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Strong anharmonic and quantum effects in Pm3̄n AlH3 under high pressure: A first-principles study
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Motivated by the absence of experimental superconductivity in the metallic Pm3n phase of AlH3 despite the
predictions, we reanalyze its vibrational and superconducting properties at pressures P � 99 GPa making use of
first-principles techniques. In our calculations based on the self-consistent harmonic approximation method that
treats anharmonicity beyond perturbation theory, we predict a strong anharmonic correction to the phonon spectra
and demonstrate that the superconducting critical temperatures predicted in previous calculations based on the
harmonic approximation are strongly suppressed by anharmonicity. The electron-phonon coupling concentrates
on the lowest-energy hydrogen-character optical modes at the X point of the Brillouin zone. As a consequence
of the strong anharmonic enhancement of their frequency, the electron-phonon coupling is suppressed by at
least 30%. The suppression in λ makes Tc smaller than 4.2 K above 120 GPa, which is well consistent with the
experimental evidence. Our results underline that metal hydrides with hydrogen atoms in interstitial sites are
subject to huge anharmonic effects.
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I. INTRODUCTION

Motivated by the quest for metallic and superconduct-
ing hydrogen at very high pressures [1], a combination of
first-principles structural predictions and calculations of the
electron-phonon interaction has led in the last years to the
prediction of many superconducting hydrides with high values
of the superconducting critical temperature Tc [2–21]. Even
if the observation of high Tc in pure hydrogen remains still
elusive, although optical evidence of the probably supercon-
ducting atomic phase [22,23] has been reported [24], it is now
an experimental fact that room-temperature superconductivity
is possible in hydrogen-rich “superhydride” compounds. Crit-
ical temperatures above 200 K have been observed in sulfur
[25], lanthanum [26,27], and yttrium [28–30] superhydrides
at pressures exceeding 100 GPa. A mixture of C-H-S has
finally reached room-temperature superconductivity at pres-
sures above 250 GPa [31], showing that there is lots of room
for further increase in Tc among ternary compounds [19].
The role of theoretical first-principles calculations in all these
experimental discoveries should be highlighted. For instance,
the discoveries of high-Tc superconductivity in sulfur, lan-
thanum, and yttrium hydrides had been anticipated by ab initio
calculations [14,15,17,32].

The standard procedure in these ab initio calculations relies
on a classical treatment of the ions: The predicted struc-
tures are minima of the Born-Oppenheimer energy surface
(BOES), and the phonons entering the superconducting equa-
tions are estimated assuming a harmonic expansion of the
BOES around these crystal configurations. However, this clas-
sical (or harmonic) approach often completely breaks down as

it neglects the quantum contribution from the kinetic term of
the nuclei Hamiltonian to the energy and the phonon frequen-
cies. The latter is large in hydrogen-based compounds due to
the lightness of H atoms. Consequently, the Tc from classi-
cal harmonic calculations [11,18,32] usually differ from the
experimental values [25,27,32]. In fact, the anharmonic cor-
rection to the phonon frequencies imposed by the large ionic
quantum fluctuations strongly renormalizes the superconduct-
ing critical temperatures in hydrogen-based superconductors,
yielding Tc’s in close agreement with experiments [33–37].
Furthermore, quantum anharmonic effects also explain the
stabilization of the crystal structures of superhydrides ob-
served experimentally, as, otherwise, these structures would
not be the ground state [35,36].

In the literature of superconducting hydrides, AlH3 de-
serves a remarkable position as it was one of the first metallic
hydrogen-based compounds synthesized at high pressures
[32] after having been predicted theoretically by crystal struc-
ture prediction methods [38]. Despite having been predicted
to be a superconductor at 24 K at 110 GPa in the Pm3n
phase within standard harmonic calculations, experimentally
no superconductivity was observed down to 4 K over the
120–164 GPa pressure range [32]. It was later suggested that
anharmonicity was responsible for the suppression of Tc [39].
Even if this seemed to close the debate on the experimental
and theoretical disagreement, the perturbative treatment of
anharmonicity followed in Ref. [39] for this system seems
questionable, as the anharmonic self-energy for some par-
ticular modes was estimated to be as high as the phonon
frequencies themselves. In these conditions, perturbative ap-
proaches may lead to strong errors in the estimation of the
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renormalized phonon frequencies [40]. Furthermore, anhar-
monic corrections were only estimated for few modes at only
one pressure. A deeper analysis based not on a perturbative
method is thus required to confirm that anharmonicity is re-
sponsible for the suppression of Tc in AlH3.

