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Learning single-particle mobility edges by a neural network based on data compression
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The breaking of the well-known Aubry-André model with a single-particle mobility edge (SPME) is a
intriguing subject that has not yet been fully understood. In particular, how to accurately and efficiently recognize
a SPME in an optical lattice is currently under active debate. In this work, we develop a data compression-based
neural network (DCNN) approach to identify SPMEs in one-dimensional quasiperiodic optical lattice using
eigenstates as the sole diagnostic. We find that such method can successfully identify SPMEs of a large system
only using a small network trained by the small system data, without onerously and repetitively training a new
and large-scale network by massive data of a large system. Furthermore, we show that this method is also
applicable to recognize more complex phase transitions, such as many-body localization. Our DCNN approach
first paves the way for the development of a generic tool for identifying unexplored phase transitions in large
systems.
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I. INTRODUCTION

It has been universally believed that the tight-binding ver-
sion of quasiperiodic optical lattice system is represented
by the well-known Aubry-André model capturing all essen-
tial localization physics [1–3]. However, recent research has
established that this belief is incorrect [4,5]. The system ac-
tually can map onto the Aubry-André Hamiltonian only in
the deeper lattice, because the nearest-neighbor tight-binding
limit is approached [6–9]. But in the shallower lattices, such a
model will break down due to the unavoidable appearance of
single-particle mobility edge (SPME) which marks a critical
energy separating extended and localized states [4,5,10–13].
Hence, investigating the properties of SPME in optical lattice
is an essential issue for understanding such unusual phenom-
ena, and it has been reviewed with considerable attention.
Its stability, dynamics, and other properties have made pio-
neering achievements in both Hermitian and non-Hermitian
systems [14–19]. But, how to accurately and efficiently iden-
tify SPME in optical lattice is still a controversial issue.

Machine learning (ML), as a powerful tool for analyzing
data, has recently achieved huge success from industrial appli-
cations to fundamental research in physics, cheminformatics,
and biology [20–22]. Especially in physics, ML has shown
its powerful availability in experimental data analysis [23,24]
and classification of phases of matter [25–40], while, among
these applications, one of the most interesting subjects is to
capture the global properties of localization and thermaliza-
tion phases of matter directly from local inputs using a neural
network (NN) [31,41–44].
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There are several crucial results on this subject [31,43,44],
but many questions remain. One of the most interesting ques-
tions is that a trained NN can only recognize the phases
and their transitions of system with the same size. If one
wants to identify these properties of other larger systems,
such as doubling or tripling the size of that system, it is
necessary to retrain a new and large-scale NN with huge
amounts of data from this large system. It is not only a
serious waste of time but also a huge drain on computing
resources. Worse, it may even be impossible to retrain a
new NN if the data of that system are too large. Up to
now, none of the current NN methods can overcome this
deficiency, and there is not yet an effective solution to this
problem.

In this paper, we develop a data compression-based neu-
ral network (DCNN) approach targeted to solving such a
problem. In fact, once the parameters of a system are given,
whether SPME exists or not is deterministic and independent
on the size of this system, and it can be diagnosed by all
eigenstates. This is like the picture ‘1’ no matter it is enlarged
or reduced, ‘1’ always means 1 and its characteristics will
never change. Based on this inspiration, we here propose
a scheme to compress the big data of a large system into
small data and then use it as input data of NN trained by
the data of a small system to identify the SPMEs of a large
system. As a result, we find that this method can successfully
identify the SPMEs for large systems. Such approach has
avoided onerously and repetitively training for a new and
large-scale NN.

II. MODEL AND METHOD

The model we explore is the single-particle Hamiltonian of
a one-dimensional (1D) quasiperiodic optical lattice, which is
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defined as

H(x) = − h̄2

2M

d2

dx2
+ Vp

2
cos(2kx) + Vd

2
cos(2kαx + θ ),

(1)

where M is the mass of atom, Vp and Vd are the primary and
secondary potentials of lattices, respectively; θ is an arbitrary
phase shift between the two lattices; k = 2π/λp denotes the
wave-vector of the primary lattice; α is an irrational number
indicating the underlying potential to be quasiperiodic, and for
convenience we set α = (

√
5 − 1)/2 in this work. Throughout

our discussions we use the lattice constant a = π/k as the
length unit and the recoil energy ER = h̄2k2/2M as the energy
unit.

