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Prediction and observation of intermodulation sidebands from anharmonic phonons in NaBr
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A quantum Langevin model, like models from optomechanics, was developed for phonons. It predicts
intermodulation phonon sidebands (IPSs) in anharmonic crystals. Ab initio calculations of anharmonic phonons
in rock-salt NaBr showed these spectral features as many-body effects. Modern inelastic neutron scattering
measurements on a crystal of NaBr at 300 K revealed diffuse intensity at high phonon energy from a predicted
upper IPS. The transverse optical (TO) part of the new features originates from phonon intermodulation
between the transverse acoustic (TA) and TO phonons. The longitudinal optical spectral features originate from
three-phonon coupling between the TA modes and the TO lattice modes. The partner lower IPS proves to be an
intrinsic localized mode. Interactions with the thermal bath broaden and redistribute the spectral weight of the
IPS pair. These sidebands are a probe of the anharmonicity and quantum noise of phonons in NaBr and suggest

novel interactions between photons and phonons.
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I. INTRODUCTION

Phonons, quantized excitations of vibrational modes in
crystals, bear resemblance to photons, quantized excitations
of electromagnetic fields. Both obey the Planck statistics of
bosons, and their quintessential models have similar Hamil-
tonians Ho = fiw(a’a + %), where 7w is the energy of an
individual phonon or photon, and a‘a gives the number of
them. Phonons and photons exist in different media, so their
properties are explained differently. For phonons, harmonic
equations of motion are formulated as eigenvalue problems
that give dispersions of frequency vs wave vector w(lz) [1,2].
The degrees of freedom in three dimensions allow 3R disper-
sions, where R is the number of atoms in the translationally
periodic unit cell. The harmonic model is readily extended
to a quasiharmonic model to account for how frequencies
shift with volume. Anharmonic models based on many-body
perturbation theory [3-5] can account for how phonon fre-
quencies shift with temperature alone and how finite phonon
lifetimes originate with interactions between phonons. Per-
turbation theory couples the phonon modes, but the 3R
dispersions are retained. To date, these 3R dispersions have
been consistent with experimental observations. Exceptions
are predictions [6,7] and experimental reports of intrinsic
localized modes (ILMs) [8-12]. There are different view-
points about the experimental evidence for ILMs, however
[13-15].

In the field of laser-cavity physics, a quantized mechanical
motion is coupled to photons in a cavity. When tuning the laser
across the resonant frequency of the cavity, cooling or heating
of the mechanical system generates sidebands about the main
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resonance [16-23]. Photon-phonon couplings in laser-cavity
experiments have similarities to anharmonic phonon-phonon
couplings in crystals. The formal similarities motivate the
question, “Do thermally driven asymmetric sidebands exist in
the phonon spectra of anharmonic crystals?” To date, there has
been no experimental evidence for this.

Advances in the sensitivity of methods for inelastic neutron
scattering (INS) on single crystals motivated an examination
of this question. After these experimental methods are de-
scribed, this paper presents a quantum Langevin model for
equilibrium phonon populations. INS data are presented on
an anharmonic material, rock-salt NaBr, revealing a diffuse
spectral band at 300 K. The diffuse band is predicted qualita-
tively by ab initio calculations and perturbation theory with
cubic perturbations to second order. This ab initio method
with perturbation theory is used for identifying the specific
phonon energies and branches involved in creating the diffuse
band. The quantum Langevin model is not limited to small
anharmonicity, however. It successfully explains the inten-
sity and asymmetry of the intermodulation phonon sidebands
(IPSs) through the anharmonic coupling of two phonons and
their interactions with a thermal bath of other phonons in the
crystal.

II. EXPERIMENTAL MEASUREMENTS AND AB INITIO
CALCULATIONS

A. INS experiments

The measurements used a high-purity single crystal of
NaBr. Crystal quality was checked by x-ray and neutron
diffraction. The single crystal of [001] orientation was sus-
pended in an aluminum holder, which was mounted in a
closed-cycle helium refrigerator for the 10 K measurement

©2021 American Physical Society
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and in a low-background electrical resistance vacuum furnace
for measurements at 300 K.