In this paper we present a thorough first-principles analysis
of the full anharmonic phonon spectra of Pm3n AlH3 in a
wide pressure range based on the variational stochastic self-
consistent harmonic approximation (SSCHA) method [33,41–
43]. The calculated superconducting critical temperature is
strongly suppressed by anharmonicity in the whole pressure
range, in agreement with the absence of superconductivity
in the 120–164 GPa pressure range above 4 K, confirming
the suggestion made in Ref. [39]. The paper is organized
as follows: Sec. II describes the theoretical framework of
our anharmonic ab initio calculations, Sec. III overviews the
computational details of our calculations, Sec. IV presents the
results of the calculations, and Sec. V summarizes the main
conclusions of this work.

II. METHODOLOGY

In the following, we briefly review the SSCHA method
[33,41–43] used for the calculation of anharmonic phonon
frequencies, as well as the theoretical framework followed for
estimating the superconducting critical temperature.

A. The stochastic self-consistent harmonic approximation

The SSCHA [33,41–43] is a quantum variational method
that minimizes the free energy of the system calculated with a
trial density matrix ρ̃R,�:

F[ρ̃R,�] = 〈K + V (R)〉ρ̃R,�
− T S[ρ̃R,�]. (1)

Here, K is the ionic kinetic energy, V (R) is the full Born-
Oppenheimer potential, T is the temperature, and S[ρ̃R,�]
is the entropy calculated with the trial density matrix. In
the SSCHA the density matrix is parametrized with centroid
positions R, which determine the average ionic positions,
and auxiliary force constants �, which are related to the
broadening of the ionic wave functions around R. Thus, min-
imizing F[ρ̃R,�] with respect to R and �, a good variational
approximation of the free energy can be obtained without
approximating the Born-Oppenheimer potential. This free en-
ergy can be used to estimate thermodynamic magnitudes,
such as the pressure, including the effects of ionic quantum
fluctuations [42]. These effects are neglected if the pressure is
estimated instead from V (R), which is the standard procedure.

Phonon frequencies within the SSCHA should be calcu-
lated from the dynamical extension of the theory [41,44,45].
In this framework, phonon frequencies at the q point of the
Brillouin zone (BZ) appear as peaks of the one-phonon spec-
tral function

σ (q,�) = −�

π
ImTr[G(q,� + i0+)], (2)

where G(q, z) is the Fourier transform of the Green’s func-
tion for the variable

√
Ma(Ra − Ra

eq ), which is related to the
correlation between displacements of atoms from the centroid
positions at equilibrium. The index a labels both an atom and a
Cartesian direction, and Ma is the mass of atom a. 0+ is a small

positive number. We calculate the spectral function both keep-
ing the full energy dependence of the phonon self-energy and
within the so-called Lorentzian approximation (see Ref. [46]
for details). In the latter case, the spectral function has well-
defined Lorentzian line shape, with well-defined peaks at the
Ωμ(q) frequencies.

In the � → 0 static limit, the peaks coincide with the
�μ(q) frequencies, with �2

μ(q) being the eigenvalues of the
Fourier transform of the free-energy Hessian matrix

D(F)

ab = 1√
MaMb

[
∂2F

∂Ra∂Rb

]
Req

. (3)

In Eq. (3), F is assumed to be the free energy at the minimum,
and Req are the centroid positions that minimize Eq. (1).
As the phonon frequencies obtained in this static limit are
determined by the free-energy Hessian, �μ(q) imaginary
frequencies point to lattice instabilities in the quantum anhar-
monic energy landscape.

