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Intermode depolarization correlation of magnons
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Multimode magnon dynamics affected by demagnetizing fields has been discussed in terms of a Hamiltonian
approach. In the multimode dynamics involving magnetization relaxation, inter-mode correlation of magnons is
found to be formed spontaneously. The correlation suppresses the transverse magnetization dynamics, giving
rise to depolarization correlation (DPC) of magnons. DPC may subsist in equilibrium distribution at finite
temperatures.
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I. INTRODUCTION

Magnons, quanta of spin waves, play fundamental roles in
properties of magnetic materials [1,2]. Magnon dynamics has
not only been attracting much interest in various areas of fun-
damental physics but also providing indispensable tools in the
recent developments of spintronics and magnonics [3,4]. In
particular, magnons in magnetic materials can be utilized as an
information carrier and a logic device in magnonics, without
the need for electric currents which lead to substantial energy
consumption. However, magnon dynamics and transport are
strongly affected by magnetization relaxation [5].

Main relaxation processes for magnon dynamics can be
classified by two concepts. One is the microscopic scattering
process between magnons and other elementary excitations
such as conduction electrons and phonons [6–9]. This type
of microscopic spin relaxation is universal and inevitable in
condensed matters, and leads to (quantum) decoherence of
magnon states in magnets. The other type is phenomenology
described by the so-called Gilbert damping term, which gives
an effective description for real ferromagnetic (FM) materials
at good accuracy [10,11]. The origin of the phenomenological
Gilbert damping, in addition to the microscopic relaxation,
has been discussed from macroscopic viewpoints, such as en-
ergy losses from eddy currents and electromagnetic radiations
due to magnetization dynamics, frictions from deformation of
sample shapes, and scatterings from defects and impurities in
magnets (see Ref. [11] and references therein). The Gilbert
damping term phenomenologically summarizes all the con-
tributions. From its macroscopic origin, the Gilbert damping
mechanism is considered to work on the local magnetization
M(x), which is defined as the local order parameter, i.e., the
expectation value of the averaged magnetic moment operator
projected onto the atomic position x, rather than directly on
the individual microscopic spins.

In this paper, we revisit magnon dynamics under the phe-
nomenological Gilbert damping. So far, in the analysis of FM

materials, dynamics of (almost) coherent modes of magnons
has been mainly discussed within macrospin models. Here,
we discuss the magnon dynamics involving the effects of
inhomogeneous demagnetizing fields and the Gilbert damping
in small FM samples, and investigate a nontrivial correla-
tion among magnon modes arising from such effects beyond
macrospin approximation.

The organization of this paper is as follows. In Sec. II, we
illustrate the basic setup to realize the intermode correlation of
magnons in general. After the brief summary of the magneti-
zation dynamics in FM films in Sec. III, we concretely discuss
the emergence of the two-mode correlation of magnons in
finite-size FM films as an example in Sec IV. The temporal
evolution of the magnon quantum states under the intermode
correlation is discussed in a quantum-optics-like approach in
Sec. V. Finally, we summarize our results in Sec. VI.

II. INTERMODE CORRELATION OF MAGNONS:
BASIC SETUP

The dynamics of local magnetization M(x) in ferromagnets
is phenomenologically described by the Landau-Lifshitz-
Gilbert (LLG) equation [10,11] with the Gilbert damping term

−λ M(x) × (M(x) × Heff(x)), (1)

where λ is the Gilbert damping constant and Heff(x) is
the effective magnetic field. Due to the Gilbert damping
term, local magnetization dynamics is quickly relaxed in the
Gilbert timescale τG ∝ 1/λ. On the basis of the linearized
LLG equation in the equilibrium state, such as 〈Mz〉 = Ms =
const and 〈Mx〉 = 〈My〉 = 0, each magnon, corresponding to
each spin-wave mode of transverse magnetization fluctuations
(m± = mx ± imy), is usually described as an independent
boson without interactions [1,2]. Thus, each magnon dynam-
ics undergoes the Gilbert-type relaxation independently and
simultaneously. This simultaneous relaxation essentially orig-
inates from the conservation of the wave-number k, which
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characterizes the spin-wave mode due to (discrete) transla-
tional invariance, much like the Bloch electrons.

In this paper, we consider magnon dynamics in small FM
samples, such as small FM films with a finite area. In small
samples, the finite-size effects and edge effects cannot be
ignored, and the magnon dynamics is not expected to reflect
the original translational invariance of crystals in the small k
region. In particular, internal effective magnetic fields, demag-
netizing fields, and surface anisotropies lead to the disturbance
of homogeneity in the thermal equilibrium configuration and
violate the translational invariance in small FM samples [1,2].
Thus, mixings among the different spin-wave modes can ap-
pear under such circumstances, with the aid of coupling to
external fields (and nonlinear self-fields).