In order to provide the training data of our ML method,
we introduce two key physical quantities. They are the inverse
participation ratio (IPR) and the normalized participation ratio
(NPR) of all eigenstates in the lowest band, which are defined
as following:

IPR(n) =
∑

m

∣∣un
m

∣∣4

(∑
m

∣∣un
m

∣∣2)2 , NPR(n) = 1

L
∑

m

∣∣un
m

∣∣4 , (2)

where m labels the real space (discretized) coordinates, un
m

represents the n-th eigenstate, and L is the length of the lattice.
The average values IPR and NPR of these two quantities have
been widely used to identify whether a system is localized
or thermalized. In the case of thermalization, IPR vanishes
and NPR remains finite; on the contrary, in the case of local-
ization, IPR remains finite but NPR vanishes, whereas in the
special intermediate case, both IPR and NPR remain finite.
It indicates that SPME exists in such case, where the system
is delocalized but nonthermal, and this is the focus of our
study.

III. RESULTS OF A SMALL SYSTEM

In order to develop the DCNN approach, it is necessary
to train a convolutional neural network (CNN) by data of
a small system to successfully identify the phases of lo-
calization, SPME, and thermalization. The structure of the
CNN is described in detail in the Supplemental Material
[45]. We chose the CNN for the following reasons. First,
recent studies have demonstrated that the CNN possesses
higher accuracy than other NN methods in dealing with im-
age recognition issues. Our input data, being a matrix of the
eigenstates, can actually be viewed as an image, thus we can
make full use of this advantage. Second, when an image is
zoomed in and out according to certain rules, the charac-
teristics contained therein actually will not change, which
makes it possible to compress the data without compromis-
ing its main information. It lays a foundation of the DCNN
method.

In order to contrast with the results of the NN method, we
first present the results of traditional methods by calculating
the average values IPR and NPR for all eigenstates in the
lowest band of the model defined by Eq. (1), as shown in
Fig. 1(b). We here set the size of the small system as L = 200
and the depth of the primary lattice potential as Vs = 8 in this
typical case. We can see that depending on the strength of

FIG. 1. Comparison of results between NN and the traditional
method. (a) Results from NN, PA, PB, and PC are defined by Eq. (3).
Here, the number of instances of the training set is 50000, and Nin is
1000 for every given Vd . (b) Results from the traditional method, the
IPR, and the NPR are defined by Eq. (2). Regions A, B, and C denote
the phases of thermalization, SPME, and localization, respectively.
These three phases are divided by two vertical dotted lines. Other
parameters: L = 200, Vs = 8.

the incommensurate potential Vd , there exists three distinct
phases divided by two vertical dotted lines, which are marked
as regions A, B, and C. In region A, all eigenstates in the
lowest band remain extended, as indicated by a vanishing IPR,
which represents thermalization, while in region C, all eigen-
states are localized, as suggested by a vanishing NPR, which
predicts the localization. However, in intermediate region B
the extended and the localized states are coexistent, and both
IPR and NPR become finite. That is, this region corresponds
to SPME.

On the other hand, the results of the NN method are
shown in Fig. 1(a). The training process is briefly described
as follows. We first generate the input data by calculating all
eigenstates in the lowest band of the model defined by Eq. (1)
using exact diagonalization with a varying global phase θ

and incommensurate potential Vd . The training data for each
phase are, respectively, generated from the regions labeled by
phases A, B, and C, which have been distinguished by both
IPR and NPR in Eq. (2). Second, we feed the training data
to the input layer, then evolve by the coupling connection
mode of CNN between the adjacent layers, where the initial
values are randomly chosen according to the log-likelihood
cost function. Last, we test the trained network with another
independent set of testing data obtained in the same way. If
the testing accuracy is over 99%, we consider the training to
be a success.