B. Calculation of the superconducting transition temperature

We evaluate Tc with the Allen-Dynes [47] modified
McMillan equation,

Tc = f1 f2 ωlog

1.2
exp

[
− 1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

]
, (4)

where λ is the electron-phonon coupling constant and μ∗ is a
parameter usually named the Coulomb pseudopotential [48].
This equation has led to Tc values in rather good agreement
with experiments in superhydrides [36] despite its simplicity.
λ is defined as the first reciprocal moment of the electron-
phonon Eliashberg function α2F (ω),

λ = 2
∫ ∞

0
dω

α2F (ω)

ω
. (5)

Similarly,

ωlog = exp

(
2

λ

∫
dω

α2F (ω)

ω
ln ω

)
, (6)

f1 = [
1 + (λ/
1)3/2

]1/3
, (7)

f2 = 1 + (ω̄2/ωlog − 1)λ2

λ2 + 
2
2

(8)

are also determined with α2F (ω). The 
1, 
2, and ω̄2 param-
eters entering the equations above are given by


1 = 2.46(1 + 3.8μ∗), (9)


2 = 1.82(1 + 6.3μ∗)(ω̄2/ωlog), (10)

ω̄2 =
[

2

λ

∫
dωα2F (ω)ω

]1/2

. (11)

We calculate the Eliashberg function as

α2F (ω) = 1

2πN (0)Nq

∑
μq

γμ(q)

ωμ(q)
δ[ω − ωμ(q)], (12)
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where

γμ(q) = π

Nk

∑
knm

∑
āb̄

ε ā
μ(q)ε b̄

μ(q)∗√
MāMb̄

dā
kn,k+qmdb̄∗

kn,k+qm

× δ(εkn)δ(εk+qm) (13)

is the phonon linewidth associated with the electron-phonon
interaction of the mode μ at wave vector q. In Eqs. (12)
and (13), dā

kn,k+qm = 〈kn| δVKS/δRā(q) |k + qm〉, where |kn〉
is a Kohn-Sham state with energy εkn measured from the
Fermi level, VKS is the Kohn-Sham potential, and Rā(q) is the
Fourier-transformed displacement of atom ā; Nk and Nq are
the number of electron and phonon momentum points used
for the BZ sampling; N (0) is the density of states at the Fermi
level; and ωμ(q) and ε ā

μ(q) represent phonon frequencies and
polarization vectors. The combined atom and Cartesian in-
dices with a bar (ā) only run for atoms inside the unit cell.
In this paper, the Eliashberg function is calculated both at
the harmonic and anharmonic levels, respectively, by plugging
into Eqs. (12) and (13) the harmonic phonon frequencies and
polarization vectors or their anharmonic counterparts obtained
diagonalizing D(F).

III. COMPUTATIONAL DETAILS

Electronic properties are computed using density func-
tional theory (DFT) as implemented in the QUANTUM

ESPRESSO package [49,50]. Ultrasoft pseudopotentials [51],
including three electrons in the valence for Al, and a gen-
eralized gradient approximation for the exchange correlation
potential are used [52]. The plane-wave basis cutoff is set to
80 Ry and to 800 Ry for the density. First BZ integrations are
performed on a 24 × 24 × 24 Monkhorst-Pack mesh, using a
smearing parameter of 0.02 Ry. Harmonic phonon frequen-
cies and electron-phonon matrix elements entering Eq. (13)
are calculated within density functional perturbation theory
(DFPT) [53].

The SSCHA variational minimization requires the calcula-
tion of forces in supercells. We calculate them within DFT in a
2 × 2 × 2 supercell containing 64 atoms, yielding dynamical
matrices on a commensurate 2 × 2 × 2 grid. The difference
between the harmonic and anharmonic dynamical matrices
in the 2 × 2 × 2 grid was interpolated to a 13 × 13 × 13
grid. Adding the harmonic dynamical matrices in this fine
grid to the result, the anharmonic dynamical matrices in the
13 × 13 × 13 grid are obtained. Converging the value of the
electron-phonon coupling constant required, indeed, a 13 ×
13 × 13 q-point grid. A 60 × 60 × 60 k-point grid is used
instead for the electronic integration in Eq. (13), and the Dirac
deltas are approximated with Gaussian functions of 0.008 Ry
width.

