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Exact non-Hermitian mobility edges in one-dimensional quasicrystal lattice with exponentially
decaying hopping and its dual lattice
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We analytically determine the non-Hermitian mobility edges of a one-dimensional quasiperiodic lattice
model with exponentially decaying, hopping, and complex potentials as well as its dual model, which is just a
non-Hermitian generalization of the Ganeshan-Pixley–Das Sarma model with nonreciprocal nearest-neighboring
hopping. The presence of the non-Hermitian term destroys the self-duality symmetry and, thus, prevents us
exploring the localization-delocalization point through looking for self-dual points. Nevertheless, by applying
Avila’s global theory, the Lyapunov exponent of the Ganeshan-Pixley–Das Sarma model can be exactly derived,
which enables us to get an analytical expression of mobility edge of the non-Hermitian dual model. Conse-
quently, the mobility edge of the original model is obtained by using the dual transformation, which creates
exact mappings between the spectra and the wave functions of these two models.
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I. INTRODUCTION

Anderson localization caused by disorder is an everlasting
research topic in condensed-matter physics [1]. Although both
random disorder [2–5] and quasiperiodic potential [6–10] can
induce Anderson localization, a localization-delocalization
transition is absent in low-dimensional random disorder sys-
tems. On the other hand, the localization-delocalization tran-
sition can occur even in one-dimensional (1D) quasiperiodic
systems. In comparison with the random disorder systems,
the quasiperiodic systems have their advantages for exploring
some exact results due to the existence of duality relation for
the transformation between real and momentum spaces. A
simple but typical example is the Aubry-André (AA) model
[8], which goes through a localization transition when the
quasiperiodical potential strength exceeds a transition point,
i.e., self-duality point. The study of various extensions of AA
models reveals more diversified transition styles [10–15]. The
quasiperiodic lattice models with short-range (long-range)
hopping processes [16–22] or modified quasiperiodic poten-
tials [23–25] can support energy-dependent mobility edges.

The combination of non-Hermiticity and disorder gives rise
to many new perspectives for the localization phenomena.
Due to throwing off the shackles of the Hermiticity constraint,
non-Hermitian random matrices contain much more abundant
symmetry classes according to Bernard-LeClair classification
[26–29] than the corresponding Hermitian Altland-Zirnbauer
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classification. In the scheme of random matrix theory,
non-Hermitian disorder systems behave differently in the
spectral statistics in comparison with the Hermitian systems
[30–33]. Recently, the interplay of the non-Hermitian ef-
fect and Anderson localization has attracted intensive studies
in both random disorder systems [34–43] and quasiperiodic
systems [44–56]. Although most previous works on non-
Hermitian quasiperiodical systems focused on systems with
only nearest-neighboring hopping, in this paper we study a 1D
non-Hermitian quasicrystal lattice with long-range hopping
and aim to give an analytical result for the mobility edges.
Interplay of the long-range hopping and the quasiperiodic
potential may generate some nontrivial localization properties
[16,17,22]. The Hermitian limit of our model (1) can be re-
duced to the Biddle–Das Sarma model [16], which supports
an analytical expression of mobility edges determined by a
self-duality condition. However, the approach of searching the
self-duality condition is failed for the non-Hermitian Biddle–
Das Sarma model as the non-Hermitian term destroys the
self-duality condition in the whole parameter spaces.

In order to explore the exact non-Hermitian mobility edges,
we will take an alternative method and try to get an ana-
lytical expression of the Lyapunov exponent. The Lyapunov
exponent is an important quantity to characterize the local-
ization properties of disorder systems and was applied to
obtain exact transition points for the non-Hermitian quasiperi-
odic models with nearest-neighbor hopping [54,56] by using
Avila’s global theory [57–60]. The key to this method is to
determine the Lyapunov exponent. However, the analytical
expression of the Lyapunov exponent for the system with
long-range hopping is difficult to obtain, which prevents us
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obtaining the exact mobility edges of model (1) directly. To
make progress, we will study the dual model of the long-
range hopping model, which is obtained by making a dual
transformation to model (1). It is interesting to indicate that
the dual model (4) is just a non-Hermitian generalization
of the Ganeshan-Pixley–Das Sarma model [18] with nonre-
ciprocal (or asymmetrical) nearest-neighboring hopping. The
Ganeshan-Pixley–Das Sarma model also supports an analyti-
cal expression of mobility edges determined by a self-duality
condition [18] and is actually a dual model of the Biddle–Das
Sarma model [61]. The Lyapunov exponent of the Ganeshan-
Pixley–Das Sarma model can be obtained by applying Avila’s
global theory [62], which allows us to obtain an analytical
formula of the mobility edge of the dual model (4). The
mobility edge not only splits the extended and localized states,
but also splits the real and complex eigenvalues. Since the dual
transformation converts model (1) and its dual model (4) each
other and constructs exact mapping between their eigenvalues
and the eigenstates, the mobility edge of the model with
long-range hopping can be obtained by the substitution of
parameters from the analytical expression of mobility edge of
the dual model.