Moreover, in order to clearly present results of the phase
transitions calculated by this network, we introduce the pa-
rameters P(A,B,C) defined as the following:

P(A,B,C) = Ntest,A,B,C

Nin
, (3)
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where, for every value of P(A,B,C), the Ntest,A,B,C and Nin are
gained by the following processes. We first generate the data
by a similar way to calculate all eigenstates in the lowest band
of such models using exact diagonalization with a varying
global phase θ , but Vd is given. The number of samples in
this data set is denoted by Nin, then we feed these data one
by one into the input layer to evolve. If the result shows
that it is classified as phase A, which indicates the system
is thermalized, we add 1 to the counter Ntest,A. If the result
shows that the system is localized, we add 1 to the counter
Ntest,C . Otherwise, if the network predicts it is classified as
phase B, which means the SPME exists in such system,
we add 1 to the counter Ntest,B. Last, summarizing the final
value of Ntest,A,B,C we can calculate the PA, PB, and PC for
a given Vd , respectively. Obviously, P(A,B,C) actually respec-
tively represent the probability that NN predicts this system
is classified as thermalization, SPME, and localization un-
der a given Vd . After collating these data sorted by Vd the
resulting phase diagram can be obtained [Fig. 1(a)]. From
Fig. 1(a) we can see that once the NN is successfully trained,
it not only has the ability to identify each single phase nearly
100% but also has the ability to accurately distinguish their
phase boundaries. It is highly consistent with the results of
the traditional method described by both IPR and NPR in
Fig. 1(b).

IV. THE DCNN APPROACH AND RESULTS

In the above section, the small NN has been successfully
trained to recognize SPMEs. However, if one wants to identify
the phases of other larger systems, a new and large-scale
network has to be retrained, because the data size of the
large system does not match the size of the input layer of the
network trained above. Hence, we here propose our scheme to
compress the data of the large system into small data without
losing key information so that it is available for the small NN
trained above.

We assume that the data of a small system are
a matrix by n × n, and its elements are marked as
{a1,1, a1,2, ..., an,n−1, an,n}, where the first and second sub-
scripts represent labels of rows and columns, respectively.
Each column {a1,r, a2,r, ..., an−1,r, an,r} represents an eigen-
state, and

∑n
i=1 |ai,r |2 = const due to the normalization of

eigenstates.
For a large system we assume its data size is enlarged

q2-times and becomes (q · n) × (q · n), where q is an integer.
The data compression process is as follows. Step 1, we take
a matrix M1 of size q × q from this data as the compression
object, then remark its elements as {b1,1, b1,2, ..., bq,q−1, bq,q},
as the magenta small matrices shown in Figs. 2(a) and 2(b),
where q = 2 and 3, respectively. The new matrix elements
b∗

1, j are then gained by calculating for column elements of M1

using the following:

b∗
1, j =

(
q∑

i=1

|bi, j |2
)1/2

, j = 1, . . . , q. (4)

Thus, the new matrix M2 can be presented as {b∗
1,1, . . . , b∗

1,q}.
We here choose the way of Eq. (4) to calculate b∗

1, j for the
following reasons. First, whether a system is localized or not

FIG. 2. The schematic of the data compression scheme. (a),
(b) Data of larger systems, and L = 400 and 600, respectively. M1 is
taken out in sequence from left to right and top to bottom of the ma-
trix. Steps 1 and 2 illustrate the detailed process of the compression
method. (c), (d) Compressed data sets. (e), (f) The results obtained by
feeding data of (c) and (d) into small NN trained above. (g), (h) The
results from the traditional method, and the three phases are divided
by two vertical dotted lines. Other parameters: Vs = 6, Nin = 1000.

depends on both the localization and the thermalization char-
acteristics of all eigenstates. That is, it depends on the column
elements but not the row elements. Here the column vectors of
the matrix represent the eigenstates. So, only the operation for
column elements can ensure that the main information will
not be lost in these data compression process. Second, the
normalization of original eigenstates is

∑n
i=1 |ai,r |2 = const;
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thus, such operation of Eq. (4) can ensure that b∗
1, j contains

the original eigenstate information to the maximum.
Step 2, we take a maximum of M2 as a new element c1,1,

i.e., c1,1 = max{b∗
1,1, ..., b∗

1,q}. By the same way, all matrix
elements ci, j (i, j = 1, ..., n) can be calculated by taking every
small matrix M1 with size q × q of the large system data as
the compression object, then it will generate a new matrix
M with size n × n. Now, we have compressed the data of
size (q · n) × (q · n) into a data of size n × n, whose size has
been able to match the input layer of NN trained by the data
of the small system before. In Figs. 2(a) and 2(d), we take
q = 2, 3 as examples to show the entire process of our data
compression scheme.