In addition, as discussed in Sec. I, the phenomenological
Gilbert damping Eq. (1) works on the local magnetization,
which corresponds to the macroscopic FM order parameter.
As seen below, the transverse magnetization fluctuations can
be generically expanded in terms of the contribution from
each magnon mode: m±(x) = ∑

k m±
k (x) (k is the label of

modes). This implies that, in the Gilbert damping process,
only the sum (or average) of the magnon contributions m±(x)
should be relaxed in principle. It should be noted that there
exist other microscopic spin relaxation processes, such as
multimagnon and magnon-phonon scattering, characterized
by the spin relaxation time τS . In this paper, we assume that
the macroscopic Gilbert damping leads to the main relaxation
process, and thus τG < τS throughout.

Here, for concreteness, we consider the following process
in small FM samples: A coherent magnon state of a sin-
gle mode is assumed to be excited selectively by external
pumping (such as microwave pumping) in a thermal ensemble
with multiple magnon modes, and then relaxed by the Gilbert
damping after turning off the pumping. In the Gilbert damping
process, in addition to the finite-size effects, the damping ef-
fect leading to broadening of spectral width allows the mixing
among almost degenerate magnon modes. From the above
arguments, through this process, a nontrivial intermode cor-
relation of magnons can be transiently formed in a finite time
τG < t < τS .1 In the following sections, we closely examine
the intermode magnon correlation.

III. MAGNETIZATION DYNAMICS IN FM THIN FILMS

As an example of realizing the intermode magnon correla-
tion, we consider the phenomenological Hamiltonian [12,13],
describing the local magnetization dynamics in a thin FM film
with a parallel external field Hex in the z direction (see Fig. 1):

Ĥ =
∫

d3x

(
−Hex M̂z + D

2

∑
a

[∇M̂a]2 + N

2
M̂2

x

)
. (2)

Here, M̂a(x) (a = x, y, z) is the local magnetization vector
in the continuum approximation, D is the exchange stiffness
constant, and N (∼ O(1)) is the demagnetizing factor in the

1The transient process in a finite time interval also allows the
mixing among the modes with almost degenerate frequencies by
uncertainty principle.

FIG. 1. Configuration of ferromagnetic film with finite area.

perpendicular x direction to the film. The magnetization vec-
tor is proportional to the spin density operators of electrons,
M̂a = −γ Ŝa, where γ (> 0) is the gyromagnetic ratio, and
thus we treat the magnetization vector as a quantum mechani-
cal operator (indicated by the hat) in the following discussion.
In this section, we briefly summarize magnetization dynamics
in the FM film on the basis of the Hamiltonian Eq. (2), for this
paper to be self-contained. (See Ref. [4] for details.)

A. Uniform magnetization dynamics in FM thin films

First, we summarize the dynamics of a unform precession
mode of the magnetization vector. From the SU(2) algebra
of spin, the uniform magnetization vector M̂a satisfies the
commutation relation,2

[M̂a, M̂b ] = −iγ εabc M̂c/V, (3)

where εabc is the totally antisymmetric tensor with εxyz = 1
and V is the volume of the FM sample.

The equations of motion for M̂a(t ) are derived from the
Hamiltonian Eq. (2) (without spatial derivatives) using the
commutation relation:

d M̂a

dt
= −i[M̂a, Ĥ] = −γ εabc M̂bĤc

eff , (4)

where the effective magnetic field is given by Ĥa
eff ≡

−δĤ/δM̂a = (−NM̂x, 0, Hex). Note that, replacing the com-
mutator with the Poisson bracket, we can obtain the classical
equations of motion for magnetic texture from Eq. (2) and the
following discussion also holds in the classical Hamiltonian
mechanics.

In the following discussion, we consider the FM ordered
phase where the magnetization almost aligns along the exter-
nal magnetic field Hex in the z direction. Then, the expectation
values of magnetization vector in the thermal equilibrium are
given by 〈Mz〉 = Ms (= const) and 〈Mx〉 = 〈My〉 = 0, where
Ms is the saturation magnetization. Note that, in this paper,
we define the expectation values in the sense of quantum sta-
tistical mechanics as 〈O〉 = tr (Ô ρ̂ ) with the density matrix
operator ρ̂.