The INS data were acquired with the time-of-flight Wide
Angular-Range Chopper Spectrometer (ARCS) [24] at the
Spallation Neutron Source at Oak Ridge National Labora-
tory, using neutrons with an incident energy E; of 50 meV.
The techniques and material were similar to those reported
previously [25], but the previous study had a problematic
background at the precise energy transfers of interest here
[26]. We therefore acquired an entirely new dataset with E; =
50 meV.

For each measurement, time-of-flight neutron data were
collected from 201 rotations of the crystal in increments of
0.5° about the vertical axis. Data reduction gave the four-
dimensional (4D) scattering function S(Q, ¢), where Q is the
three-dimensional (3D) wave vector of momentum transfer,
and ¢ is the phonon energy (from the neutron energy loss).
Measurements were performed to evaluate the background
from an empty can. To correct for nonlinearities of the ARCS
instrument, offsets of the g grid were corrected to the first or-
der by fitting a set of 76 in situ Bragg diffractions, which were
transformed to their theoretical positions in the reciprocal
space of the NaBr structure. The linear transformation matrix
had only a small deviation (<0.02) from the identity matrix,
showing that the original data had good quality and that linear
corrections for g offsets were adequate. After subtracting the
empty-can background and removing multiphonon scattering
with the incoherent approximation, the higher Brillouin zones
were folded back [25,27] into an irreducible wedge in the
first Brillouin zone to obtain the spectral intensities. Further
information about the ARCS background is given in the Sup-
plemental Material [28].

The temperature dependence of the low-energy dynamics
of NaBr was measured with higher resolution with the HB3
triple axis spectrometer at the High Flux Isotope Reactor
(HFIR) of Oak Ridge National Laboratory. Pyrolytic graphite
PG(002) was used for both the monochromator and the an-
alyzer. The spectrometer was operated with a filtered, fixed
final neutron energy of 14.7 meV with horizontal collimation
48:40:40:120. The NaBr crystal was mounted in a vacuum
furnace with the (HHL) reflections in the scattering plane.
Measurements were made in transverse geometry near (113)
along O =[H, H,3]at temperatures from 300 to 723 K.

B. Ab initio calculations

All density functional theory (DFT) calculations were
performed with the Vienna Ab initio Simulation Package
(VASP) package using a plane-wave basis set [29-32] with
projector augmented wave (PAW) pseudopotentials [33] and
the Perdew—Burke-Ernzerhof (PBE) exchange correlation
functional [34]. The Born effective charges and dielectric
constants were obtained by DFT calculations in VASP [35].
A correction for the nonanalytical term of the long-ranged
electrostatics was performed in both quasiharmonic and
anharmonic calculations [36]. All calculations used a kinetic-
energy cutoff of 550 eV, a 5x5x5 supercell of 250 atoms,
and a 3x3x3 k-point grid. The phonon self-energy was cal-
culated with a 35x35x35 ¢ grid. Calculations of phonons
in the quasiharmonic approximation (QHA) used PHONOPY

[37]. The QHA method allows the frequencies and entropy of
phonons to vary with volume and thermal occupancy factor.
It does not include thermal displacements of individual atoms
off periodic sites, as arise in molecular dynamics, for example,
and the QHA was not accurate for predicting the thermal
expansion of NaBr [25].

