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First-principles theory of infrared vibrational spectroscopy of metals and semimetals:
Application to graphite
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We develop an ab initio method to simulate the infrared vibrational response of metallic systems in the
framework of time-dependent density functional perturbation theory. By introducing a generalized frequency-
dependent Born effective charge tensor, we show that phonon peaks in the reflectivity of metals can always be
described by a Fano function, whose shape is determined by the complex nature of the frequency-dependent
effective charges and electronic dielectric tensor. The IR vibrational properties of graphite, chosen as a rep-
resentative test case to benchmark our method, are found to be accurately reproduced. Our approach offers
a first-principles scheme for the prediction and understanding of IR reflectance spectra of metals, which
may represent one of the few available tools of investigation of these materials when subjected to extremely
high-pressure conditions.
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I. INTRODUCTION

Infrared (IR) spectroscopy is a well-established technique
for analyzing the vibrational properties of crystalline solids.
In insulating or semiconducting materials, not displaying
electronic intraband transitions in the IR region of the elec-
tromagnetic spectrum, phonon features arise at energies much
smaller than the band gap, and hence they can be clearly
identified. On the other hand, the IR response in metals
is dominated by the Drude peak—the signature of the free
electron response—whose amplitude is proportional to the
free carrier density ρ, and therefore to the square of the
plasma frequency ρ ∝ ω2

p. The presence of a strong Drude
peak generally precludes the detection of the vibrational fea-
tures [1]. There are cases, however, in which this technique
can also be useful in metallic materials, and even situations
in which it is one of the only possible choices. To better
understand these cases, it is useful to recall the quantum-
mechanical dependence of ωp from the density of states at the
Fermi level, D(EF), and the average electronic velocity at the
Fermi surface, v̄F: ω2

p ∝ v̄2
F D(EF). From this expression it is

clear that, for example, systems with a pseudogap—like high-
temperature superconducting cuprates [2] or transition-metal
dichalcogenides undergoing a charge-density-wave transition
[3–5]—displaying by definition a density of states that de-
creases significantly at the Fermi level, will have a small
ωp; this condition narrows the Drude peak, and it makes the
vibrational features sharp enough to be investigated (see, e.g.,
Fig. 1 of Ref. [6], or Fig. 1 of Ref. [7]). Another significant
example is given by systems under extremely high-pressure
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conditions, i.e., above hundreds of GPa, like H3S [8,9], LaH10

[10,11], and the recently discovered semimetallic phase of hy-
drogen [12]. For these systems, the experiments in order to be
performed require a setup composed of diamond anvil cells,
and samples whose size is of the order of μm. For the deter-
mination of the crystal structure, the reduced sample size and
the diamond-anvil environment—together with the presence
of a light element like hydrogen—preclude the use of neutron
scattering, and this makes an x-ray diffraction analysis very
challenging [9,13]. Raman and IR spectroscopies represent
alternative routes to this goal. However, Raman spectroscopy
of metals turns out to be difficult because of the smallness of
the light penetration depth within the sample, δ ∝ (ωσ0)−1/2,
for ω in the visible light and high dc conductivity σ0. There-
fore, due to the lower frequencies employed, IR reflectivity
measurements represent one of the few possible and effective
approaches for investigating the crystal structure of metallic
materials under extremely high-pressure conditions [9].

II. THEORY

Ab initio calculations play a crucial role in the physical
interpretation of experimental results. In this paper, by means
of a time-dependent formulation of density functional per-
turbation theory (DFPT) [14,15], we introduce a method to
simulate from first principles the IR reflectivity absorption
spectrum of metallic systems.

The determination of the dielectric tensor ε(ω) gives a
complete characterization of all the features appearing in IR
spectra [16–18]. It can be decomposed as

ε(ω) = εe(ω) + 4π
∑

s

χI
s(ω), (1)
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where εe(ω) is the electronic dielectric tensor at fixed ions,
and χI

s(ω) represents the ionic contribution due to a phonon
mode with index s,

χI
s(ω) = e2

�

ds(ω) ds(ω)

ω2
s − (ω + iγs/2)2

. (2)

Here, � is the unit-cell volume, ωs and γs are the phonon
frequency and inverse lifetime, respectively, and ds(ω) =∑

κ Zκ (ω) · es,κ√
mκ

is the oscillator strength defined in terms of a
frequency-dependent effective charge tensor Zκ (ω), with mκ

the mass of the κth atom and es,κ the polarization vector of
the sth mode. Equations (1) and (2) can be derived either by a
phenomenological approach [16], or with more rigorous field-
theoretic methods [17,18]. Since phonon peaks are typically
rather sharp, we can approximate εe(ω) and Zκ (ω) by their
values εe

s = εe(ωs) and Zκ (ωs) at each given phonon mode s.
Information from IR studies are generally extracted from

transmission T (ω) and reflectivity R(ω) measurements. In
the case of metals, T (ω) can be obtained only for very
thin materials, whereas R(ω) can always be acquired. The
standard formula of the reflectivity between the vacuum and
the sample along one of the principal dielectric axes α is
Rα (ω) = ∣∣√