2We set h̄ = 1 and repeated indices are summed in the following
discussion.
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Under this situation, we can approximate dynamics of the
local magnetization M̂a(x) in terms of the fluctuation m̂a(x)
measured from the thermal equilibrium 〈Ma〉:

M̂x = 〈Mx〉 + m̂x = m̂x, M̂y = 〈My〉 + m̂y = m̂y,

M̂z = 〈Mz〉 + m̂z � Ms (|m̂x|, |m̂y| � Ms). (5)

Here, the fluctuation of M̂z becomes higher order of m̂x/Ms

and m̂y/Ms due to the constraint
∑

a M̂2
a = M2

s , and thus we
neglect the parallel fluctuation m̂z.

At the linear order of the transverse fluctuations (m̂x, m̂y),
the equations of motion are reduced:

d m̂x

dt
= −γ Hex m̂y,

d m̂y

dt
= γ Hex m̂x + γ NMs m̂x,

(6)

where the higher order terms of m̂x/Ms and m̂y/Ms are ne-
glected. We focus on the linearized dynamics of transverse
magnetization described by Eqs. (6).

To discuss the magnetization relaxation by the phenomeno-
logical LLG equation, we should incorporate the Gilbert
damping term Eq. (1), which describes the relaxation of local
magnetization dynamics. The Gilbert damping term can be
similarly evaluated at the linear order of the transverse fluctu-
ations:

−λ(M̂ × (M̂ × Ĥeff ))x � −λ HexMs m̂x − λ NM2
s m̂x,

−λ(M̂ × (M̂ × Ĥeff ))y � −λ HexMs m̂y. (7)

Using these expressions, we obtain the linearized LLG equa-
tions:

d m̂x

dt
= −γ Hex m̂y − λ Ms(Hex + NMs)m̂x,

d m̂y

dt
= γ (Hex + NMs)m̂x − λ MsHex m̂y. (8)

In terms of the (circular) variables m̂± = m̂x ± im̂y, the
linearized LLG equations can be compactly expressed as fol-
lows:

d m̂−
dt

= −iγ̃

(
Hex + NMs

2

)
m̂− − iγ̃ NMs

2
m̂+,

d m̂+
dt

= iγ̃ ∗
(

Hex + NMs

2

)
m̂+ + iγ̃ ∗NMs

2
m̂−, (9)

where γ̃ = γ − iλMs is a complexified gyromagnetic ratio
and γ̃ ∗ = γ + iλMs. The resulting Eqs. (9) imply that the
effects of the Gilbert damping term can be incorporated
by complexifying the parameters γ → γ̃ = γ − iλMs in the
equations of motion Eqs. (6) at the linear order of m̂±. In
our linearized analysis, we assume the situation with small
thermal fluctuations at sufficiently low temperatures, and the
finite temperature effects are included in the effective damping
term and the equilibrium distribution function.3

3More precisely, at finite temperatures, the LLG equation should be
extended to the Langevin-type equation including stochastic noise
term, and the distribution function is given by the Fokker-Planck
equation [14–17].

To describe magnon dynamics by the creation-annihilation
operators using the Holstein-Primakoff (HP) transformation
[18], we rewrite Eqs. (9) in terms of the spin operator ŝ± =
−m̂±/γ :

d ŝ−
dt

= −iγ̃

(
Hex + NMs

2

)
ŝ− − iγ̃ NMs

2
ŝ+,

d ŝ+
dt

= iγ̃ ∗
(

Hex + NMs

2

)
ŝ+ + iγ̃ ∗NMs

2
ŝ−. (10)

The linearized equations can be derived from the quadratic
spin Hamiltonian for the fluctuations,

ĤL

= γ̃

∫
d3x

[(
Hex

2S0
+ γ N

4

)
ŝ+ŝ− + γ N

8
(ŝ2

+ + ŝ2
−)

]
, (11)

using the linearized spin algebra [ŝ+, ŝ−] = −2S0/V with
S0 = Ms/γ . Here, we introduce the HP representation at the
linear order,

Ŝ− = ŝ− =
√

2S0

V
â, Ŝ+ = ŝ+ =

√
2S0

V
â†,

Ŝz = −S0 + â†â

V
, (12)

where the creation-annihilation operators satisfy the commu-
tation relation, [â, â†] = 1. Inserting the HP representation
into the linearized Hamiltonian Eq. (11), we obtain the
quadratic Hamiltonian with â and â†:

ĤL = γ̃

[(
Hex + NMs

2

)
â†â + NMs

4
(â†2 + â2)