IV. RESULTS AND DISCUSSIONS

A. Pressure and crystal structure

Pm3n AlH3 has a very high symmetry (see Fig. 1) with
eight Al atoms in the corners and one Al atom in the center
of the cubic unit cell. For each H atom there are 4 nearest Al
neighbors at the same distance, while there are 12 equivalent
H atom neighbors for each Al atom. Each H atom is located at

FIG. 1. Comparison between the classical and quantum pres-
sures as a function of the lattice parameter. The classical pressure
is obtained from the BOES, and the quantum pressure is obtained
from the SSCHA free energy. Here are shown the differences at
three pressures for the same lattice parameter. The crystal structure
of Pm3n AlH3 is shown as an illustration in the upper right corner,
where the blue spheres represent Al atoms and the pink spheres rep-
resent H atoms. One of the tetrahedra surrounding hydrogen atoms
is depicted. The classical calculations of Rousseau and Bergara [39]
and Pickard and Needs [38] are also included.

an interstitial site, in the center of a regular tetrahedron formed
by four Al atoms. All atomic positions are fixed by symmetry,
and, as symmetry is imposed by the SSCHA, internal coordi-
nates of the structure are not affected by quantum effects.

However, the lattice parameter of the cubic structure is
subject to quantum effects. In fact, as we show in Fig. 1
there are strong corrections to the pressure of the equation of
states if ionic quantum effects are considered. For the same
lattice parameter, the pressure obtained from the classical
calculation based on the BOES (we will also refer to it as
the harmonic pressure) is always about 10 GPa lower than
the quantum result obtained with the SSCHA (we will also
refer to it as the anharmonic pressure). This result is rather
general among superhydrides, as similar quantum corrections
on the pressure of about 10 GPa have been estimated for
H3S and LaH10 [35,36]. Figure 1 can be used conveniently
to compare our results with previous classical calculations
[32,39]. For instance, we clearly mark that the classical 110
and 125 GPa values correspond to 121.2 and 138.1 GPa in
the quantum case, respectively. Consistently, in order to avoid
any confusion, in the rest of the paper the pressure assigned
to harmonic calculations will be the the classical one, while
the quantum pressure will be assigned to quantum anharmonic
calculations.

B. Phonon spectrum

The Pm3n phase of AlH3 was observed experimentally
above 100 GPa [32]. As shown in Fig. 2, approximately below
this pressure the system develops phonon instabilities at the X
point of the BZ in the classical harmonic calculation. In con-
trast, the anharmonic phonons obtained diagonalizing D(F) are
always stable in the experimentally relevant pressure range.
Therefore quantum anharmonic effects play a crucial role in
stabilizing the Pm3n phase of AlH3 around 100 GPa. This
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FIG. 2. Comparison between the harmonic (blue solid lines) and anharmonic (red solid lines) phonon spectra of the cubic high-symmetry
Pm3n phase of AlH3 for different lattice parameters. The anharmonic spectra are obtained from D(F) and correspond to the static limit of the
SSCHA dynamical theory. The pressure calculated classically (harmonic calculation) and with quantum effects (anharmonic calculation) is
marked in each case. The regions of positive and negative frequencies, the latter of which represent imaginary frequencies, are separated with
a pink dotted line.

phase remains dynamically stable at least down to 70 GPa.
This means that even if below 100 GPa AlH3 was found in an
insulating P1 phase, the metallic phase may be metastable at
lower pressures.

As shown in Fig. 2, the anharmonic correction leads to
strong changes in the harmonic spectrum both for the low-
energy acoustic and high-energy optical modes. Especially,
the phonon frequencies at the X point of the BZ are strongly
hardened by anharmonicity. Even if the anharmonic hardening
of the phonon modes at the X point was already anticipated by
the early calculations in Ref. [39], the fact that the anharmonic
correction is of the order of the phonon frequency itself ques-
tions the perturbative approach followed previously. In fact,
when using the 5.933a0 lattice parameter, which corresponds
to 99 GPa if quantum effects are considered, the instabilities
apparent in the harmonic case completely hinder any pertur-
bative approach.