εα (ω)−1√
εα (ω)+1

∣∣2
[1], where εα (ω) is the diagonal element

of the dielectric tensor. The general shape of the vibrational
features in IR reflectivity spectra of metals can be deduced
by a Taylor expansion of Rα (ω) around a given s phonon
mode. In the limit |εe

s,α| � |χ I
s,α (ω)|, the reflectivity reads (see

Appendix A)

Rs,α (ω) ∼ Re
s,α

[
1 + 2 Re

(
4πχ I

s,α (ω)√
εe

s,α

(
εe

s,α − 1
))]

. (3)

where Re
s,α is the purely electronic reflectivity. The vibrational

contribution (second term in the square brackets) can be recast

as a Fano profile,

Re

(
4πχ I

s,α (ω)√
εe

s,α

(
εe

s,α − 1
)
)

= Ws,α
q2

s,α − 1 + 2qs,α ξs(ω)(
1 + q2

s,α

)(
1 + ξ 2

s (ω)
) . (4)

Here we defined the following quantities:

Ws,α = |Ds,α|2
γsωs

, qs,α = −Re Ds,α

Im Ds,α
, (5)

(Ds,α )2 = i
4πe2

�

(ds,α )2√
εe

s,α

(
εe

s,α − 1
) , (6)

whereas ξs(ω) = (ω2 − ω2
s )/γsω, which, close to a phonon

peak, can be approximated to ξs(ω) ∼ 2(ω − ωs)/γs. Equa-
tion (4) is a Fano function in the variable ξs(ω) [19], which
is completely determined by five parameters, namely Re

s , ωs,
γs, Ws,α , and qs,α . This implies that, in the case of metals,
it cannot be used to obtain all six parameters characterizing
ε(ω), i.e., (Re Zκ , Im Zκ ), (Re εe

s, Im εe
s ), γs, ωs [9,20]. Instead,

the proper way to obtain both the real and the imaginary parts
of Zκ is to fit the vibrational contribution of the real part of
the optical conductivity; this can be done once the smooth
electronic part has been previously subtracted, as was done,
e.g., in Ref. [21]. The reflectivity expansion in Eqs. (3) and
(4) holds for every material, both metallic and insulating. In-
deed, for Im Zκ → 0 (qs,α → −∞) one recovers the standard
insulating limit of a Lorentzian shape. For metals instead, as
static polarization is not a well-defined quantity, the effective
charge can only be defined in the dynamical (ω-dependent)
version. We show that its imaginary part is responsible for the
Fano shape of the phonon peaks in reflectivity spectra.

In DFPT, both εe and Zκ are defined as derivatives of the
electronic polarization, the former with respect to the electric
field E, the latter with respect to the ionic displacements
uκ [22]. The effective charge tensor can be decomposed in
two contributions Zκ = 1Z I

κ + Ze
κ , where the first (constant)

term Z I
κ is the (pseudo)charge of the nuclei, while the second

electronic contribution Ze
κ is due to the interaction between the

electrons and the lattice; in the following, we will focus on this
last one. Within time-dependent DFPT [14,15] and adopting
the variational approach proposed in [23], the effective charge
tensor can be expressed as

eZe
κ [nE, nuκ ](ωs) = − 2

Nk

∑
k,nm

fk,n − fk,m

(Ek,n − Ek,m)2 − z2
s

〈
uk,m|(ieh̄vk + (Ek,n − Ek,m)V E

Hxc

)|uk,n〉
〈
uk,n|

(
V uκ

I + V uκ

Hxc

)|uk,m
〉

+
∫

d3r d3r′ nE(r, ωs) KHxc(r, r′) nuκ (r′, ωs), (7)

while the electronic dielectric tensor εe(ωs) reads

εe[nE](ωs) = 1 + 4π
2

Nk�

∑
k,nm

1

(Ek,n − Ek,m)2 − z2
s

fk,n − fk,m

Ek,n − Ek,m
〈uk,m|(ieh̄vk + (Ek,n − Ek,m)V E

Hxc

)|uk,n〉

× 〈uk,n|
(
ieh̄vk + (Ek,m − Ek,n)V E

Hxc

)|uk,m〉 + 4π

�

∫
d3r d3r′ nE(r, ωs) KHxc(r, r′) nE(r′, ωs). (8)

In these expressions, Nk is the number of points in the k-

grid, vk = 1
h̄

∂H0
k

∂k , where H0
k = e−ik·rH0eik·r, and H0 is the

unperturbed Kohn-Sham (KS) Hamiltonian; Ek,n is the un-

perturbed KS eigenvalue, and uk,n is the periodic part of the
corresponding KS eigenstate in Bloch form [24]. We denote
with fk,n the smearing function, while zs = h̄ωs + iηs, where
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ηs is a positive small real number with the dimension of an
energy. The frequency-dependent charge density induced by
ξ = E, uκ , denoted as nξ = ∂n

∂ξ
, gives rise to a Hartree and

exchange-correlation (Hxc) potential:

V ξ
Hxc

[
nξ

]
(r, ωs) =

∫
d3r KHxc(r, r′) nξ (r′, ωs), (9)

where KHxc(r, r′) = δ2EHxc[n]
δn(r)δn(r′ ) is the Hxc kernel. Finally, the

first-order perturbative expressions of the induced charge den-
sity with respect to the electric field and ionic displacements
are

nE(ωs) = 2

Nk

∑
k,nm

fk,n − fk,m

(Ek,n − Ek,m)2 − z2
s

u∗
k,n uk,m

× 〈uk,m|(ieh̄vk + (Ek,n − Ek,m)V E
Hxc

)|uk,n〉 (10)

and

nuκ (ωs) = 2

Nk

∑
k,nm

fk,n − fk,m

(Ek,n − Ek,m)2 − z2
s

u∗
k,n uk,m

× (Ek,n − Ek,m) 〈uk,m|(V uκ

I + V uκ

Hxc

)|uk,n〉. (11)

To highlight certain analytical properties, we wrote the pre-
vious expressions in a slightly different way with respect
to their standard form [23]. It is clear that only limz→0 nuκ

is in general well-defined: in the limit of infinite k points,
all the other quantities have an integrand that can become
arbitrarily large when z → 0 if the Fermi level falls between
the intersection of two bands (m̃, ñ) at a point k∗, where
limk→k∗ Ek,ñ − Ek,m̃ → 0. Note that—contrary to the induced
charge densities, Eqs. (10) and (11), and the effective charge
tensor, Eq. (7)—only εe contains a contribution from intra-
band terms, which is always divergent when z → 0 and gives
rise to the Drude peak. It is therefore necessary to maintain
the frequency dependence of all relevant quantities—namely,
nξ , Ze

κ , and εe—in order to have a stable and robust implemen-
tation of Eqs. (7), (8), and (10) in a first-principles code.

Although feasible in principle, a full implementation
would require a substantial rewriting of the linear-response
code. Therefore, for computational simplicity, we exploit the
variational property with respect to the first-order charge den-
sity of Eqs. (7) and (8) (as discussed in Ref. [23]), neglecting
in all the self-consistent loops the imaginary part of the first-
order charge density:

Ze
κ (ωs) ≈ Ze

κ

[
Re nE, Re nuκ

]
(ωs), (12)

εe(ωs) ≈ εe
[
Re nE]

(ωs). (13)

Regarding the practical implementation in the code, we
used a dynamical extension of the linear-response formal-
ism described in Ref. [15], which is equivalent to the one
of Ref. [23], employing a frequency-dependent Sternheimer
equation with a similar scheme of Ref. [25] (see Appendix B
for more details).

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 1550  1560  1570  1580  1590  1600  1610  1620

R
ef

le
ct

iv
it

y

 (cm-1 )

Kuzmenko et al., PRL 100, 117401 (150 K)

Kuzmenko et al., PRL 100, 117401 (300 K)

This work (150 K)

This work (300 K)

FIG. 1. Simulated (lines) and experimental (dots) phonon peak
associated with the E1u mode. We shifted the experimental peaks so
that their tips are at 1587 cm−1.

III. APPLICATIONS

A. Graphite

We benchmark our approach by evaluating the reflec-
tivity spectra of bulk graphite and analyzing the IR peaks
E1u (ωE1u = 1587 cm−1) and A2u (ωA2u = 868 cm−1), which
have been thoroughly investigated by IR spectroscopy mea-
surements [20,26–34]. Lattice symmetry forces tensorial
quantities to be diagonal, and the in-plane elements to be
equal. In the following, we will denote as T‖ (T⊥) the com-
ponents of a given tensor T parallel (perpendicular) to the
graphene sheets. Ab initio calculations were performed us-
ing the PW and PHonon packages of QUANTUM ESPRESSO

[35,36], within which we implemented the theory described
above. We use the local-density approximation [37], norm-
conserving pseudopotentials [38], Fermi-Dirac smearing, and
a plane-wave expansion up to 55 Ry cutoff. We choose
the value of ηs to be one order of magnitude smaller than
the corresponding ωs values: ηE1u = 110 cm−1 and ηA2u =
55 cm−1. We account for the thermal expansion using as a
lattice constant c = 6.68 Å for T = 150 K and c = 6.70 Å
for T = 300 K, while keeping the in-plane lattice constant
fixed at a = 2.46 Å [39]. We use as ωs the values taken from
Ref. [20]. Regarding the k-point sampling, as graphene, bulk
graphite is a semimetal with valence and conduction bands
touching and crossing at the high-symmetry K and H points
in the Brillouin zone, so interband electronic transitions will
contribute to the optical response for any value of h̄ω. At
IR frequencies, the most significant contributions to the E1u

absorption come from a small cylinder along the K-H line,
in which the denominators in Eqs. (7) and (8) reach their
minimum value. Thus, a very fine k-points grid around this
region is needed for an accurate evaluation of the sum over
k appearing in Eqs. (7) and (8). To this end, we employed
a mesh with a uniform sampling along the kz direction, and a
nonuniform grid within the (kx, ky) plane, where the density of
k-points increases exponentially around the K-H line obeying
a C3 symmetry (details can be found in Appendix C).