The stochastically initialized temperature dependent effec-
tive potential (STDEP) [38—40] method was used to accelerate
the traditional ab initio molecular dynamics (AIMD) and cal-
culate anharmonic phonon dispersions at finite temperatures.
The method for NaBr was described previously [25]. In short,
the phonon frequencies were obtained from the dynamical
matrix for the quadratic force constants and then corrected
by the real (A) and imaginary (i) parts of the phonon self-
energy from many-body theory [4,5]. The imaginary part,
which gives phonon lifetime broadening, was calculated with
the third-order force constants

Q) = % > 1@ P + i + 1)

A{/A’//
X 8(Q2 — wy — wyr) + (nyy — nyr)

X [8(R —wp + o) = 8(Q2 + oy — )]}, (D

where 2 = E/h is the probing energy. The real part was
obtained by a Kramers—Kronig transformation

AQ) = 79/1 F(‘”) . )

Equation (1) is a sum over all possible three-phonon in-
teractions, where ®;;;» is the three-phonon matrix element
obtained from the cubic force constants by Fourier trans-
formation, n is the Bose—Einstein thermal occupation factor
giving the number of phonons in each mode, and the é func-
tions conserve energy and momentum. Details were given in
the supplemental materials in our previous work [25].

III. QUANTUM LANGEVIN MODEL

We start with the Hamiltonian of three coupled phonons
denoted as j, j/, and j”:

Hys = Ho+ hn(a} +a,)@), +a;)@), +a;),  (3)

where Ho =) ,_ N ha)k(&zak + %) is the Hamiltonian for
three uncoupled, independent oscillators, and 1 parameter-
izes the coupling strength. However, there is also a special
case where only two types of phonons are involved in this
interaction process. Taking j' = j” as an example, the system
Hamiltonian is then

Moy = Ho+ hg(&T 1 a2 +b), (4)
where now a denotes the composite phonon mode with j' =
j", b denotes the j mode, and the % is added for later con-
venience. Confining our interest to terms under the rotating
wave approximation (RWA) in quantum optics, we eliminate
the terms aab’ and a’a’b (and aab and afafb® that do not
conserve energy):

Hys = Ho+ 1z 1 @ta +aa" (5" + b). ®)

134302-2



PREDICTION AND OBSERVATION OF INTERMODULATION ...

PHYSICAL REVIEW B 103, 134302 (2021)

(a) JEEn—
(TO phonons) 4
Y161 Vz»%
// 4
thermal bath (other phonons)
(b)
[gl=0 9] <v1
o)
=
35
gl
&
3
"
[9l=v1 91> v1
0 10 20 30 0 10 20 30

Phonon energy (meV)

FIG. 1. Phonon self-transduction block diagram and its features.
(a) The transverse optical (TO) phonons and the transverse acoustic
(TA) phonons within 7-9 meV are coupled by phonon-phonon inter-
actions. Meanwhile, they are in thermal equilibrium with the bath,
which is an ensemble of other phonons. (b) Power spectral density
for coupling strength |g| from none, weak, intermediate, strong.

The general method of input-output theory [16,41] gives
the Heisenberg—Langevin equations of motion for the two
modes:

b = —iwa— ina(h" + by — ga — Jrib, (6
b= —iwsh— ig(eﬁa +aat) — %13 N )

Here, y; and y, are decay rates of the two modes, giv-
ing phonon linewidths in energy. The other phonons are
modeled as a thermal bath, described by stochastic opera-
tors £;(f) and &,(¢). These satisfy the correlation conditions:
(ET(E)) =nd(t —1') and (EMET()) = (n+ D)5 —1'),
where 7 is the equilibrium Planck thermal occupation factor
n = [exp(hw/kgT) — 1]~! (or the Bose—FEinstein factor for
zero chemical potential). These correlation conditions apply
to both modes 1 and 2, a situation that differs from optome-
chanical systems where correlations of the stochastic variable
& for input noise of the optical photon do not scale with equi-
librium thermal occupancies. Figure 1(a) depicts relationships
between the transverse acoustic (TA) and transverse optical
(TO) phonons and the thermal bath of other phonons, show-
ing correspondences to the physical quantities of input-output
theory.