II. MODELS AND RESULTS

We consider a 1D quasiperiodic model with long-range
hopping terms and a complex potential, described by

Eφn =
∑
n′ �=n

te−p|n−n′ |φn′ + V cos(2πωn + ih)φn, (1)

where p > 0 represents the decay rate, V ∈ R is the quasiperi-
odic potential strength, ω is an irrational number, and h
describes a complex phase factor. We set t = 1 as the unit of
energy and choose ω = (

√
5 − 1)/2. We note that the system

described by Eq. (1) possesses parity-time (PT ) symmetry
[63] with the corresponding Hamiltonian,

H =
∑
n′ �=n

te−p|n−n′ ||n′〉〈n| +
∑

n

V cos(2πωn + ih)|n〉〈n|,

(2)
keeping unchanged under parity operation n → −n and time-
reversal operation by taking complex conjugation. When h =
0, i.e., the Hermitian case, the model has been studied in
Refs. [16,17] and an analytical expression of the mobility edge
is obtained by applying a self-dual transformation. For the
non-Hermitian case with h �= 0, no self-duality relation exists,
and no analytical result is known. In a recent work [51], it has
been shown that there exists a mobility edge which can be well
fitted by the expression of E = Ve|h| cosh(p) − 1 when both h
and p 	 1. However, numerical results unveil that the above
conjectured expression fails to describe the mobility edge in
the region with small h and p.

In this paper, we analytically derive the exact mobility edge
for model (1) with arbitrary p and h. The mobility edge segre-
gating the localized and extended states can be represented as
an extremely simple expression,

E = V cosh(p + |h|) − 1 (3)

for the eigenvalues. In general, the eigenvalues of non-
Hermitian systems are complex. The above expression

FIG. 1. (a) The real and imaginary parts of the eigenvalue spectra
versus h for the system under the periodic boundary condition with
V = 0.2, p = 0.2, and N = 610. (b) The real and imaginary parts
of the eigenvalue spectra versus p for the system under the periodic
boundary condition with V = 0.2, h = 0.2, and N = 610. (c) Dis-
tributions of eigenstates corresponding to different eigenvalues for
the system with p = 0.2, V = 0.2, and h = 2.5. The eigenvalues
are, from left to right: E = 0.95, −0.69 + 0.94i, and −0.69 − 0.94i,
respectively.

indicates that the mobility edge is real, and, thus, the mobility
edge also separates the real and complex states.

Before deriving Eq. (3), we first show the consistency
of analytical and numerical results and give numerical
verification of the mobility edge. In order to charac-
terize the localization-delocalization transition of a wave
function, we numerically calculate the inverse partition ra-
tio (IPR) of an eigenstate, which is defined as IPR(i) =
(
∑

n |φi
n|4)/(

∑
n |φi

n|2)2 where the superscript i labels the ith
eigenstate of system and n represents the coordinate of the
lattice site. Although IPR 
 1/L approaches zero for an ex-
tended eigenstate when the lattice size L → ∞, IPR 
 1 for
a fully localized eigenstate.