In Figs. 1 and 2 we compare our simulated reflectivity
with the experimental data. Importantly, we notice that the
symmetry of the peaks depends on the phases of both Zκ (ωs)
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FIG. 2. Comparison between our ab initio results (black and red
lines) and a fit (whose parameters are not related to a particular
T ) taken from Ref. [34] (gray line) of the reflectivity around the
resonance of the A2u mode.

and εe(ωs). In fact, from Eq. (6), Ds,α = |Ds,α|ei arg Ds,α , where
for |εe

s,α| � 1, arg Ds,α ≈ π
4 + arg ds,α − 3

4 arg εe
s,α , and from

Eq. (5), tan (arg Ds,α ) = − 1
qs,α

. Using our computed values in
Tables I and II, for the E1u peak (Fig. 1) we find qE1u,‖ ≈
−52 (−19) at T = 150 (300) K (q � −1 is the Lorentzian
limit), which explains the symmetric shape of the resonance.
Remarkably, the temperature dependence obtained from our
calculations—mainly due to the temperature dependence of
εe(ωs)—well reproduces the one reported in Ref. [30]. As
for the A2u peak, we compare the calculated R⊥(ω) with a fit
proposed in Ref. [34] and realized taking into account several
experiments. As shown in Fig. 2, also in this case our ap-
proach successfully reproduces the expected Fano asymmetric
shape of the phonon peak, for which qA2u,⊥ ≈ −1.3 (−1.4) at
T = 150 (300) K (q = −1 is the complete asymmetric case).

We report in Table I the oscillator strengths d⊥ (d‖) of
Eq. (2) evaluated at ωE1u (ωA2u ) and properly rescaled by the
square root of the carbon mass mC (and a factor 2 stemming
from the scalar product with the polarization vectors es,κ ),

TABLE I. Comparison between ab initio and experimental/
theoretical oscillator strength d̃s = √

mC/4 ds. The parallel compo-
nent refers to the E1u mode, the perpendicular one to the A2u mode.

Reference T (K) Re d̃‖ Im d̃‖ Re d̃⊥ Im d̃⊥

Ref. [20]b 0.41 0.08
Ref. [27]b 300 0.18
Ref. [28]b 300 0.21
Ref. [40]a 0.014 0.015
Ref. [26]a 150 0.17 0.15

300 0.18 0.15
Ref. [26]b 150 0.29 0.14

300 0.31 0.13

Present work 150 0.27 0.09 0.07 0.0001
300 0.27 0.10 0.07 0.0001

aTheoretical
bExperimental.

TABLE II. Comparison between ab initio and experimental di-
electric tensor. For comparison, we also report the value of Re ε⊥ at
ω = 9679 cm−1 (taken from Ref. [33]) because, although it is not the
characteristic frequency of the A2u mode, the dielectric tensor is not
expected to vary appreciably from 686 to 9679 cm−1 since there are
no interband electronic transitions in such a frequency range.

Reference T (K) Re ε‖ Im ε‖ Re ε⊥ Im ε⊥

Ref. [29]a 8.8 50
Ref. [31]a 0.73 73
Ref. [32]a 5.3 0.68
Ref. [33]a 3.3
Ref. [34]b 4.2 0.89

Present work 150 6.1 62 3.9 0.79
300 7.9 59 3.4 0.71

aAs reported by Ref. [34].
bValues corresponding to a fit realized taking into account many
experimental data.

and we compare them with available experimental estimates.
In the case of graphite, they are equal to the average of the
absolute value of Z‖ (Z⊥) of the four C atoms of the unit
cell, which, because of symmetry, are exactly equal in pairs,
with opposite sign. In addition, it is well known that the
components of the effective charge tensor obey the acoustic
sum rule (ASR)

∑
κ Zκ = 0 [16]; interestingly, we found that

this rule in general is not respected in the dynamical case (see
Table V in Appendix D).

We stress the fact that in older experiments, the effective
charge was supposed to be a real quantity, and the imagi-
nary part was completely neglected [20,27,28], an assumption
that has been relaxed only recently [26]. Such neglect of
the complex nature of the effective charges may have led to
inaccurate results because of a wrong fitting procedure of the
experimental data. Within our approach, we find that indeed
the imaginary part of d‖ is approximatively 1/3 of the real
part, in good agreement with the experimental results reported
in Ref. [26]. The out-of-plane component d⊥ has a negligible
imaginary part, whereas the real one is found to be one order
of magnitude smaller than Re d‖ (reflecting the dielectric-like
properties of graphite in the transverse direction), with our
calculations yielding a value in excellent agreement with the
experimental estimates [20]. We find that the combined effect
of the thermal lattice expansion and the increase of electronic
temperature has no effect on Re d‖ and d⊥. Instead, Im d‖ does
not depend appreciably on thermal expansion, but it increases
with T , contrary to Ref. [26]. However, it is worth mentioning
that the parameter ηs = Im zs, accounting for the damping of
the electronic states, is also T -dependent. We have not studied
such a dependence; nevertheless, in Appendix D we show that
the variation of ηs can markedly affect Im d‖.

As for the electronic dielectric tensor εe(ωs), in Table II we
report ε‖ (ε⊥) evaluated at ωE1u (ωA2u ). We found that the com-
ponents of the dielectric tensor depend only on the electronic
temperature and not on the lattice thermal expansion. Also
for εe(ωs), as well as for Zκ (ωs), the in-plane components
are always larger than the out-of-plane ones, both for the real
and the imaginary parts. This is a consequence of the mirror
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reflection symmetry with respect to the carbon planes, which
is exact in monolayers like graphene, and only approximate
in graphite, which forbids low-energy electronic excitations
for perturbations perpendicular to the layered structure in the
linear-response regime.