Using the concept of intermodulation, a classical analysis
by representing the phonon amplitudes of a as Fourier de-
composition of sidebands [19] shows that a comprises the
frequency components w; (first order), w; & w, (second-order

distortion), w; £ 2w, (third-order distortion), etc. Second-
order effects are identified by transforming to a frame
moving at the central frequency w; by replacing a(z) — [« +
éM)le " and & (1) — [&n + &1(1)]e ", where we take o
to be real without loss of generality. This gives linearized
equations of motion

b= —igh" +b)— %c — J7ié1, (8)
b= —iwnb —ige" + &) — %IS — 7k ©)

where g = no is the coupling strength. A straightforward
calculation (see Supplemental Material [28]) obtained the
symmetrized power spectral density of displacement as

— _ h]/] (}’ll —+ %)

Sxx[a)] - (|Xa,7 + 2ia)2g2Xa2,7Xb,—)_(b,f |2

2mwq
+ | Xar — 2@ X2 xos Tot|’) (10)
where the response functions are defined as
Yak = —i@E o)+ 3. (1n
Xk = —i@E o —w)+ 2 (12)
Bl =—iwto +o)+ 2 (13)

2
The first term in parentheses in Eq. (10)
5% (nl + %)

. _ 2
|Xa— + 2 X2 _xo—Xb-|
2mw;

(14)

S lw] =

contributes spectral weight primarily to the positive frequency
region. The other term §() contributes to the negative.

In the absence of phonon coupling, i.e., g =0, Eq. (14)
reduces to the thermal noise spectrum of a damped harmonic
oscillator

. hiy, (I’l] + %) 1
B (@—w)*+ /2?2

Figure 1(b) shows this is a Lorentzian function centered at
). Three other cases are shown: weak coupling (|g| < y)),
medium coupling (|g| = y1), and strong coupling (|g| > y1).
To identify an IPS in a real material, the phonon-phonon
interactions must be at least in the medium coupling regime.
Recently, we identified NaBr with the rock-salt structure
as a highly anharmonic solid system [25], so it seemed
an appropriate candidate for finding phonon intermodulation
phenomena.

S ")

5)

2mw

IV. RESULTS

A spectral feature labeled “G” (ghost) in Fig. 2(b) appears
at 300 K. It is flat over the Brillouin zone with an energy of
25-26 meV. This feature does not belong to any of the six
phonon branches expected for the rock-salt structure (as in the
white dotted lines in Figs. 2(c) and 2(d) from the QHA.

Figures 2(a) and 2(c) show that, at 10 K, the quasiharmonic
and anharmonic calculations agree well with each other and
with the experimental phonon dispersions. At 300 K, the
quasiharmonic model predicts neither the phonon broadening
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FIG. 2. Comparison between experimental and computational phonon dispersions of NaBr. (a) and (b) Two-dimensional (2D) slices
through the four-dimensional scattering function S(Q, ¢), where ¢ = hw, along high symmetry lines in the first Brillouin zone. (a) and (b) are
linear plots, with intensities corrected for thermal populations. (c) and (d) Phonons in NaBr calculated with the quasiharmonic approximation
(thin white lines) and the full phonon spectral function with phonon self-energy corrections. Temperatures are labeled. The intermodulation
phonon sideband (IPS) “G” is seen in the experimental and computational results around the X point at 300 K. The calculation also shows an
ILM near the I point at 300 K. (c) and (d) are logarithmic plots of spectral weights.

nor most of the thermal energy shift. The anharmonic calcu- experiment. Figure 3 shows that the ghost disappears when the
lations, however, reproduce these features and further predict  calculation neglects the three-phonon anharmonic interactions
the ghost intensity around 25 meV, in good agreement with of TA + TO = TO/longitudinal optical (LO). Moreover, the