In Fig. 1(a), we plot the IPR of different eigenstates ver-
sus the complex phase factor h for the system with V = 0.2
and p = 0.2. The eigenstates are characterized by their real
and imaginary parts of the corresponding eigenvalues, re-
spectively. The blue solid line represents the transition points
determined by Eq. (3), which separates the extended and lo-
calized states. It is shown that the analytical relation of the
mobility edge agrees well with numerical results from IPR
and spectrum calculations. With the increase in complex phase
factor h, the effective complex potential strength increases,
and it causes more eigenstates to become localized. Conse-
quently, the system undergoes the extended, intermediate, and
localized regime when h increases. In Fig. 1(b), we plot the
real parts and imaginary parts of eigenvalues as well as the
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FIG. 2. (a) The energy spectrum and (b) the IPR of eigenstates
for model (1) under the periodic boundary condition with h =
2.5, V = 0.2, p = 0.2, and N = 610. The blue dashed lines repre-
sent the exact mobility edges (3). (c) The energy spectrum and (d) the
IPR of eigenstates for the dual model (4) under the periodic bound-
ary condition with h = 2.5, λ = 0.9675, b = 0.9803, and N = 610.
The orange dashed lines represent the exact mobility edges (18).

IPR of the corresponding wave functions versus the decay
rate p by fixing V = 0.2 and h = 0.2. The blue solid line
marks the transition points determined by Eq. (3), which agree
well with numerical results. When p > 2.35, all eigenval-
ues are complex and below the blue curve. For both cases
displayed in Figs. 1(a) and 1(b), eigenstates above the blue
curves have real eigenvalues and keep PT symmetry, whereas
eigenstates below the blue curves have complex-conjugated
eigenvalues and, thus, are PT -symmetry broken. So the mo-
bility edge also separates the PT -symmetry region from the
PT -symmetry-broken region.

To get a straightforward understanding, we display the
distributions of eigenstates corresponding to different eigen-
values for the system with p = 0.2, V = 0.2, and h = 2.5
in Fig. 1(c). The corresponding spectrum of the system is
displayed in Fig. 2(a) with the mobility edges Ec = 0.5 ac-
cording to Eq. (3). It is clear that the eigenstate with real
eigenvalue E = 0.95 above Ec is an extended state, which
preserves the PT symmetry. On the other hand, the eigenstates
with complex eigenvalues E = −0.69 ± 0.94i are localized
states, which break the PT symmetry.

It is quite interesting to indicate that part of the eigenstates
becomes localized in the region of a small p, As p → 0, the
hopping amplitude between long-range sites decays slowly,
and long-range hopping terms will play an important role.
Intuitively, this is counterintuitive because the long-range hop-
ping generally tends to delocalize the localized states. To
understand why this happens, we consider the limit case with
p = 0 and V = 0 in which the model with equal hopping
terms has a (N − 1)-degenerate eigenstates. When a finite

V is introduced, (N − 1)-degenerate eigenstates all become
the localized states. A small p lifts the degeneracy and tends
to turn the localized states into the extended states. On the
other hand, in the large-p limit the hopping amplitude between
long-range sites decays very quickly, and the system with a
large p can be viewed as a short-range hopping model with
the nearest-neighbor hopping amplitude t1 = te−p playing a
dominate role. If we omitted all the long-range terms, the
system can be approximately described by the AA model, and,
thus, all the eigenstates of system become localized as long as
V > 2t1.

Now we return back to discuss how to derive Eq. (3). In-
stead of directly solving the original model of Eq. (1), we will
derive the analytical expression of mobility edge by solving
its dual model, i.e., a nearest-neighbor nonreciprocal hopping
non-Hermitian model described by

E ′u j = e−hu j+1 + ehu j−1 + Vju j, (4)

with

Vj = 2λ
cos(2πω j)

1 − b cos(2πω j)
, (5)

where

b = S(p) = 1

cosh(p)
, (6)

λ = S(p)[1 − e−pS(p)]

V
, (7)

and

E ′ = 2[E + e−pS(p)]

V
. (8)

The model described by Eq. (4) can be obtained from model
of Eq. (1) through the following transformation:

φn =
∑

n

ei2πωn ju j . (9)

Models (4) and (1) are dual models with parameters connected
by Eqs. (6)–(8). The complex phase factor h in model (1)
becomes the imaginary vector potential in model (4). The
corresponding Hamiltonian for model (4) is given by

H =
∑

j

(e−h| j〉〈 j + 1| + eh| j + 1〉〈 j| + Vj | j〉〈 j|). (10)

Model (4) can be viewed as a generalization of the Hatano-
Nelson model [34,35] with the on-site random potential
replaced by the quasiperiodic potential Vj . The impact of the
imaginary vector potential on the Anderson localization has
been studied in terms of the Hatano-Nelson model. In com-
parison with the the Hatano-Nelson model, our generalized
model (4) can give an analytical result for the mobility edges.

