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Percolation in metal-insulator composites of randomly packed spherocylindrical nanoparticles

Shiva Pokhrel,1,* Brendon Waters ,1,* Solveig Felton,2 Zhi-Feng Huang,1,† and Boris Nadgorny1,‡

1Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
2Centre for Nanostructured Media, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, United Kingdom

(Received 16 November 2020; revised 30 March 2021; accepted 2 April 2021; published 14 April 2021)

While classical percolation is well understood, percolation effects in randomly packed or jammed structures
are much less explored. Here we investigate both experimentally and theoretically the electrical percolation in a
binary composite system of disordered spherocylinders, to identify the relation between structural (percolation)
and functional properties of nanocomposites. Experimentally, we determine the percolation threshold pc and the
conductivity critical exponent t for composites of conducting (CrO2) and insulating (Cr2O3) rodlike nanoparti-
cles that are nominally geometrically identical, yielding pc = 0.305 ± 0.026 and t = 2.52 ± 0.03 respectively.
Simulations and modeling are implemented through a combination of the mechanical contraction method and
a variant of random walk (de Gennes ant) approach, in which charge diffusion is correlated with the system
conductivity via the Nernst-Einstein relation. The percolation threshold and critical exponents identified through
finite-size scaling are in good agreement with the experimental values. Curiously, the calculated percolation
threshold for spherocylinders with an aspect ratio of 6.5, pc = 0.312 ± 0.002, is very close (within numerical
errors) to the one found previously in two other distinct systems of disordered jammed spheres and simple cubic
lattice, an intriguing and surprising result.
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I. INTRODUCTION

The concept of percolation enables a connection between
the long-range connectivity of randomly distributed objects
within a network to global properties of the system spanned
by this network. The behavior of such systems can be de-
scribed by a standard model in which a random probabilistic
process shows a continuous phase transition from a finite-size
cluster below a critical value of the percolation threshold pc

to an infinite percolating cluster above pc [1]. Percolation
is indispensable in interpreting a wide variety of physical,
chemical, mechanical, and biological phenomena occurring
in disordered systems, from the spread of diseases [2], ther-
mal transport [3], and electrical conduction in composites
[4] to metal-insulator [5], magnetic [6], and spin quantum
Hall [7] phase transitions, to pharmaceutical drug delivery
[8,9]. Electrical conductivity in a percolating system can be
modeled by progressively adding larger numbers of identical
conducting particles to an insulating matrix until a geometri-
cally connected conducting phase is generated. The electrical
conductivity σ then scales as σ ∝ (p − pc)t , where pc is the
percolation threshold, the critical value of the concentration
or fraction p of the conducting particles, and t is a critical
exponent. The percolation threshold is normally dependent
on the specific system configuration and the geometry of
constituent particles. On the other hand, the critical exponent
t was expected to be universal, i.e., independent of details
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of system structures and components (t = μ � 2 in three
dimensions [1]), whereas more recent studies indicated the
nonuniversality of t , the values of which were found to range
from 1.3 to 4.0 or even higher in various composites [10–12].

While the classical percolation picture described above
has been well established, a variant of this problem which
addresses the percolation effects of particles packed in disor-
dered (random) or jammed structures is much less thoroughly
explored and understood [13] (see Fig. 1 for some examples of
such disordered packings). Compared to lattice-like, ordered
structures, randomly packed systems usually have different
packing fractions, which, in turn, would affect the critical
behavior of the system and could play a key role in defin-
ing the functionality of the sample. A recent example is the
occurrence of double percolation observed in a disordered
binary mixture [14], in which both types of particles (CrO2

and MgB2) are conducting or superconducting, but their vol-
ume fraction versus conductivity relation shows an insulating
region between two separate percolation thresholds. These
two thresholds, corresponding to the conductor-insulator and
superconductor-insulator transitions, respectively, arose from
the suppressed interface conduction between a half-metal
(CrO2) and a superconductor (MgB2) [15,16] and the large ge-
ometric disparity between particles in this rod-sphere system
of binary species [14]. This effect underscores the fundamen-
tal and practical importance of the percolation threshold and
the relationship between the thresholds, geometric contrast
of constituent particles, and the transport properties of the
system for various particle networks.

While percolation thresholds and the critical behav-
ior in many ordered three-dimensional (3D) lattices of
fixed coordination numbers have been investigated in detail
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FIG. 1. Sample systems of disordered packing, including closely
packed homegrown lemons (top-left panel), a simulation snapshot
of randomly packed conducting (green, with p = 0.33) and insulat-
ing (red) spherocylinders near the percolation threshold (top-right
panel), and an SEM image of the densely packed CrO2/Cr2O3 exper-
imental sample at approximately the same fraction p (bottom panel).
The average width and length of the CrO2/Cr2O3 nanoparticles are
measured to be approximately 40 nm and 300 nm, respectively.