]
. (13)

As is well-known, this Hamiltonian can be diagonalized by
the Bogoliubov transformation [1,2]:

ĉ = μ â + ν â† with |μ|2 − |ν|2 = 1, (14)

where the coefficients are given by

μ = cosh r, ν = sinh r,

with er =
(

Hex + NMs

Hex

)1/4

. (15)

Note that the transformed operators also satisfy the commuta-
tion relation, [ĉ, ĉ†] = 1. Using the transformed operators, ĉ
and ĉ†, the linearized Hamiltonian ĤL is diagonalized,

ĤL = γ̃ ω0
(
ĉ†ĉ + 1

2

)
, (16)

with ω0 = √
Hex(Hex + NMs). This gives the eigenstates and

FM resonance frequency of magnetization dynamics in thin
films with an in-plane magnetic field Hex.

B. Spin waves in FM thin films

In this subsection, we briefly describe the dynamics of
nonuniform magnetization, such as spin waves, in the FM
thin film. The analysis in the previous subsection is natu-
rally extended to the nonuniform magnetization M̂a(x) which
depends on spatial coordinates. In the nonuniform case, the
commutation relation of magnetization components becomes

[M̂a(x), M̂b(x′) ] = −iγ εabc M̂c(x) δ3(x − x′). (17)
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At the linear order of the transverse fluctuations, (m̂x, m̂y),
in the FM ordered phase, the linearized LLG equations for
nonuniform modes are similarly given by

d m̂x

dt
= −γ (Hex − DMs∇2)m̂y

−λMs(Hex − DMs∇2 + NMs)m̂x,

d m̂y

dt
= γ (Hex − DMs∇2 + NMs)m̂x

−λMs(Hex − DMs∇2)m̂y, (18)

where we used the linearized form of the damping term (7)
with Ĥeff = (−NM̂x, 0, Hex) + D ∇2M̂.

In terms of the spin variables ŝ±(x) = −m̂±(x)/γ , the lin-
earized LLG equations can also be compactly expressed as
follows:

d ŝ−
dt

= −iγ̃

(
Hex − DMs∇2 + NMs

2

)
ŝ− − iγ̃ NMs

2
ŝ+,

d ŝ+
dt

= iγ̃ ∗
(

Hex − DMs∇2 + NMs

2

)
ŝ+ + iγ̃ ∗NMs

2
ŝ−,

(19)

where γ̃ = γ − iλMs is the same complexified gyromagnetic
ratio in Eqs. (9). These equations can be derived by the fol-
lowing quadratic Hamiltonian for the fluctuations ŝ±(x):

ĤL = γ̃

∫
d3x

{(
Hex

2S0
+ γ N

4

)
ŝ+ŝ− + γ D

2
∇ŝ+∇ŝ−

+ γ N

8
(ŝ2

+ + ŝ2
−)

}
, (20)

with the linearized spin algebra [ŝ+(x), ŝ−(x′)] =
−2S0 δ3(x − x′). For the nonuniform modes, we introduce the
linearized HP representation [1,2],

Ŝ−(x) = ŝ−(x) =
√

2S0

V

∑
k

eikxâk,

Ŝ+(x) = ŝ+(x) =
√

2S0

V

∑
k

e−ikxâ†
k,

Ŝz(x) = −S0 +
∑

k,k′ ei(k−k′ )xâ†
k′ âk

V
, (21)

where the mode operators satisfy the commutation relation
[âk, â†

k′ ] = δk,k′ . Inserting this expression into the linearized
Hamiltonian Eq. (20), we can obtain the quadratic Hamil-
tonian for the nonuniform mode operators, âk and â†

k , and
diagonalize for each mode of spin waves by the Bogoliubov
transformation similar to the uniform case, which is con-
cretely discussed in the next section.

IV. TWO-MODE CORRELATION OF MAGNONS IN FM
THIN FILMS

In this section, we discuss the coupled dynamics of multi-
ple spin wave modes, which are almost degenerate, in small
FM thin films. For the short wavelength (and high-frequency)
region, where the finite-size effect can be neglected, the mode
expansions of the spin variables are generally given by the

standard plane-wave form Eq. (21). In the following discus-
sion, we focus on the low-energy magnetization dynamics,
and assume that the low-energy dynamics is governed by
several low-frequency modes with the long wavelength, such
as the uniform mode (k = 0) and the long wavelength modes
with k ∼ 0.4