Now we analytically derive the mobility edge of model
(4). First we consider the case of h = 0 and calculate the
Lyapunov exponent of the system. The Lyapunov exponent
can be evaluated based on the transfer matrix, which can be
represented as

γ (E ′) = lim
n→∞

1

2πn

∫
ln ‖Tn(E ′, φ)‖dφ, (11)

134208-3



LIU, WANG, ZHENG, AND CHEN PHYSICAL REVIEW B 103, 134208 (2021)

where ‖ Tn‖ denotes the norm of the transfer matrix given by

Tn(E ′, φ) =
n∏

j=1

Mj =
n∏

j=1

(
E ′ − Vj −1

1 0

)
.

From the discussions in Refs. [54,60], we know that if the
energy E ′ lies in the spectrum of the Hamiltonian H , we have

γ (E ′) = max{γc(E ′), 0}, (12)

where γc(E ′) is analytically given by

γc(E ′) = ln

∣∣∣∣∣ |bE ′ + 2λ| +
√

(bE ′ + 2λ)2 − 4b2

2(1 + √
1 − b2)

∣∣∣∣∣. (13)

The details for the derivation of the above analytical ex-
pression can be found in Appendix A. Although γ (E ′) > 0
corresponds to the localized state, the extended state is char-
acterized by γ (E ′) = 0. Therefore, the mobility edge can be
determined by γc(E ′) = 0 and operator theory, which gives
rise to

E ′ = 2 sgn(λ)
(1 − |λ|)

b
. (14)

The details for the analysis of the above result can be found in
Appendix B. The mobility edge of model (4) with h = 0 can
also be obtained by looking for the self-dual points of system,
which was originally given in Ref. [18]. Our method based
on the analytical expression of the Lyapunov exponent results
in the same result. Although Eq. (14) is known, we note that
the analytical expression of the Lyapunov exponent was only
derived recently [62].

For the general case with h �= 0, the system does not have a
self-duality point in the parameter space. A nonzero h induces
the nonreciprocal hopping, which breaks the Hermiticity of
the system and may cause skin effect for the system under
open boundary condition. A similar transformation can trans-
form the non-Hermitian Hamiltonian H (h) under the open
boundary condition into a Hermitian Hamiltonian H ′, via

H ′ = SH (h)S−1, (15)

where

S = diag(e−h, e−2h, . . . , e−Nh)

is a similarity matrix with only diagonal entries and H ′ =
H (h = 0) is the Hermitian Hamiltonian with h = 0. The rela-
tion between the eigenstates of H and H ′ is achieved naturally:
|ψ〉 = S−1|ψ ′〉. Here |ψ〉 = ∑

j u j | j〉 is the eigenstate of H ,
and H |ψ〉 = E ′|ψ〉 gives rise to Eq. (4). The transformation
S−1 can convert the extended states |ψ ′〉 into skin states,
which exponentially gather the wave function all to one of
boundaries [34,35,47,64–68].

A localized state of H ′ may be expressed in a unified
compact form

|ui| ∝ e−|i−i0|/ξ ,

where i0 represents the position of localization center of a
given localized state, ξ = 1/γ is the localization length, and γ

is the Lyapunov exponent of the localized state for the system
of h = 0. Then the corresponding wave function of H (h) takes

the following form:

|ui| ∝ ehi−γ |i−i0|, (16)

which exhibits different decaying behaviors on different sides
of the localization center. When |h| � γ , delocalization oc-
curs on one side [34,35,47], and, thus, the transition point
from the localized state to the skin state is given by

γ = |h|. (17)

Since a localized state apart from boundaries is not affected
by the boundary condition of the system, it then follows that
the boundary of localization-delocalization transition under
the periodic boundary condition is also given by Eq. (17).
Bringing Eq. (12) into Eq. (17), we can get the mobility edges
which can be expressed as

E ′
c = 2 sgn(λ)(cosh |h| + √

1 − b2 sinh |h| − |λ|)
b

. (18)

Equation (18) with h = 0 can be reduced to Eq. (14). Replac-
ing the parameters b, λ, and E ′ with p, V , and E , we can
rewrite Eq. (18) as Eq. (3). Although the mobility edges of
a model can be read out from its dual model, the eigenstates
of a model and its dual model are distinct. If the eigenstates
of a model are localized, the eigenstates of its dual model are
extended, and vice versa.