[1,4,17–21], much less is known about systems of disordered
packing which form networks of interparticle contacts with
variable coordination numbers [22]. In these cases where the
constituent particles could be of various types and geometries,
such as particle shape and size, and the average number of
nearest neighbors may be close to that in a specific ordered
lattice, they are lacking long-range order and are randomly
or quasirandomly distributed with a broad range of neigh-
boring particle contact numbers. To develop the methodology
for identifying the corresponding percolation properties (such
as percolation thresholds and critical exponents) and their
correlation to the system functionalities, we will first limit
ourselves to a more manageable problem related to dense
random distribution of particles of the same size and shape,
specifically the disordered mixture of two-component sphe-
rocylinders that are geometrically identical but functionally
distinct, given that the understanding of this type of system is
still lacking.

In this paper, we report both experimental and compu-
tational results for a randomly packed system comprising a
binary mixture of nominally identical CrO2/Cr2O3 sphero-
cylinders (capsules); see Fig. 1 for a simulation snapshot
(top-right panel) and a scanning electron microscopy (SEM)

image of the system studied. Specifically, we study a dense
disordered network of conducting and insulating spherocylin-
ders of approximately the same size and aspect ratio. To
examine the electrical percolation in this system, we first
convert the conducting CrO2 rodlike nanoparticles (sphero-
cylinders with an average aspect ratio of 6.5) into nominally
geometrically identical insulating Cr2O3 nanoparticles, and
then prepare a series of samples of CrO2/Cr2O3 mixture with
varying conducting vs insulating volume fractions for elec-
trical transport measurements. The experimental results are
compared with large-scale 3D computer simulations and cal-
culations on the corresponding binary disordered composite
of nonoverlapping hard spherocylinders, which are conducted
through a combination of mechanical contraction and Monte
Carlo methods and a random walk approach based on the de
Gennes ant and the Nernst-Einstein relation.

Good agreement is obtained between our results from
experiments and computation for various percolation and
electrical transport properties of this binary network of disor-
dered packing. These include the percolation threshold pc =
0.305 ± 0.026 (experiment) and pc = 0.312 ± 0.002 (simu-
lation), and the scaling behavior near the threshold and the
corresponding critical exponent of the electrical conductivity,
with t = 2.52 ± 0.03 and a lower bound μl = 1.26 identi-
fied through t � 2μl [12] (experiment) and μ = 1.62 ± 0.04
(simulation). The small discrepancy between the experimental
and theoretical values can be partially attributed to the intrin-
sic polydispersity of the nanoparticles and some degree of lo-
cal ordering of the composite used in experiments (see Fig. 1).

An intriguing finding is the calculated value of pc =
0.312 ± 0.002 in this binary system of dense randomly
packed (but not strictly jammed) spherocylinders with an
aspect ratio of 6.5. This value is very close (within com-
putational errors) to the site percolation threshold of pc =
0.3116(3) computed recently for disordered jammed spheres
[22] and pc = 0.311608 obtained earlier for a simple cubic
lattice [17,19]. These are three distinct systems, with different
packing fractions, degree of ordering, particle geometry, and
different distribution of particle coordination numbers (al-
though with similar values of average coordination numbers).
While such an agreement may be accidental for any two sys-
tems, it is harder to assume that the same coincidence would
occur for the three different systems, where the constraints
of the ordered lattice and particle shape are being gradually
removed. Hence, one may argue that this result manifests the
existence of universality for the percolation threshold in a par-
ticular class of systems. Apart from pointing to the closeness
of the average coordination numbers in all three systems, a
plausible explanation of this result is still lacking; it remains
an important open question.

II. EXPERIMENTS

A. Sample preparation and structural characterization

Here experimental measurements are conducted to study
the electrical transport property of CrO2/Cr2O3 half-
metal/insulator nanocomposites at different fractions of
CrO2. The CrO2 and Cr2O3 nanoparticles are needle-shaped
spherocylinders (see Fig. 1) of similar size, with the average
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FIG. 2. The XRD intensity vs 2θ plots, with the peaks corre-
sponding to the original CrO2 nanoparticles before annealing and
Cr2O3 nanoparticles after annealing.

length of approximately 300 nm and diameter of about 40 nm,
corresponding to an average aspect ratio of 6.5. Composite
CrO2/Cr2O3 samples were prepared by mixing metallic fer-
romagnetic oxide CrO2 nanoparticles with insulating Cr2O3

nanoparticles. The latter were formed by annealing commer-
cially available CrO2 (DuPont) nanoparticles at 550 ◦C for 1 h,
using the procedure described in Ref. [23].