For concreteness and simplicity, we consider the coupled
dynamics of two modes, i.e., the uniform mode â and the
second-lowest energy mode, b̂ ≡ âk with k ∼ 0, which are al-
most degenerate. Using the operators â and b̂, we approximate
the linearized spin densities in the eigenmode expansion,

ŝ−(x) =
√

2S0

V
(â + fk (x) âk + fq(x) âq + · · · )

�
√

2S0

V
(â + fk (x) b̂),

ŝ+(x) =
√

2S0

V
(â† + f ∗

k (x) â†
k + f ∗

q (x) â†
q + · · · )

�
√

2S0

V
(â† + f ∗

k (x) b̂†), (22)

where fk(q)(x) is the mode function of the eigenmode of the
spin-wave equations Eqs. (19), and the mode operators satisfy
the following commutation relations:

[â, â†] = 1, [b̂, b̂†] = 1, [â, b̂] = [â, b̂†] = 0. (23)

The extension to the multimode dynamics including several
long wavelength modes, such as the third-lowest mode âq, is
straightforward and the results are almost similar. It is worth
noting that the mode functions fk(q)(x) of the long wavelength
eigenmodes depend on the details of the sample such as the
geometry, bulk inhomogeneity, and boundary conditions, and
do not have a simple plane-wave form in general.

Inserting the two-mode expression Eqs. (22) into the
linearized Hamiltonian Eq. (20), we obtain the quadratic two-
mode Hamiltonian:

Ĥtot = Ĥa + Ĥb + Ĥmix, (24)

Ĥa = γ̃

{(
Hex + NMs

2

)
â†â + NMs

4
(â†2 + â2)

}
,

(25)

Ĥb = γ̃

∫
d3x

V

{(
Hex + NMs

2

)
| fk|2 b̂†b̂

+ DMs |∇ fk|2 b̂†b̂ + NMs

4

(
f ∗2
k b̂†2 + f 2

k b̂2
)}

, (26)

Ĥmix = γ̃

{(
Hex + NMs

2

)
(Fk â†b̂ + F ∗

k b̂†â)

+ NMs

2
(F ∗

k â†b̂† + Fk â b̂)

}
, (27)

4For an example, such modes appear as low-lying modes in spin
wave resonance in thin films [19,20].
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where Fk = ∫
d3x fk (x)/V gives the form factor which has

been discussed in the context of a two-magnon scattering
process [21].

Here, we assume the real mode function fk (x) = f ∗
k (x) for

simplicity, and normalize the mode function as∫
d3x

V
| fk (x)|2 =

∫
d3x

V
f 2
k (x) = 1, (28)

which is consistent with the linearized spin commutator
[ŝ+(x), ŝ−(x′)] = −2S0 δ3(x − x′). We also define the wave
number of the b̂ mode:

k2 =
∫

d3x

V
|∇ fk (x)|2. (29)

Then, the Hamiltonian of the nonuniform mode, Ĥb, can be
diagonalized by the Bogoliubov transformation,

d̂ = α b̂ + β b̂† with |α|2 − |β|2 = 1, (30)

where the coefficients are given by

α = cosh s, β = sinh s,

with es =
(

Hex + NMs + DMsk2

Hex + DMsk2

)1/4

. (31)

The diagonalized Hamiltonian becomes

Ĥb = γ̃ ωk
(
d̂†d̂ + 1

2

)
,

with ωk =
√

(Hex + DMsk2)(Hex + NMs + DMsk2). (32)

For the sufficiently long wavelength mode (k ∼ 0), the reso-
nance frequency ωk is almost degenerate with the frequency
of the uniform mode ω0:

ωk � ω0 + cosh 2r (DMsk
2). (33)

As for the mode-mixing Hamiltonian Ĥmix, we assume that
the form factor is nonvanishing, Fk = F ∗

k � O(1) ( �= 0). The
physical origin of the nonvanishing form factor is discussed
below. Using the form factor Fk , we can rewrite the mixing
Hamiltonian in terms of the diagonalizing operators, ĉ and d̂:

Ĥmix = Fk γ̃ ω0[cosh(r − s)(ĉ†d̂ + d̂†ĉ)

+ sinh(r − s)(ĉ†d̂† + d̂ ĉ)], (34)

where the Bogoliubov coefficients in Eqs. (15) and (31) have
been used. In the small k limit, the coefficients are given by

cosh(r − s) � 1 + O

(
D2M2

s k4

ω2
0

)
,

sinh(r − s) � sinh 2r

2ω0
(DMsk

2). (35)