We finally mention that we also computed the
nonadiabatic/adiabatic phonon frequencies for graphite (see
the next section), finding ω

NA(A)
E2g

= 1560.8 (1560.5) cm−1

and ω
NA(A)
E1u

= 1567.8 (1569.4) cm−1 at T = 300 K; this gives
a nonadiabatic (adiabatic) splitting of 7 (9) cm−1, which
compares well with the experimental splitting of 7 cm−1 at
the same temperature [41].

B. Graphene bilayer and trilayers

As additional benchmarks, in this part we discuss the appli-
cation of our theory to two related systems: graphene bilayer
and the two types of graphene trilayer, with Bernal (ABA)
and rhombohedral (ABC) stacking. Since, to the best of our
knowledge, direct reflectivity experimental data are currently
not available for these materials, we focus here on the ef-
fective charge tensor. Moreover, together with the oscillator
strengths ds, we have also calculated both the adiabatic (ωA)
and nonadiabatic (ωNA) optical phonon frequencies at q = �.
To perform these last calculations, we modified the ph.x code
of QUANTUM ESPRESSO in order to compute ωNA at the � point
of the BZ. The specific form of the finite-frequency general-
ized dynamical matrix at q = � is analogous to Eq. (7), with
the electric-field matrix elements replaced by the electron-
phonon ones, and it is obtained using the same variational
formulation and the same approximation of the charge density
(i.e., the neglect of the imaginary part of the induced charge
density) as for the effective charge and the dielectric tensors.
This represents the same formulation as in Ref. [23], but at
variance with that, we retained the frequency dependence in
the first-order charge density, and we calculate explicitly the
double counting term [see the second term of Eq. (B1) in
Appendix B].

At variance with graphite, a splitting of in-plane and out-
of-plane optical modes occurs in trilayer graphene. For the
ABA stacking, such splitting involves the IR-active modes E1u

and A2u: E1u → E ′
(1), E ′

(2), and A2u → A′′
(1), A′′

(2) for the out-of-
plane mode. The E ′

(1), E ′
(2) modes of ABA trilayer graphene

are also Raman-active. For the ABC stacking instead, the
splitting affects only the Raman-active modes E2g and B1g:
E2g → E (1)

g , E (2)
g for the in-plane mode, and B1g → A(1)

1g , A(2)
1g

for the out-of-plane mode. For the bilayer, the splittings are
analogous to those of graphite.

In Tables III and IV we show the results of our calculations.
The temperature was set to 300 K for all the simulations, and
we used the same lattice parameter and interlayer spacings
of graphite at the same temperature. The adaptive k-point
grid with parameters (L, l,N ) = (10, 4, 25) and 1 Nkz was
used (see Appendix C), and all other computational details
(pseudopotential, cutoff, etc.) are the same as for graphite.

For bilayer graphene, we compare our results with the
experimental and theoretical data of Ref. [30]. Although our
results are not precise as for graphite, they still represent a
considerable improvement compared to the theoretical model

TABLE III. Bilayer. The oscillator strengths are d̃s = √
mC/4 ds.

Eg
a Eu

b Ag
a Au

b Expt. [21] Theor. [21]

Re d̃‖ 0.211 0.337 ± 0.113 0
Im d̃‖ 0.104
q‖ −2.029 −0.788 ± 0.298
Re d̃⊥ 0.013
Im d̃⊥ −0.001
ωA (cm−1) 1561 1567 892 894
ωNA (cm−1) 1560 1565 892 894

aRaman-active.
bIR-active.

employed in the same work. We point out that the quantita-
tive discrepancy with the experimental results may also arise
from the technical difficulties inherent in reflectivity measure-
ments in bottom-gated bilayer graphene. Moreover, with our
method we are also able to calculate the out-of-plane oscillator
strength, a quantity that to our knowledge has never been com-
puted for multilayered graphene. We have also evaluated the
static limit of the effective charge tensor for the bilayer, yield-
ing a value limω→0 d̃‖(ω) = 0.349. This is in good agreement
with a theoretical value of 0.394 [17], obtained as the averaged
limit of the zero electric field perpendicular to the graphene
planes. Our calculated in-plane nonadiabatic phonon frequen-
cies are very close to the adiabatic ones, in close analogy with
the negligible nonadiabatic effect found in pristine graphite
[42]. For the out-of-plane phonon frequencies, the inclusion
of the ω-dependence induces a variation smaller than cm−1,
which is in fact practically negligible.

The calculated oscillator strengths and
adiabatic/nonadiabatic frequencies for the two trilayers
are reported in Table IV. In Fig. 3 we compare our results
with experimental measurements from Ref. [43], showing
the real part of the ionic conductivity σ ion(ω) associated with
the in-plane IR modes in units of πe2/(2h), linked to the

TABLE IV. Trilayer Bernal ABA (top) and rhombohedral ABC
(bottom). The oscillator strengths are d̃s = √

mC/6 ds.