In Figs. 2(a) and 2(b), we plot the energy spectrum and
the numerical results of the IPR versus eigenenergies E for
model (1) with h = 2.5, V = 0.2, p = 0.2, and N = 610.
The eigenstates of model (1) with eigenenergies Re(E ) < Ec,
where Ec = V cosh(p + |h|) − 1 are localized states, and the
corresponding IPRs of these states take finite values. On the
other hand, the IPRs of states with E > Ec approach zero,
corresponding to extended states. The mobility edge Ec not
only separates the localized and delocalized states, but also
real and complex eigenenergies of the model. Figure 2(c)
displays the energy spectrum of dual model (4) with the same
parameters as in Fig. 2(a). The energy spectra displayed in
Figs. 2(a) and 2(c) have similar structures and can be mapped
to each other by using the linear relation between E and
E ′ given by Eq. (8). Figure 2(d) shows the numerical re-
sults of the IPR versus eigenenergies E ′. Here the IPR for
the ith eigenstate of the dual model is defined as IPR(i) =
(
∑

n |ui
n|4)/(

∑
n |ui

n|2)
2
. The eigenergeis of extended states

for model (4) lie in Re(E ′) < E ′
c, whereas the localized states

distribute in E ′ > E ′
c.

In Fig. 3(a1), we plot the real and imaginary parts of
eigenvalues as well as the IPR of the corresponding wave
functions versus the potential strength V by fixing h = 0.5
and p = 1 for original model (1). The results of dual model
(4) with corresponding parameters h = 0.5 and b = 0.648 are
shown in Fig. 3(b1), where E ′ and λ can be mapped to E and
V via Eqs. (8) and (7), respectively. The blue solid lines in
Figs. 3(a1) and 3(b1) mark the transition points determined by
Eqs. (3) and (18), respectively. We plot spectrum structure on
the complex plane with various V ’s and their corresponding λ

in Figs. 3(a2) and 3(b2), which clearly show the existence of
dual relations between these two models.

We note that model (1) has PT symmetry [51,63] and there
exists a PT -symmetry unbroken region with all eigenvalues
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FIG. 3. (a1) The real and the imaginary parts of the eigenvalue
spectra of the original model (1) versus V for the system with p = 1,
h = 0.5, and N = 233. (a2) The energy spectrum of eigenstates with
V = 0.15, 0.5, and 2, respectively. (b1) The real and the imaginary
parts of the eigenvalue spectra of the dual model (4) versus λ for
the system with b = 0.648, h = 0.5, and N = 233. (b2) The energy
spectrum of eigenstates with λ = 3.29, 0.99, and 0.25, respectively.
The blue solid lines represent the exact mobility edges (3) or (18).
Here we have taken the periodic boundary condition.

being real when V < Vc. For model (4), there exists a region
with all eigenvalues being real for λ > λc. With the help of
the dual relation, we can give an explanation why there exists a
localized region with real eigenvalues for model (4). Although
model (4) has no obvious PT symmetry, its dual model (1)
has PT symmetry, and the extended states correspond to the
real eigenvalues. It has been demonstrated that the localization
transition induced by the non-Hermitian quasiperiodic poten-
tial always occurs at the PT -symmetry-breaking point [51].
For the type of Hatano-Nelson models, it has been already
explained why the eigenvalues of localized states have real
spectra without the need to resort to the dual transformation
[34,35,47,69].

The non-Hermitian quasiperiodic potentials may be im-
plemented in photonic lattices [70–76]. Recently, a few
representative non-Hermitian phenomena are observed on the
photonic systems, such as PT symmetry, exceptional points,
non-Hermitian skin effect., etc. [70–76]. The mobility edges
may be experimentally realized in photonic systems.

III. SUMMARY

To summarize, we studied exact localization transition
for the non-Hermitian model with the exponentially decay-
ing hopping and complex potential, which lacks self-duality
symmetry but can be mapped to a nonreciprocal Ganeshan-
Pixley–Das Sarma model with only nearest-neighbor hopping.
The exact Lyapunov exponent γ (E ) of the dual model with
h = 0 can be obtained by applying Avila’s global theory.