In Fig. 3 we show the phonon spectral function σ (q,�)
calculated at the � and X points. These spectral functions
can be directly probed by inelastic x-ray or neutron-scattering
experiments [46]. We calculate the spectral function both
keeping the full energy dependence of the phonon self-
energy and within the so-called Lorentzian approximation
(see Ref. [46] for details). While in the latter case the
phonon peaks have, by construction, a Lorentzian line
shape with a well-defined linewidth and clear peak position
at the Ωμ(q) energies, in the former case quasiparticle peaks
are not necessarily well determined. Despite the large anhar-
monic correction affecting the phonon frequencies, all phonon
modes keep a well-defined Lorentzian line shape (see Fig. 3),
also for the modes that suffer the largest correction at the X
point. The linewidth of the phonons [half-width at half max-
imum (HWHM)] is very small for the phonon modes below
1100 cm−1, less than 1 cm−1, while for higher-energy modes
it is in the range of ∼10 cm−1 (see Table I). It is remarkable
that the phonon modes derived diagonalizing the free-energy
Hessian D(F) agree well with the peaks of the spectral function
(see Table I), underlining that the phonon modes obtained in

the static limit agree well with the peaks of the dynamical
theory and are valid, for instance, to study superconducting
properties.

FIG. 3. Phonon spectral function σ (q, �) of AlH3 at 99 GPa
(pressure calculated with anharmonic quantum effects), at (a) the �

point and (b) the X point. The red line indicates the result obtained
keeping the full energy dependence on the self-energy, and the gray
line indicates the spectrum calculated in the Lorentzian approxima-
tion [41,46]. The centers of these Lorentzians define the anharmonic
phonon frequencies. They are indicated with the blue short vertical
lines in the lower panels of (a) and (b) with gray background.
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TABLE I. The �μ(q) frequencies obtained from the free-energy Hessian D(F), Ωμ(q) frequencies representing the location of the peaks in
the spectral function in the Lorentzian approximation, and the anharmonic HWHM linewidth in the latter approximation for the phonon modes
at the � and X points at 99 GPa (pressure calculated including quantum anharmonic effects).

� point X point

Modes �μ(q) Ωμ(q) γ anh
μ (q) Modes �μ(q) Ωμ(q) γ anh

μ (q)

1–3 0.0 0.0 0.0 1 and 2 213.5 216.8 0.0
4–6 378.6 376.3 0.1 3 and 4 305.7 306.6 0.1
7–9 1068.7 1036.9 0.2 5 and 6 428.0 431.8 0.6
10–12 1254.5 1214.2 13.3 7 and 8 880.2 849.9 0.9
13–15 1369.5 1332.9 23.3 9 and 10 1122.9 1098.7 0.8
16–18 1645.3 1645.3 34.8 11 and 12 1127.9 1091.4 0.6
19–21 1699.7 1709.3 13.9 13 and 14 1495.7 1468.2 36.7
22 and 23 1703.6 1712.7 4.4 15 and 16 1506.7 1499.9 15.7
24 1789.4 1770.3 3.7 17 and 18 1572.0 1556.2 31.7

19 and 20 1622.9 1624.4 19.7
21 and 22 1764.5 1755.5 6.1
23 and 24 1773.4 1783.8 20.3

C. Superconductivity

The strong anharmonic renormalization of the phonon
spectra has a deep impact on the calculated superconduct-
ing critical temperatures. We find that calculations based on
the harmonic phonon spectrum largely overestimate Tc. We
choose typical values for μ∗ as 0.10 and 0.15 in the cal-
culations. For a given μ∗, Tc decreases monotonically with
increasing pressure both in the harmonic and anharmonic
calculations. The suppression of Tc induced by pressure is a
consequence of the decrease in the density of states (DOS)
at the Fermi level imposed by compression [54], which is
suppressed by 35% from 100 GPa to 150 GPa according to
our results, as well as the overall hardening of the phonon
frequencies. As shown in Fig. 4, for μ∗ = 0.15, the resultant
Tc values are 7.1, 2.8, and 0.5 K for 109, 125, and 151 GPa,
respectively. These results obtained for the Pm3n structure
using anharmonic phonon frequencies agree well with the
electrical resistance experiments [32], which reported that
there is no superconducting transition above 4 K in the 120–
164 GPa pressure range. If the harmonic phonon spectrum is
used instead, Tc values above 4 K are predicted even with the
largest value of μ∗, completely contradicting the experimental
observation. Our harmonic calculations are in agreement with
previous theoretical calculations [32] as using the McMillan
equation [51] with μ∗ = 0.14 Tc is 21.5 K at about 121 GPa.
Indeed, the McMillan equation and the Allen-Dynes modified
equation give practically the same Tc. It is worth noting that
our DFT calculation may overestimate the DOS at the Fermi
level [54], which may lead to an overestimation of the pre-
dicted Tc both in the harmonic and anharmonic calculations.
However, this overestimation seems insufficient to explain by
itself the suppression of the harmonic Tc.