For the first approximation, we consider the degenera-
tion limit with ωk � ω0, which corresponds to k � 0, and
approximate the coefficients in Ĥmix as cosh(r – s) � 1 and
sinh(r – s) � 0. In this limit, we obtain the total two-mode
Hamiltonian:

Ĥtot = γ̃ ω0[ĉ†ĉ + d̂†d̂ + Fk (ĉ†d̂ + d̂†ĉ)]

= γ̃ ω0
[
(ĉ† + Fk d̂†)(ĉ + Fk d̂ ) + (

1 − F 2
k

)
d̂†d̂

]
, (36)

with the complexified gyromagnetic ratio γ̃ = γ − iλMs.
Here, we assume that the uniform ĉ mode and the nonuniform
d̂ mode can be selectively excited by external pumping.

This two-mode Hamiltonian leads to the following Heisen-
berg equations of motion for the mode operators ĉ and d̂:

i
d

dt
ĉ = [ĉ, Ĥtot] = γ̃ ω0 (ĉ + Fk d̂ ), (37)

i
d

dt
d̂ = [d̂, Ĥtot]

= Fk γ̃ ω0 (ĉ + Fk d̂ ) + (
1 − F 2

k

)
γ̃ ω0 d̂. (38)

Introducing the normalized quantum states |ψ〉c ⊗ |φ〉d ,
where |ψ〉c and |φ〉d are the elements in the Fock spaces of ĉ
and d̂ , respectively, the temporal evolution of the expectation
value of each mode operator can be derived:

d

dt
〈c〉 = −i γ ω0 (〈c〉 + Fk 〈d〉) − λ Msω0 (〈c〉 + Fk 〈d〉),

(39)

d

dt
〈d〉 = −i Fk γ ω0 (〈c〉 + Fk 〈d〉)

−Fkλ Msω0 (〈c〉 + Fk 〈d〉)

−i
(
1 − F 2

k

)
γ ω0 〈d〉 − (

1 − F 2
k

)
λ Msω0 〈d〉. (40)

Although we consider the expectation values for pure states
(such as products of coherent states) here, the temporal evolu-
tion of more general expectation values including (statistical)
mixed states using density matrix operators is discussed in the
next section.

In the following discussion, the form factor is assumed to
be Fk � 1, for simplicity. In this case, these equations imply
the existence of magnetization dynamics with two different
timescales. One is the (coalesced) local magnetization sum
governed by the usual Gilbert damping term ∝ λ,

d

dt
(〈c〉 + Fk 〈d〉) � −i

(
1 + F 2

k

)
γ ω0 (〈c〉 + Fk 〈d〉)

− (
1 + F 2

k

)
λ Msω0 (〈c〉 + Fk 〈d〉),

(41)

where the expectation value (or amplitude) of transverse mag-
netization is given by∫

d3x

V
〈m−(x)〉 ∝ 〈a〉 + Fk〈b〉

= cosh r (〈c〉 + Fk〈d〉) + sinh r (〈c†〉 + Fk〈d†〉). (42)

The other is relatively slow dynamics5 governed by a reduced
damping constant λ → λr = (1 − F 2

k ) λ:

d

dt
〈d〉 � −i

(
1 − F 2

k

)
γ ω0 〈d〉 − (

1 − F 2
k

)
λ Msω0 〈d〉. (43)

From the temporal evolutions with two different timescales,
we can conclude that, even though the coalesced magne-
tization undergoes the relaxation by the standard Gilbert

5A small detuning effect, δωk = ωk − ω0 �= 0, also leads to similar
slow dynamics with a reduced damping constant, λ′ = δωkλ.
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damping, 〈m±〉 → 0, relative correlation between 〈c〉 and 〈d〉
does not need to vanish and survives in an equilibrium state
with finite-temperature thermal fluctuations, within a different
timescale specified by the reduced damping constant, λr =
(1 − F 2

k )λ � λ. More explicitly, due to the commutativity,
[ĉ − d̂/Fk, ĉ† + Fk d̂†] = 0, two orthogonal modes, one is the
coalesced mode and the other is the depolarized mode, can
have the distinct temporal evolution: 〈c〉 + Fk〈d〉 and 〈c〉 −
〈d〉/Fk exhibit relaxation with different timescales. Note that
such an intermode phase correlation does not alter the energy
of the system as long as 〈m±〉 = 0.