In the presence of nonreciprocal hopping, the localization-
delocalization transition occurs as long as h = γ (E ), which
determines analytically the mobility edges of the dual model.
By using the dual transformation, the analytical expression
of mobility edges for the original model is obtained. The
dual transformation also constructs exact mappings between
the spectra and the wave functions of the original and dual
models.
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APPENDIX A: THE DETAILS FOR THE LYAPUNOV
EXPONENT

We use Avila’s global theory to calculate the Lyapunov
exponent (LE) of the following Schrödinger equation:

(Hu) j = u j+1 + u j−1 + Vju j = Euj, j ∈ Z, (A1)

where

Vj = 2λ
cos(2πω j + φ)

1 − b cos(2πω j + φ)
, b ∈ (−1, 1), λ �= 0,

(A2)
Vj is the potential, b is the parameter, φ is the phase, λ ∈ R is
the coupling, and the frequency ω ∈ R is irrational.

The Lyapunov exponent can be evaluated based on the
transfer matrix technique. Model (A1) can be transformed into
the form (

u j+1

u j

)
= Mj

(
u j

u j−1

)

= MjMj−1 · · · M1

(
u1

u0

)
, (A3)

where the transfer matrix Mj is given by

Mj =
(

E − Vj −1
1 0

)
. (A4)

The transfer matrix is

Tn(E , φ) = MnMn−1 · · · M1 =
n∏

j=1

Mj .

The Lyapunov exponent about Tn(E , φ) is defined as

γ (E ) = lim
n→∞

1

2πn

∫
ln ‖Tn(φ)‖dφ.

It is obvious that γ (E ) � 0 due to det Tn(E ) = 1.
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The first stage in the calculation of the LE is the complex of the phase, i.e., φ → φ + iε. The potential becomes

Vj (φ + iε) = 2λ
cos(2πω j + φ + iε)

1 − b cos(2πω j + φ + iε)
.

We induce a new matrix M̃ j , which can be written as

M̃ j (φ) = [1 − b cos(2πω j + φ)]Mj

= [1 − b cos(2πω j + φ)]

(
E − Vj −1

1 0

)

=
(

E − (bE + 2λ) cos(2πω j + φ) −1 + b cos(2πω j + φ)
1 − b cos(2πω j + φ) 0

)
, (A5)

due to the complexity of matrix Mj . The transfer matrix for
M̃ j (φ) can be expressed as

T̃n(E , φ) =
n∏

j=1

M̃ j (φ).

The Lyapunov exponent about T̃n(E , φ + iε) is

γ̃ (E , φ + iε) = lim
n→∞

1

2πn

∫
ln ‖T̃n(E , φ + iε)‖dφ.

It is easy to see that

γ (E , ε) = γ̃ (E , ε) − lim
n→∞

1

2πn

n∑
j=1

ln[1 − b cos(2πω j + iε)]

= γ̃ (E , ε) − 1

2π

∫ 2π

0
ln[1 − b cos(φ + iε)]dφ

= γ̃ (E , ε) − ln
1 + √

1 − b2

2
,

if |ε| < ln

∣∣∣∣1 + √
1 − b2

b

∣∣∣∣. (A6)

This means that γ (E , ε) and γ̃ (E , ε) has the same slope about
ε when |ε| < ln | 1+√

1−b2

b |.
In the large-ε limit, we get

T̃n(E , ε) = 1

2
e−2πωni+|ε|

(−bE − 2λ b
−b 0

)
+ o(1). (A7)

Avila’s global theory can be extended to the general case and
it shows that γ̃ (E , ε) is a convex, piecewise linear function
about ε ∈ (−∞,∞). For model (A1), in the large-ε limit, the
slope about ε is always 1, which further implies that

γ̃ (E , ε) = |ε| + ln f (E ),

for large enough ε, where

f (E ) =
∣∣∣∣∣ |bE + 2λ| +

√
(bE + 2λ)2 − 4b2

4

∣∣∣∣∣.
Moreover, by the convexity of γ̃ (E , ε) about ε, we have

γ̃ (E , ε) � ln f (E ), (A8)

thus,

γ (E , ε) � max

{
ln

2 f (E )

1 + √
1 − b2

, 0

}
. (A9)

Here we make use of γ (E , ε) � 0.