Bernal (ABA)
E ′

(1)
a,b E ′

(2)
a ,b E ′′a A′′

(1)
b A′a A′′

(2)
b

Re d̃‖ 0.023 0.242
Im d̃‖ 0.162 0.118
Re d̃⊥ 0.013 0.015
Im d̃⊥ −0.002 −0.003
ωA (cm−1) 1563 1564 1570 888 893 893
ωNA (cm−1) 1563 1566 1569 888 893 893

Rhombohedral (ABC)
E (1)

g
a Eu

b E (2)
g

a A(1)
g

a Au
b A(2)

g
a

Re d̃‖ 0.207
Im d̃‖ 0.055
Re d̃⊥ 0.011
Im d̃⊥ −0.002
ωA (cm−1) 1563 1567 1571 888 893 893
ωNA (cm−1) 1561 1563 1570 888 893 893

aRaman-active.
bIR-active.
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FIG. 3. Comparison between simulated (continuous lines) and
experimental (dots) real part of the conductivity, from Ref. [43]. In
(a) we show, together with the total σ ion

1 (black), also the two con-
tributions arising from the E ′

(1) (dark red) and E ′
(2) (orange) modes.

ionic conductivity by the relation σ ion(ω) = −iωχion(ω).
As χion(ω), also σ ion(ω) is composed of a sum over
IR optical modes, as shown in Ref. [17]. In Fig. 3, we
upshifted all the peaks of ≈20 cm−1—that is, 1% of
the NA phonon frequencies computed for the trilayers in
Table IV—keeping the calculated ab initio splittings of the IR
E ′

(1), E ′
(2) modes shown in Fig. 3(a). Notably, such IR modes

have an almost opposite shape; when they are summed up,
σ ion

‖ (ω � 0.2 eV) ≈ σ ion
‖,E ′

(1)
+ σ ion

‖,E ′
(2)

, the interference effect

among them decreases the overall IR intensity, which agrees
better with the experimental data. Furthermore, we find that
nonadiabatic renormalization effects, albeit small, may affect
the splitting of the in-plane modes of trilayer graphene in a de-
tectable way (e.g., by high-resolution Raman spectroscopy).

We observe that the comparison of both bilayer and trilayer
graphene with the experiments of Refs. [21,43] is done for the
zero-doping case. In the same articles, the authors studied also
the case of finite doping �, finding a substantial enhancement
of the same IR peaks by increasing/decreasing the total num-
ber of electrons. We also mention an experimental study of the

same IR resonance as a function of the number of graphene
layers [44], which, however, has been carried out with small
unintentional doping levels. Although an analysis of the same
peaks as a function of � would be interesting, it is beyond
the scope of this article, but it may be investigated in further
studies.

IV. CONCLUSIONS

In conclusion, we introduced an ab initio scheme to de-
scribe the IR vibrational spectra of metallic crystalline solids
in reflectivity measurements. We benchmarked our method by
calculating the phonon signatures in the reflectivity spectra
of graphite, finding good agreement between our results and
available experimental data. We believe that our work will
allow for a reliable first-principles description of reflectance
spectra in metallic systems, in particular for those systems
under extremely high-pressure conditions, as the new super-
conducting hydrides, where the IR vibrational spectroscopy
represents one of the few possible tools of investigation.
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APPENDIX A: EXPANSION OF REFLECTIVITY

The expansion of the reflectivity for 4π |χ I
s,α| � |εe

s,α| is
obtained by approximating

√
εs,α =

√
εe

s,α + 4πχ I
s,α ∼ √

εe
s,α + 1

2

4πχ I
s,α√

εe
s,α

, (A1)

Rs,α =
∣∣∣∣
√

εs,α − 1
√

εs,α + 1

∣∣∣∣
2

∼
∣∣∣∣
√

εe
s,α − 1√

εe
s,α + 1

∣∣∣∣
2∣∣∣∣∣1 + 4πχ I

s,α√
εe

s,α

(
εe

s,α − 1
)
∣∣∣∣∣
2

. (A2)

The expression given in Eq. (3) of the main text is recov-

ered by setting Re
s,α = ∣∣√εe

s,α−1√
εe

s,α+1

∣∣2
and neglecting again the

quadratic term in the ratio
4π |χ I

s,α |
|εe

s,α | . For ω close to ωs, this gives
the expression of Eq. (3),

Rs,α (ω) = Re
s,α

[
1 + 2 Re

(
4πχ I

s,α (ω)√
εe

s,α

(
εe

s,α − 1
))]

. (A3)

APPENDIX B: IMPLEMENTATION

In this Appendix, we describe the technical details regard-
ing the practical implementation of the effective charge tensor
and electronic susceptibility within QUANTUM ESPRESSO

[35,36].
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Neglecting the imaginary part of the induced charge den-
sity, the expression of the approximate frequency-dependent
effective charge tensor can be written as [23]

eZe
κ (ωs) = − 1

Nk

∑
k,nm

∑
ζ=±

fk,n − fk,m

Ek,n − Ek,m + ζ zs

× 〈uk,m|VE
Re(ωs)|uk,n〉〈uk,n|Vuκ

Re(ωs)|uk,m〉

+ 1

�

∫
d3r d3r′ Re nE(r, ωs) KHxc(r, r′)