(a) TAL, s Original cal. at X-point L (b)
LO
Ghost phonons |~ 20
\ S
‘ 0
Ei1s
B 8
s igi -poi 10
; TAg| LA Original cal. at K-point S
8 4 Ghost ph 5
> A T0, \ ost phonons
2 Ao N | i
[ A\
£ = AN\ r X K r Lr X K r L
2 —— ) N S T R
a Original cal. at I'-point
Exp. Yes Yes See Fig. 2b &4
. Yes Yes .
Original (2/370, 1/310) (all TO) See Fig. 2b & 3a
Ccal. Exclude TA + TO = TO/LO No No See Fig. 3b
———— : Exclude TA phonons between 7~9 meV Almost No No See Fig. 3c
0 5 10 15 20 25 30
Energy (meV) Summary TA+TO=TO/LO TA+TO=TO 7<hwry <9meV

FIG. 3. Three-phonon processes associated with the intermodulation phonon sideband (IPS) and intrinsic localized mode (ILM). (a) Cal-
culated phonon lineshapes at the high symmetry points of X, K, and I". The first two were used to identify the components of the IPS, and
the calculated ILM is shown in the bottom panel. The phonon spectral function was recalculated (b) without the three-phonon processes of
transverse acoustic (TA) + transverse optical (TO) = TO/longitudinal optical (LO), and (c) without TA phonons between 7-9 meV included
in the three-phonon processes compared with the main result in Fig. 2(d). (d) Table of phonon processes for IPS and the ILM.
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FIG. 4. Triple-axis energy scan, showing the temperature depen-
dence of the spectral intensity distribution for the transverse acoustic
(TA) and lower intermodulation phonon sideband (IPS) phonons at
0=(12,12,3).

participating TA phonons were shown to have energies be-
tween 7 and 9 meV. The diffuse features nearly vanish at 10 K.
(They should not vanish entirely, however, owing to effects of
the zero-point occupancies of the TA and TO modes [27,42].)
Finally, the computations showed that the features comprise
optical modes, with polarizations distributed evenly over all
transverse (two) and longitudinal (one) possibilities.

Similarly, the calculated ILM near the I" point is produced
by TA 4+ TO = TO in the calculation. Although the ILM is
not definitive in Fig. 2(b) at 300 K, it is well resolved at
higher temperatures in the HB3 data of Fig. 4. This figure
shows the temperature dependence of the lower IPS (i.e, the
ILM) as observed in the (113) Brillouin zone at (1.2, 1.2,
3.0), along with the TA phonon. The spectral weight of this
sideband gradually sharpens and intensifies with increasing
temperature, and it shifts slightly to lower energy. The TA
mode has an apparent stiffening with temperature, but this
is an artifact from thermal expansion [43]. The TA mode
also broadens with increasing temperature, as expected from
the stronger coupling strength with increasing temperature,
discussed below. Finally, the longitudinal acoustic (LA) mode
is suppressed in the spectra of Fig. 4 because Q is nearly
perpendicular to the polarization vector € of the LA mode, i.e.,
the direction of atom displacements in the mode. (If the LA
mode was visible, its temperature dependence would follow
approximately the TA mode.)

The three phonon modes in Eq. (1) are eigenstates of a
dynamical matrix. Small anharmonic shifts and broadenings
of these eigenstates do not produce new phonon branches or
spectral features. Our anharmonic calculations obtained the
diffuse features after applying a Kramers—Kronig transfor-
mation of Eq. (2) to the imaginary part of the phonon self
energy of Eq. (1). The semiquantitative success is interesting
because the calculations also predict a weak ILM [12,44]. The

dispersions in Figs. 2(c) and 2(d) are on a logarithmic scale,
however, and the ILM and ghost modes are much weaker in
the calculation with perturbation theory than in the experi-
mental intensities, discussed with Fig. 5.

Compared with Eq. (1), the Heisenberg—Langevin Eqgs. (6)
and (7) have no implicit assumption that the anharmonic
perturbation is small. The intensities of the measured ghost
modes are seen in Fig. 5, which are energy cuts at different
Q along high-symmetry directions through the experimental
data of Fig. 2(b). The points near X or K [see Figs. 5(c)-5(g)]
show an extra peak above 20 meV, which is distinct from the
highest normal LO phonon branch.