The anharmonic suppression of Tc is a consequence of
the clear drop in the electron-phonon coupling constant in
the anharmonic limit (see Fig. 4). For example, at 109 GPa
(pressure calculated with quantum effects), λ drops from a
value of 0.95 down to 0.53, a strong suppression; λ is prac-
tically halved. As a result, given μ∗ = 0.15, Tc falls from

29 to 7 K, which is equivalent to only 24% of the harmonic
result. The suppression is similarly impressive for all studied
pressures, whatever the value of μ∗ is. The suppression of
superconductivity in Pm3n AlH3 is as strong as that estimated
for PdH at ambient pressure [37] and PtH at high pressures
[33], which crystallize in high-symmetry phases with H atoms
in interstitial sites. This suggests that anharmonic suppression

FIG. 4. Superconducting critical temperature Tc and electron-
phonon coupling constant λ (inset) as a function of pressure in the
harmonic approximation (blue lines) and considering anharmonic
effects (red lines). Note that a different pressure scale is used for
the harmonic and anharmonic calculations, which includes quantum
effects for the latter but not the former. Harmonic and anharmonic re-
sults aligned vertically are calculated with the same lattice parameter.
Tc calculated with μ∗ = 0.10 and 0.15 is plotted with dashed lines and
solid lines, respectively. The gray-shaded box marks the pressure re-
gion in which no superconductivity was found experimentally above
4 K [32].
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FIG. 5. Anharmonic spectral function α2F (ω) (black solid lines)
and integrated electron-phonon coupling constant λ(ω) (blue solid
lines) at four different quantum pressures: (a) 99 GPa, (b) 109 GPa,
(c) 125 GPa, and (d) 151 GPa, respectively. The harmonic results
obtained are also shown with dotted lines using the same colors
for comparison at three different classical pressures: (b) 99 GPa,
(c) 113 GPa, and (d) 137 GPa. The harmonic and anharmonic results
in each panel are obtained with the same lattice parameter.

of Tc in metallic hydrides with isolated H atoms in interstitial
sites may be rather common.

The Eliashberg spectral function α2F (ω) and its integral
λ(ω), both for anharmonic and harmonic cases, are shown in
Fig. 5. It is evident in the figure that while in the anharmonic
case the contribution of the low-energy acoustic modes to
λ is around 0.2 at all pressures, in the harmonic case it is
much larger and it is strongly suppressed by pressure. The
reason is that in the harmonic approximation at low pressures
there is a significant mixing between H and Al character in
the polarization vectors of the acoustic modes. Pressure lifts
the frequencies of the H-character modes, reducing effectively
the mixing. Anharmonicity also suppresses partly this mixing,
and consequently acoustic modes have a weak contribution
to λ. This can be seen in Fig. 6, where it is evident that
the hydrogen contribution to α2F (ω) is suppressed by anhar-
monicity at low energies. The contribution of each particular
atom to the Eliashberg function can be obtained by writing
α2F (ω) = ∑

āb̄ α2Fāb̄(ω) [α2Fāb̄(ω) can be trivially obtained
from Eqs. (12) and (13)]. The partial contributions of Al
and H in Fig. 6 are obtained by summing the contributions
in α2Fāb̄(ω) of only Al or H atoms, respectively. The large
peaks in the harmonic α2F (ω) in the 550–1000 cm−1 fre-
quency range have a very large contribution to λ and come
from the softened modes in the vicinity of the X point (see
Fig. 2). This suggests that the softened phonon frequencies at
the X point give a large contribution to the electron-phonon
coupling. As discussed above, anharmonicity increases these
frequencies and, consequently, shifts these peaks to higher
energies. As the contribution to λ of a given mode goes as
λμ(q) = γμ(q)/[N (0)πω2