× Re nuκ (r′, ωs), (B1)

where Vξ
Re(ω) = V ξ

KS[Re nξ (ω)], in which V ξ

KS(ω) is the Kohn-
Sham potential, i.e., the sum of the external and the Hxc
potentials, perturbed with respect to a perturbation depend-
ing parametrically on ξ. Note that Vξ

Re(ω) = Vξ
Re(−ω) is a

Hermitian operator, contrary to V ξ

KS, which instead satisfies

V ξ

KS(ω)† = V ξ

KS(−ω).
We rewrite the expression of the approximate effective

charge tensor in the following way:

eZe
κ (ωs) = − 1

Nk

∑
k,n

∑
ζ=±

〈uk,n|VE
Re(ωs)Q|uuκ

k,n,ζ
(ωs)〉

+ 1

�s

∫
d3r VE

Re(r, ωs) Re nuκ (r, ωs), (B2)

where the sum over the band index n can be restricted to the
states with non-negligible occupations. The first-order expres-
sion of the wave function is

Q
∣∣uuκ

k,n,ζ (ωs)
〉 =

∑
m

fk,n − fk,m

Ek,n − Ek,m + ζ zs

× 〈uk,m|Vuκ

Re(ωs)|uk,n〉 |uk,m〉 (B3)

and the sum over m can be restricted to states with negligible
occupations, within which Q is the projector. We can divide
this last space into two subspaces: a subspace whose energy
bands are resonant with the frequency (i.e., for which there
are two or more energies satisfying Ek,m − Ek,n = ωs) and a
subspace whose energies are nonresonant with the electronic
transitions (i.e., Ek,m − Ek,n �= ωs for every m and n). In the
former, a nonzero value of η is necessary in order to avoid a
divergent integrand, whereas in the latter it can be set η = 0
since in this case, Ek,n − Ek,m ± ωs � ±η for every n, m,
and k. The components of |uuκ

k,n,ζ
(ωs)〉, which are resonant

with ωs, can be treated by performing explicitly the sum in
Eq. (B3), while all of the other components (relative to the
infinite-dimensional manifold of nonresonant states) can be
computed by means of the Sternheimer equation [45] with the
same strategy of Refs. [15,46]. In this way, the first-order wave
function can be obtained by

R
∣∣uuκ

k,n,ζ
(ωs)

〉 =
∑

m

fk,n − fk,m

Ek,n − Ek,m + ζ zs

× 〈uk,m|Vuκ

Re|uk,n〉 |uk,m〉, (B4)

(e−ik·rH0eik·r − Ek,n − ζωs)S
∣∣uuκ

k,n,ζ
(ωs)

〉
= − f (Ek,n)S Vuκ

Re|uk,n〉, (B5)

in which Q = R + S; R is the projector onto resonant states
and S is the projector onto the nonresonant subspace. Note
that, with this scheme, Im Ze

κ embodies only contributions
coming from resonant states.

The treatment for εe(ωs) is similar to that for Ze
κ (ωs), with

the only difference being that, contrary to the effective charge
tensor, it contains also a term corresponding to electronic
intraband transitions, which at ω → 0 manifests in the Drude
peak. Therefore, we separate εe(ωs) = εe

inter(ωs) + εe
intra(ωs);

εe
inter(ωs) is calculated with the same methodology of Ze

κ (ωs),
and

εe
intra(ωs) = 8π (eh̄)2

Nk�

∑
k,nm

df (x)

dx

∣∣∣∣
x=Ek,n

× 〈uk,n|vk|uk,m〉 〈uk,m|vk|uk,n〉
ω2

s − η2
s + i2ωsηs

(B6)

is computed explicitly, summing over the occupied and the
resonant bands.

APPENDIX C: BRILLOUIN ZONE SAMPLING

Graphite is characterized by a density of states that
decreases dramatically at the Fermi level. Because of its par-
ticular geometry of the band structure, it turns out that for
a frequency-dependent response function, like the effective
charges or the electric susceptibility, most of the contributions
to the k-point sum come from a small cylinder along the
K-H line, in which the denominator of Eq. (B1) reaches its
minimum value. Because of the very steep variation of the
integrand around this region, an ultradense k-point grid is
necessary to have a well-converged result; for this purpose, we
employed a nonuniform k-points mesh in the (kx, ky) plane of
the Brillouin zone (BZ). Since the (kx, ky) projection of the
time-reversal-symmetrized BZ (TRS-BZ) of the hexagonal
lattice is an equilateral triangle centered at K, we generate the
grid in the following way: starting from one point at the center
of the triangle, we defined various levels of k-point densities;
at the first level, from the point at the center of the BZ, we
generated three points, each of them at the midpoint of the
segment between the central point and one of the edges of the
triangle. In this way, all four points can be considered to be
each of them at the center of a smaller triangle, whose area
is 1/4 of the area of the (kx, ky) TRS-BZ. The iteration of
this procedure from all four points produces 42 points whose
weight wk is 1/42; this defines the second level. At the �th
level, the number of k-points is 4�, and wk = 1/4�. To find
the way in which the point should concentrate around the K-H
line, i.e., � = �k, we required that, for a sum