Phonon centroids were obtained by fitting with the
Levenberg—Marquardt nonlinear least square method for mul-
tiple Lorentzian functions, giving the fitting parameters listed
in Table S1 in the Supplemental Material [28]. The fitting
results were used to obtain average energies and linewidths
of TO and TA phonons in the energy range of 7-9 meV
(i.e., w1, wy, ¥1, and y») for calculating sidebands with the
Heisenberg—Langevin model. By performing averages over
TA and TO peaks that were not impaired by overlaps with
other peaks, w; = 16.97(10), w, = 8.2(2), y; = 3.6(10), and
y» = 3.7(7) meV, where subscripts 1 and 2 denote TO and
TA, respectively The average frequency of the ghost mode
(wg) was obtained from Figs. 5(c)-5(g) as wg = 25.9(5) meV,
satisfying o) + wr >~ wg.

The coupling strength was calculated by comparing the
power intensity between the Heisenberg—Langevin model and
the measured peak intensities loxp(w) at 300 K. Their ratio
avoids scaling factors

SP[w1] Iexp(@1) n(wy)

§(H) - - 19
S lw) + wr]  lexp(@1 + w2) n(wy + w2) 2/3

The terms in the left-hand side are derived in the Supplemen-
tal Material [28]. Here, n(w) = [exp(hw/kgT) — 117! is the
Planck distribution function [the thermal weight was corrected
for the measured intensity shown in Figs. 2(a) and 2(b)], and
the 2 factor is included because two-thirds of the IPS feature

3
are G-TO phonons.

V. DISCUSSION

At room temperature, our analysis showed that the lower
IPS should not be visible as a distinct peak. Also, the ARCS
spectrometer has lower energy resolution at the energy of
the lower sideband than at the energy of the upper sideband.
The lower sideband is better seen with the HB3 instrument at
higher temperatures (Fig. 4).

The q dependence of phonons in solids is not considered
in Egs. (6) and (7), and the conservation of crystal momentum
is an added complexity that is not needed for other coupled
quantum systems [16-23]. Figure 2 shows that, in NaBr, how-
ever, the TO phonon branch and the upper IPS are largely flat
and dispersionless. The TA phonons involved in the three-
phonon processes are in a small energy range of 7-9 meV,
as shown above with Fig. 3. The phonon dispersions (Fig. 2)
show that most of the TA phonons are in this energy range,
forming plateaus reaching to the Brillouin zone boundary.
Most TA phonons can be described with an average energy
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FIG. 5. Energy cuts at constant q through experimental dispersions of Fig. 2(b). (a)—(j) Experimental data are points; fitted peaks are in
blue, and the cumulative fitting results are in red. (k) Table of the q-points for each panel.

independent of q, hence a coupling strength parameter inde-
pendent of q.

The conservation of crystal momentum q + q' = q” + kG
(k =0, 1) allows the q” of the diffuse modes to sweep over
all the first Brillouin zone when q' (TO modes) covers the
first Brillouin zone, even for a single value of q. Finally,
the anharmonicity in Na-Br has no strong dependence on
crystallographic direction and is dominated by first-neighbor
interactions [25].

Consider first the case where TA + TO = G-LO and
the interacting TA, TO, and LO diffuse phonon modes
can be treated as individual quantum oscillators with a
coupling coefficient n. The total Hamiltonian is the same
as Eq. (3). After dropping terms that do not conserve
energy,

Hoys = Ho+ hn(a,a,a + ajaja ) (17)

This is the same form as for parametric down-conversion in
nonlinear optics. The mode coupling is enhanced resonantly
when vy = wjr — w;.

The second case TA 4+ TO = G-TO has the same trans-
verse polarization for two optical modes. These two TO
modes can be modeled as a single oscillator. Its spectral
weight is redistributed in energy owing to strong coupling
to the TA mode. This is exactly the phonon intermodulation
mechanism described with the quantum Langevin model.