This is a two-mode example of the spontaneous intermode
depolarization correlation (DPC) of magnons in the small FM
film,

〈m±
k 〉 �= 0 with 〈m±〉 =

∑
k

〈m±
k 〉 � 0, (44)

where 〈m±
k 〉 is each mode contribution to local magnetization

and the expectation value is defined as the trace over the (sta-
tistical) mixed states of magnon modes in quantum statistical
mechanics. If we can access the individual dynamics of each
mode, some information for the states of each mode can be
extracted and manipulated from the DPC. Here, we note that
the expectation value (or amplitude) of each mode should be
reduced separately through the microscopic spin relaxations
[6–9] and the DPC vanishes after the spin relaxation time τS .

The above argument for the DPC can be applicable for
more general situations other than the original setup discussed
in Sec. II. For example, two almost degenerate coherent exci-
tations of different modes (for ĉ and d̂), which are prepared
via multimode excitation or nonlinear magnon processes, can
similarly form the DPC after the Gilbert damping.

It should be noted that, although the two-mode DPC has
been discussed so far in terms of the uniform mode and the
second-lowest energy mode of the spin wave, the discussion
above can be straightforwardly generalized to the cases be-
tween the various types of spin-wave modes.

To summarize, we found that the depolarization corre-
lation among the almost degenerate magnon modes can be
transiently formed in the small FM samples due to the in-
termode mixing, which has been overlooked in macrospin
model analysis. As discussed below, the Gilbert damping and
the inhomogeneous demagnetizing fields (or dipolar fields),
which originate from the edge effects and nonlinear magne-
tization dynamics in finite-size samples, actually give rise to
the intermode mixing resulting from energy and momentum
nonconservation.

Origin of nonvanishing form factor

In this subsection, we discuss the possible origin of the
nonvanishing form factor Fk in Eq. (27). In the case possessing
(discrete) translational invariance, where the wave number
k is a good quantum number, i.e., a conserved quantity, the
intermode mixings between different k are forbidden and the
form factor Fk should vanish.

However, as discussed in Sec. II, we consider small FM
films (or dots), where the translational invariance is gener-
ically broken by the boundary conditions, and thus the
momentum conservation is violated in the order of k ∼ 1/L

(L is a typical size of the sample). Furthermore, in such
small FM media, we cannot ignore various finite-size ef-
fects in all directions of the film, such as the inhomogeneous
demagnetizing field in the film, surface anisotropy near the
edge, and so on [1,2]. These effects generally induce the
inhomogeneous background magnetization, 〈Mz〉 = Mz(x) �=
const [20,22,23], and this leads to an inhomogeneous effective
magnetic field for m̂± (or magnons) inside the film.6 When
considering the excitation of magnon modes by the external
pumping, nonlinear magnetization effects come to the surface
and also generate an inhomogeneous effective magnetic field
through the nontrivial mean field 〈m±(x)〉 �= const. All these
finite-size effects violate the conservation of wave number,
and the mode function fk (x) does not become a simple plane-
wave form in the small k region.

In addition, as discussed so far, the relaxation process is
crucial for the DPC to correlate different frequency modes,
and thus we should incorporate the effects of the Gilbert
damping term ∝ λ. The damping term causes the relaxation
of not only energy but also momentum of magnons and the
effects also violate the mode orthogonality: As discussed in
Refs. [24,25], dispersion relations derived from wave equa-
tions with the damping term generally imply the complex
frequency (with Im ω ∝ λ) and the complex wave-number
(with Im k ∝ λ).

Taking into account the finite-size effects and relaxation
effects, the wave number is neither a good quantum number
nor a conserved quantity in realistic small FM samples, and
therefore we expect a nonvanishing form factor, Fk �= 0. Note
that similar form factors originated from crystal imperfections
and pores in FM samples have been discussed in the context
of two-magnon scatterings [1,21].

V. INTERMODE DPC BASED ON DENSITY
MATRIX OPERATOR

In this section, we investigate the dynamics of the two-
mode DPC of magnons using the simple model Eq. (36) by
a quantum-optics-like approach [26]. The two-mode Hamilto-
nian leads to the Schrödinger equation for the quantum states
|�〉 = |ψ〉c ⊗ |φ〉d :

i
∂

∂t
|�〉 = Ĥtot|�〉

= γ̃ ω0
[
(ĉ† + Fk d̂†)(ĉ + Fk d̂ ) + (

1 − F 2
k

)
d̂†d̂

]|�〉
� γ̃ ω0(ĉ† + Fk d̂†)(ĉ + Fk d̂ )|�〉. (45)