∑
k wk Ik,

4−�k Ik = C, (C1)

where C is a constant. Assuming that, far from K, Ik ∼
|k − K|−p, the density of k-points (which is fixed by �) at the
distance KK = |k − K| must be

KK(�) = C′ 4−�/p. (C2)

Defining L as the max value of �, we fixed the constant C′
imposing KK(L) = D/N , where N is an integer and D =
4π/(3a) is the distance from K to an edge of a triangle; we
choose p = 3, according to the expression of Re Zκ (ω) of the
model in Ref. [17]; this choice is motivated by the fact that
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the linear-response calculation is carried out with Re nξ . As a
result,

KK(�; L, l,N ) =
( D

N
)

4(L−�)/3, (C3)

where � ∈ {L, L − 1, . . . , l + 1, l}. The distance KK depends
parametrically on L, l , and N , which must be seen as parame-
ters over which convergence tests must be made. We reported
in Fig. 4 an example of the nonuniform grid.

For the calculations we used (L, l,N ) = (9, 4, 25) and 90
Nkz for Ze

κ (ωs), and (L, l,N ) = (10, 4, 25) and 110 Nkz for
εe(ωs); these are equivalent, within the circle of radius D/N ,
to a 724 × 724 × 90 and a 1448 × 1448 × 110 k-point grid,
respectively.

3

4

2

1

E1u

1

2

3

4

A2u

FIG. 5. IR-active modes of graphite.

TABLE V. Dependence on η of Zκ (ωs) and εe(ωs ) for s = E1u

(up) and s = A2u (down).

η (10−3 Ry) Re Z1,‖ Re Z2,‖ Im Z1,‖ Im Z2,‖ Re εe
‖ Im εe

‖

1 −0.268 0.269 −0.112 0.082 7.92 59.2
2 −0.270 0.273 −0.105 0.075 11.5 59.3
4 −0.267 0.276 −0.095 0.064 18.5 58.2
6 −0.263 0.276 −0.087 0.054 25.1 55.3
8 −0.258 0.276 −0.080 0.046 30.4 51.1

η (10−3 Ry) Re Z1,⊥ Re Z2,⊥ Im Z1,⊥ Im Z2,⊥ Re εe
⊥ Im εe

⊥

0.5 −0.072 0.068 −0.00018 0.00002 3.44 0.710
1 −0.072 0.068 −0.00022 0.00001 3.44 0.791
2 −0.072 0.068 −0.00031 0.00000 3.51 0.906
3 −0.072 0.068 −0.00039 −0.00001 3.62 0.970
4 −0.072 0.068 −0.00047 −0.00002 3.73 0.980

APPENDIX D: η DEPENDENCE

We considered the dependence of both Zκ (ωs) and εe(ωs)
as a function of the parameter η. This parameter represents the
inverse electronic lifetime, and it can be reasonably supposed
to increase with temperature, because of the increase with T of
both the electron-phonon and the electron-electron scattering
processes.

We show in Fig. 5 the two IR-active modes of graphite. By
symmetry, the effective charges of the two C atoms labeled by
2 and 3 are exactly equal, as well as the charges of the two
1 and 4 C atoms. The oscillator strength ds(ωs) is obtained
by taking the semidifference of Zκ (ωs) and renormalizing by
the square root of the number of atoms in the cell. In Table V
we report the results of the calculations. The effective charge
and the electronic dielectric tensors are both computed at
T = 300 K, with a = 2.46 Å and c = 6.70 Å. All the other
parameters (e.g., cutoff, k-point mesh, and so on) are the same
as the previous calculations. It is found that Im Zκ,‖ decreases
with the increase of η; this fact suggests agreement with the
experimental observation of the decrease of this quantity with
the increase of T .

For the sake of completeness, we also report the numerical
values for the effective charges at T = 150 K evaluated with
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lattice constant c = 6.68 Å to account for the thermal com-
pression, while keeping the in-plane lattice constant fixed at
a = 2.46 Å [39]:

Z1,‖(η = 10−3 Ry) = −(0.267 + i0.110),

Z2,‖(η = 10−3 Ry) = (0.270 + i0.079),

Z1,⊥(η = 5 × 10−4 Ry) = −(0.073 + i0.00021),

Z2,⊥(η = 5 × 10−4 Ry) = (0.071 + i0.00002).

Overall, all considered quantities do not show significant de-
pendences on thermal expansion, whereas they depend more
markedly on the damping parameter η.

APPENDIX E: DIELECTRIC TENSOR WITHIN IR RANGE

In this Appendix, we show the results of our calculation of
the frequency-dependent dielectric tensor in a wider range of
IR spectrum. Using ηE1u = 110 cm−1 and the same input files
as for the previous computations, we calculated the electronic
dielectric tensor from 1100 to 1900 cm−1. We then evaluated
Re

E1u,‖ using the computed εe
‖(ωE1u ).

We show in Fig. 6 the results of our calculations, compared
to the experimental measurements of reflectivity of Ref. [30].
The calculated and the experimental Re

E1u,‖, besides having the
same ω-dependence, also display a very similar dependence
on temperature, which becomes less important at larger fre-
quencies.
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