The Supplemental Material [28] gives more details of how
experimentally measured parameters of w; >~ 16.97 meV,
wy >~ 8.2meV, y; >~ 3.6meV, and y, >~ 3.7meV were used
in a numerical analysis that generated the spectral shapes of
Fig. 1(b), with different coupling parameters g. In the weak-
coupling case, our measured INS spectra would show no
features other than the main peak at ® = w,. In the medium-
coupling case, the lower sideband peak at w; — w; is only
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a shoulder on the main peak, but the upper sideband with
w] + w; should be distinct. The strong-coupling case shows
two symmetric sidebands as shoulders on the main peak. The
clear, isolated diffuse intensity “G” in Fig. 2(b) and weaker
ILM are consistent with the TA and TO modes being in the
medium-coupling case. To verify this, we solved numerically
for the ratio between the heights of the two resonant peaks
at w = w; and w = w; + w, [Eq. (16)] to obtain the coupling
strength parameter |g| >~ 3.7 meV, showing that the system is
indeed in the medium-coupling domain. This also explains the
difference in visibility between the ILM and the ghost phonon
mode.

The prior treatment of ILMs [6] considered the dynam-
ics of a classical system with linear and cubic terms in the
restoring forces between neighboring atoms and showed the
conditions for mode localization. Our approach with the quan-
tum Langevin equation is better able to predict the spectral
shape, providing deeper insights into the phonon intermodu-
lation mechanism. Unlike a classical intermodulation, phonon
intermodulation can have an asymmetric quantum effect of
enhancing one sideband at the expense of the other.

Our recent paper on NaBr used perturbation theory to ob-
tain thermal expansion, showing only modest disagreement
with experiment at higher temperatures [25]. Thermodynamic
effects of IPSs deserve more consideration, but the sidebands
do not dominate the phonon spectrum, and the average of
their energies is approximately the same as the average of the
intermodulating phonons. Thermodynamic properties such as
thermal expansion may not require precise assessments of
sidebands.

Other materials with anharmonic phonons should have
IPSs at modest temperatures. Different alkali halides are ob-
vious candidates, as are materials with phonon instabilities,
where nonlinear phonon interactions may generate sidebands
as the instabilities grow. The sidebands in NaBr were from
acoustic plus optic modes, but in principle, two anharmonic
optic modes could also generate sidebands. Anharmonicity
may offer a new functionality for optical materials in the
infrared or a means to modulate visible light in ways that
originate with phonon interactions, rather than an asymmetry
in electronic polarizability. The ghost modes in NaBr decay
rapidly into TA and TO modes through three-phonon pro-
cesses. The two new phonons are in phase and would be
entangled in the Einstein—Podolsky—Rosen sense. Their co-
herence time will be short, however.

VI. CONCLUSIONS

A band of spectral intensity from high-energy phonons is
predicted and observed in NaBr. It is an IPS from anharmonic
interactions between normal modes. Its partner, the lower
sideband, is an ILM. The transfer of spectral weight to upper
and lower IPSs likely occurs in other anharmonic materials,
but the flat dispersions in NaBr make them easier to observe.
The TO part of this feature is consistent with an IPS from the
anharmonic coupling of TO modes and TA modes. The LO
part is consistent with strong three-phonon process, again with
anharmonic coupling to the TA modes. The spectral shapes
and weights of the IPSs are altered by the quantum back action
from the thermal bath. There are similarities to the formation
of sidebands in laser-cavity experiments, which also depend
on anharmonicity and quantum force fluctuations from the
thermal bath. Compared with laser-cavity experiments with
photons, the anharmonic sidebands in NaBr are a natural pro-
cess that occurs in thermodynamic equilibrium, and both the
interacting modes have the noise spectrum from the thermal
bath. The IPS should be present at 0 K owing to couplings to
the zero-point levels, and some traces may be visible in the
dispersions at 10 K. The spectral shapes of the two sidebands
offer a probe of quantum noise, giving parameters for mode
coupling and damping from the thermal bath. Perhaps the
upper IPS could offer methods for the thermal control of
light-matter interactions.
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