Let’s now feed the data compressed above into the input
layer of NN trained before to test how well our scheme works
[Figs. 2(e) and 2(f)]. As a result, we find that it is highly
consistent with the results of traditional method [Figs. 2(g)
and 2(h)]. The thermalization, SMPE, and localization of
large systems can be successfully identified using our data
compression scheme without retraining a new NN. Because
our method involves data compression and NN, we call it the
DCNN approach.

V. THE DCNN FOR MANY-BODY LOCALIZATION

Now, we examine whether the DCNN approach is also ap-
plicable to other phase classification problems. As a concrete
example, we conduct our analysis on a prototype Hamilto-
nian that has been studied extensively in the Many-Body
Localization (MBL) literature: A 1D s = 1/2 spin chain
XXZ Hamiltonian with nearest-neighbor interactions, H =∑Len

i=1 J (sx
i sx

i+1 + sy
i sy

i+1) + �sz
i s

z
i+1 + hisx

i , where J and � are
the coupling constant, and hi are random fields uniformly
distributed over [−h, h], Len determines the upper limit of
the summation. The total magnetization Sz ≡ ∑

i sz
i is a good

quantum number, and hence we restrict our calculation for
Sz = 0. We also remark that this Hamiltonian can be mapped
onto a Fermi-Hubbard model using a Jordan-Wigner transfor-
mation, where J is equivalent to the hopping coefficient and
� is equivalent to the interaction strength. Thus, with strong
enough disorder h the spin chain is expected to be in the MBL
phase for � �= 0.

In general, the statistical energy gap distribution is a
sensitive indicator of the MBL phase transition, which is
determined by the average ratio between the smallest and the
largest adjacent energy gaps [46] r = min {δn+1,δn}

max {δn+1,δn} , where δn =
En − En−1, and En is the ordered list of many-body energy
levels. In the thermalized extended phase, rth = 0.536, while
in the MBL phase, rMBL = 0.386 [47]. As shown in Fig. 3(b),
the regions A and B are separated by an intersection point
of curve lines with different Len, and denote the thermalized
phase and the MBL phase, respectively.

Now we apply the DCNN approach to identify the MBL of
the large system using the small NN trained by small system
data. First, we choose the data of system with Len = 10 as
training data to train a small NN, where the Hilbert space
is only 252 and the size of its eigenstates is 252 × 252, then
compress the data of system with Len = 12 and 14 into data
of size 252 × 252, so that their size is able to match the input
layer of NN trained before. Last, we feed these compressed

FIG. 3. (a) Results from NN, PA, and PB represent the probability
that the system is classified as thermalized and MBL for a given h, re-
spectively. Here, the number of instances of the training set is 10000,
and Nin = 1000 for every given h. The inserted figure represents the
relationship between the accuracy of the DCNN approach and the
compression factor q. (b) Results from the traditional method; r is
the average ratio between the smallest and the largest adjacent energy
gaps. Regions A and B denote the phases of thermalization and MBL,
respectively. Other parameters: J = 1 and � = 2.

data into the input layer of that small NN to evolve. We find
that the MBL phases of larger systems can be successfully
identified only using this small network by these compressed
data [Fig. 3(a)]. In this process the data have been compressed
by a factor of q = 4 and 14 for Len = 12 and 14, respectively.
Furthermore, we also discuss the relationship between the
accuracy of the DCNN approach and the compression factor
q, as shown in the inserted figure of Fig. 3(a). The result shows
that, even if the compression factor q reaches 51 (Len = 16),
the DCNN method still has high accuracy.

VI. CONCLUSION

By making full use of the properties of eigenstates, we
have developed a DCNN approach for identifying the SPMEs
and phase transitions of large systems only using NN trained
by small system data. In this method, we can identify the
thermalization, SPME, and localization nearly 100% and give
clear boundaries among these phases for many times the size
of systems, without onerously and repetitively training a new
and large-scale network. It not only greatly saves comput-
ing resources and time but also makes it possible to solve
physical problems by ML method that cannot be calculated
because the data set is too large. To the best of our knowl-
edge, compared with the application of other ML methods
in physics, our method is the first one that can study the
physical characteristics of large systems directly using com-
pressed data without repetitive training, and such method is
also applicable for recognizing other more complex phase
transitions.
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