μ(q)], λ is strongly suppressed by
anharmonicity. Due to the small renormalization of other
modes beyond the X point, it is reasonable to assume that the

FIG. 6. The projected α2F (ω) onto Al and H at the harmonic
and anharmonic levels calculated with the same lattice parameter
5.884a0, which corresponds in the quantum anharmonic case to
109 GPa. The harmonic results are shown with dotted lines using
the same colors for comparison.

bulk of the anharmonic correction to λ and Tc concentrates in
the vicinity of X.

The fact that the bulk electron-phonon interaction is con-
centrated around the X point for the lowest-energy H-character
mode is evident when plotting the γμ(q) linewidth associated
with the electron-phonon coupling. In Fig. 7 we show the
linewidth calculated following Eq. (13) for the �-X , �-M,
and �-R paths at 99 GPa (pressure calculated with quantum
anharmonic effects). As depicted, the linewidth associated
with the lowest-energy H-character mode largely outweighs
the contribution of all the other modes, underlining that this is
the mode that contributes the most to λ. This also naturally ex-
plains the large anharmonic correction to Tc, as the frequency
of this mode is strongly enhanced by anharmonicity.

In our calculations, the electron-phonon contribution to
the phonon linewidth of this mode is 90 cm−1 at 99 GPa
and 89.9 cm−1 for 109 GPa, respectively (pressures evalu-
ated including quantum anharmonic effects). This shows that
the electron-phonon matrix elements are weakly pressure de-
pendent in this system. For this mode, the electron-phonon
contribution to the linewidth is clearly much larger than the
anharmonic contribution, which is only 0.9 cm−1 (see modes
7 and 8 at the X point in Table I). The electron-phonon
contribution to the linewidth is not so large for all the other
modes and is comparable (if not smaller) than the anharmonic
contribution. Interestingly, even if γμ(q) does not depend on
the phonon frequencies, the electron-phonon linewidth of the
strongly renormalized phonon mode at the X point is smaller
in the harmonic approximation for the same lattice parameter:
78 cm−1. The explanation for this is the change in the polar-
ization vectors imposed by anharmonicity, which is consistent
with the reduction of the H character of the acoustic modes de-
scribed above. This means that the effect of anharmonicity on
the electron-phonon coupling constant and Tc cannot be sim-
ply reduced to a renormalization of the phonon frequencies,
as it affects them also through a change in the polarization
vectors. Since these effects are not trivial and their impact on
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FIG. 7. The linewidth associated with the electron-phonon interaction calculated with the spectra obtained from D(F) for the cubic high-
symmetry Pm3n phase of AlH3 at 99 GPa (pressure calculated including quantum effects). (a) �-X path, (b) �-M path, and (c) �-R path. The
phonon linewidth is indicated by the size of the red error bars.

Tc cannot be easily anticipated, this motivates the necessity
of performing a full nonperturbative anharmonic calculation
on hydrides to have reliable results on the electron-phonon
coupling effects and superconducting properties.

V. CONCLUSIONS

In summary, in this paper we demonstrate clearly that
quantum anharmonic effects are responsible for the absence
of superconductivity in Pm3n AlH3 under high pressure,
confirming early suggestions [39]. We find that the phonon
spectra are strongly affected by anharmonic effects, which
leads the structure to be dynamically stable at lower pressures
than expected within classical harmonic calculations. Anhar-
monicity reduces the electron-phonon coupling constant by
no less than 30% and Tc by at least 59% in the range of
109–151 GPa. The bulk of the anharmonic correction, as well

as the electron-phonon interaction, concentrates around the
zone border X point. The Pm3n remains metastable (because
dynamically stable) below 100 GPa, opening the possibility of
its synthesis below this pressure. Our work underlines that su-
perconducting properties of hydrides at high pressure can only
be properly described by including quantum and anharmonic
effects.
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