energy density of the large radius skyrmion
in the bulk (12) reads

E bulk
sk lar ≈ 4πA

[
Rsk

�
+ �

Rsk
+ Rsk�

�2
− 2C

D

Dc

Rsk

�

]
(F5)

with the minimum reached at (13). Taking into account the
effect of the surface, the energy density reads

Esk lar ≈ πA

{
Rbulk

sk lar[12 + π2(∂z�)2]

3�
+ 4

�

Rbulk
sk lar

}

+ 4πK�Rbulk
sk lar − 2π2DRbulk

sk lar cos

(
D2

2A
λez/λ

)

− π
D2

A
�Rbulk

sk lar(2 − ez/λ). (F6)

This expression leads to the variational equation

π2A

6�2
[2�∂zz� − (∂z�)2] + 2A

�2

+ D2

2A
ez/λ(2 − ez/σ ) = 2K + 2A(

Rbulk
sk lar

)2 (F7)

with ∂z�(0) = 0 and ∂z�(−∞) = 0, c.f. (9) for a straight
domain wall.

The difference between simulations and analytics is a con-
sequence of the simplified ansatz (10) and (12), which does
not take into account a fine structure of the radial dependency
of φ and asymptotics for θ at the origin and infinity. For exam-
ple, taking into account z dependence of the skyrmion radius
in (12) as Rbulk

sk lar → Rsk lar(z) in addition to the function �(z),
one obtains the boundary condition �(0)∂zRsk lar(0) + [r −
Rsk lar(0)]∂z�(0) = 0. This shows that the condition ∂z�(0) is
not a strict one if a fine structure of the soliton near the surface
is taken into account.
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