For the finite 0 � ε < ln | 1+√
1−b2

b |, by Avila’s global the-
ory, the slope of γ (E , ε) might be 1 or 0, since Lyapunov
eponent γ (E , ε) is convex, moreover, the slope of γ (E , ε)
in a neighborhood of ε = 0 is nonzero if the energy E is in
the spectrum and the Lyapunov exponent γ (E , 0) > 0. By
equation (A6), when |ε| < ln | 1+√

1−b2

b |, the slope of γ̃ (E , ε)
is equal to that of γ (E , ε). Thus, when γ (E , 0) > 0, 0 � ε <

ln | 1+√
1−b2

b | and E is in the spectrum, the slope of γ̃ (E , ε) is
also 1.

When γ (E , 0) > 0 since the Lyapunov exponent γ̃ (E , ε)
is convex and continuous, thus, the slope of γ̃ (E , ε) is always
1, which implies that

γ̃ (E , ε) = |ε| + ln f (E ), (A10)

for any ε ∈ (−∞,∞). According to Eq. (A6) and the non-
negativity of Lyapunov exponent γ (E , ε), we have

γ (E , 0) = max

{
ln

2 f (E )

1 + √
1 − b2

, 0

}
, (A11)

if γ (E , 0) > 0 and E is in the spectrum.
When γ (E , 0) = 0, the right side of Eq. (A9) is 0. Thus, the

energy E also satisfies Eq. (A11). Based on above discussion
and analysis, we deduce

γ (E , 0) = max

{
ln

2 f (E )

1 + √
1 − b2

, 0

}
(A12)

for every E in the spectrum.

APPENDIX B: MOBILITY EDGES

The mobility edge can be roughly determined by γc(E ) =
0, which gives

|bE + 2λ| = 2.

The more accurate mobility edge can be obtained by operator
theory.

The operator theory tells us that the spectrum {Ej} of model
(A1) and Vj have the relation {Ej} ⊆ [−2 + min j (Vj ), 2 +
max j (Vj )]. Thus, when λ > 0, we have

{Ej} ⊆
[
−2 − 2λ

1 + b
, 2 + 2λ

1 − b

]
, (B1)
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and when λ < 0, we have

{Ej} ⊆
[
−2 + 2λ

1 − b
, 2 − 2λ

1 + b

]
. (B2)

The eigenenergies of localized states satisfy γ (E ) =
γ (E , 0) > 0, which can give us that

|bE + 2λ| > 2.

First, we consider the case λ > 0. Assume bE + 2λ < −2,
i.e.,

E <
−2 − 2λ

b
, b > 0,

E >
−2 − 2λ

b
, b < 0. (B3)

From condition (B1), we can get

−2 − 2λ

1 − b
� E � 2 + 2λ

1 − b
.

Since

−2 − 2λ

b
< −2 − 2λ

1 + b
,

with b > 0 and

−2 − 2λ

b
> 2 + 2λ

1 − b
,

with b < 0, this leads to contradictions. When λ > 0, the
eigenenergies of localized states only satisfy bE + 2λ > 2.

Second, we consider the case of λ < 0. Assume bE +
2λ > 2, i.e.,

E >
2 − 2λ

b
, b > 0,

E <
2 − 2λ

b
, b < 0. (B4)

From condition (B2), we can get

−2 + 2λ

1 − b
� E � 2 − 2λ

1 − b
.

Since
2 − 2λ

b
> 2 − 2λ

1 + b
,

with b > 0, and

2 − 2λ

b
< −2 + 2λ

1 − b
,

with b < 0, this leads to contradictions. When λ < 0, the
eigenenergies of localized states only satisfy bE + 2λ < −2.

In conclusion, for the eigenenergies of localized states, the
Lyapunov exponent γ (E ) > 0 if and only if

bE > 2 sgn(λ)(1 − |λ|), λ > 0,

bE < 2 sgn(λ)(1 − |λ|), λ < 0,

it is equal to

sgn(λ)bE > 2(1 − |λ|).
Thus, for the eigenenergies of extended states with Lyapunov
exponent γ (E ) = 0, we can get

sgn(λ)bE < 2(1 − |λ|).
The mobility edge is

bE = 2 sgn(λ)(1 − |λ|).
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