In the following discussion, we focus on the fast dynamics
and ignore the slow dynamics, and thus we set the van-
ishing slowing factor, (1 − F 2

k ) � 0, in the last line. Note
that the complex coefficient γ̃ = γ − iλMs in Ĥtot gives the
non-Hermitian Hamiltonian, which describes magnetization
dynamics involving the Gilbert damping, and the norm of
states is not conserved under the nonunitary evolution given
by Eq. (45). For such a non-Hermitian Hamiltonian, the

6In such cases, the form factor Fk should be generalized to the
integral form including the inhomogeneities Mz(x) and Heff(x), such
as

∫
d3x Mz(x) fk (x)/V in Eq. (27).
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phenomenological Schrödinger equation for quantum me-
chanics with energy relaxation (or dissipation) has been
discussed in the description of damped harmonic oscillators
and magnetization dynamics [27–29] and in the Monte Carlo
wave-function approach in quantum optics [26,30,31].

Following the phenomenological approach, we consider
the norm-preserving Schrödinger equation for normalized
states (〈�|�〉 = 1) instead of Eq. (45),

i
∂

∂t
|�〉 = γ ω0 N̂ |�〉 − i λ Ms ω0(N̂ − 〈N 〉)|�〉, (46)

with N̂ = (ĉ† + Fk d̂†)(ĉ + Fk d̂ ) and 〈N 〉 = 〈�|N̂ |�〉.
From the phenomenological Schrödinger equation,
the temporal evolution of the density matrix operator
ρ̂ = ∑

i pi|�i〉〈�i| is given by the following master equation
which involves energy relaxation [27–29,32]:

d ρ̂

dt
= i γ ω0[ρ̂, N̂ ]

− λ Ms ω0(N̂ ρ̂ + ρ̂ N̂ − 2 〈N 〉 ρ̂ ), (47)

with 〈N 〉 = tr(N̂ ρ̂ ).
We can find the equilibrium state solution (d ρ̂/dt = 0) of

the master equation from the conditions

(ĉ + Fk d̂ ) ρ̂ = 0 and ρ̂ (ĉ† + Fk d̂†) = 0. (48)

The resulting equilibrium state is given by a product of the
coherent states [33,34],

ρ̂eq = (|C〉 ⊗ |D〉)(〈C| ⊗ 〈D|),
with ĉ |C〉 = C |C〉 and d̂ |D〉 = D |D〉, (49)

whose eigenvalues are constrained by

C + Fk D = 0. (50)

As discussed in Sec. IV, if the depolarization operator, ĉ −
d̂/Fk , initially has nonvanishing expectation value,

〈c〉 − 〈d〉
Fk

= R, (51)

this expectation value is conserved under the temporal evo-
lution given by Eq. (47) in the absence of microscopic
relaxation. Using Eqs. (50) and (51), the expectation values
are given in the equilibrium state:

C = −Fk D =
(

F 2
k

1 + F 2
k

)
R. (52)

In the original setup discussed in Sec. II, the initial state (or
density matrix) corresponds to the mixed state of a coherent
state of the ĉ mode, which is excited by the external pumping,
and a thermal state of the d̂ mode: ρ̂ini = c|α〉〈α|c ⊗ ρ̂ th

d . In
this case, the expectation value of the depolarization mode is
given by the eigenvalue of the initial coherent state of the ĉ
mode, i.e., R = α. For another initial state with two coherent
states, ρ̂ini = c|α〉〈α|c ⊗ d |β〉〈β|d , the expectation value of
the depolarization mode is given by R = α − β/Fk , which
corresponds to the difference between the amplitudes of the
coherent states.

The state Eqs. (49) with Eq. (50) shows the intermode DPC
between the ĉ and d̂ modes with the relation

〈c〉 = −Fk〈d〉. (53)

Actually, the intermode DPC is a transient state and, including
the effects of the detuning (δωk �= 0), nonvanishing slowing
factor (1 − F 2

k �= 0), and microscopic spin relaxation, both
amplitudes of the expectation values are relaxed eventually.

VI. SUMMARY

We calculated the intermode correlation of magnons in
small FM films with finite area. The result shows a possibility
of intermode DPC among magnon modes in an equilibrium
state. With the assumptions of the existence of almost de-
generate magnon modes and the nontrivial mixing among the
modes due to the demagnetizing fields and damping effects,
we have shown that the intermode DPC can be realized as
a transient state. Although our discussion is based on the
linearized analysis of a continuum model of FM films, the
analysis of the magnon DPC in other approaches, such as mi-
cromagnetic simulation [3] and the stochastic LLG approach
[14–17], is also interesting and will be discussed in a future
work.
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