The resulting nanoparticles were then analyzed with
x-ray diffraction (XRD) spectroscopy to confirm the com-
plete conversion of half-metallic CrO2 into insulating Cr2O3

nanoparticles. XRD spectra over a wide range of diffraction
angles 2θ (varying from 10◦ to 80◦) were collected with the
help of an x-ray powder diffractometer (Rigaku Miniflex),
using Cu Kα radiation of wavelength λ = 1.5418 Å. The x-
ray generator was operated at 40 kV with an anode current
of 20 mA from stabilized power supplies. The scan was per-
formed at a scanning rate of 1◦ per minute over the range
of angles 10◦ < 2θ < 80◦. Both annealed and unannealed
samples of CrO2 were analyzed with XRD, with results given
in Fig. 2. Before annealing, peaks appear at 2θ angles of
approximately 28◦, 36◦, 45◦, . . . . These peaks correspond to
the reflected intensity from the (110), (101), (211), .... planes
of the tetragonal structure of CrO2. Based on the Scherrer for-
mula, the typical crystalline size Ls of the CrO2 nanoparticle
is dependent on the wavelength λ, the line broadening B(2θ )
which is the full width at half-maximum, and the Scherrer
constant K (at the order of 1): Ls � Kλ/[B(2θ ) cos θ ] ∼ 30
nm, which is close to the diameter of the spherocylinder. This
estimate is consistent with the result of the high-resolution
STEM imaging (not shown), indicating good crystallinity of
individual nanoparticles. Upon annealing, a clear signature
of Cr2O3 peaks has been observed at (012), (104), (024),
..., as shown in Fig. 2, confirming the presence of Cr2O3.
This is accompanied by noticeably higher peak broadening,
indicating a reduced crystalline size of Cr2O3 nanoparticles.
Approximately 5 mm diameter pellets with 0.5 mm thickness

were formed from the mixture of conducting CrO2 and insu-
lating Cr2O3 particles, using a cold-press die with a uniaxial
pressure of 10 GPa. An SEM micrograph of a typical sample
is shown in Fig. 1.

B. Electrical characterization

Four-point electrical transport measurements were per-
formed in a Quantum Design Physical Property Measurement
System (PPMS), which allows a wide range of resistance
measurements at variable temperatures. Gold wires were at-
tached to the pellet using silver paste, and the sample was then
mounted on a PPMS puck using GE varnish. The variation
of resistivity as a function of fraction p of CrO2 particles in
a CrO2/Cr2O3 composite was measured in the temperature
range 200 K � T � 300 K. At each nominal composition at
least two different samples were prepared. The resistivity was
measured using the four-probe technique, which eliminates
parasitic contributions from electrical contacts [24]. Experi-
mental errors originated primarily from the geometric factors,
such as the finite contact size and the contact placement un-
certainty, as well as variations in the sample thickness and
anisotropy. In addition to the classical percolation threshold
reported here, we have observed tunneling percolation thresh-
olds at lower fractions of p, manifested by tunneling staircases
similar to those described in Refs. [25,26]. The detailed results
of these measurements will be presented elsewhere.

Electrical characterization of nanocomposites for varying
fractions of the conducting particles (CrO2) was performed
at five different temperatures, 300 K, 270 K, 250 K, 220 K,
and 200 K, with the results shown in Fig. 3 and summarized
in Table I. The values of the percolation threshold pc were
determined by optimizing nonlinear regression for log σ =
A + t log(p − pc) (plots not shown) from these five indepen-
dent measurements of the sample conductivity σ , as listed
in Table I. Note that the conductivity of metallic CrO2 in
this temperature range is only weakly temperature dependent,
while Cr2O3 components are at least an order of magnitude
more resistive at T = 250 K as compared to room temperature
(see Fig. 3). Thus, the conductivity at T = 300 K is affected
by the leakage current through Cr2O3 nanoparticles and hence
was excluded from the determination of the pc and t values
of the conducting-insulating system. Averaging over the four
lower temperature values of pc, we identify the percolation
threshold as pc = 0.305 ± 0.026 for this nanocomposite sys-
tem (using the proper weighted mean with the uncertainty
evaluated via the standard error propagation). To perform the
consistency check of these results, we used two supplemen-
tary methods for the threshold determination. In the first, the
steepest descent (gradient) approximation [27], the threshold
was associated with the extremum of the derivatives of log σ

plotted as a function of p. In the second method, we used
temperature-dependent transport measurements to identify in-
flection points in the plot of the ratios of sample resistances
at a given temperature to the room-temperature values, as de-
scribed in Ref. [26]. The values of pc obtained from all these
three methods coincide within the experimental accuracy.

Once the percolation threshold at a given temperature was
identified, we used its value (with the corresponding error
correction) in standard log-log plots to determine the conduc-
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FIG. 3. Sample resistivity as a function of fraction p of CrO2 at five different temperatures (a) T = 300 K, (b) T = 270 K, (c) T = 250 K,
(d) T = 220 K, and (e) T = 200 K. Insets: Sample conductivity as a function of p − pc in log-log scale to identify the critical exponent t
(where the error of pc determined from a separate nonlinear fitting procedure has been incorporated).

tivity critical exponent t . The results are shown in the insets of
Fig. 3 (see also Table I), demonstrating the scaling behavior
of conductivity above the percolation threshold pc. The aver-
age of four lower temperature results yields t = 2.52 ± 0.03.
This value of conductivity exponent for binary disordered
spherocylinders is comparable to some previous results of
3D conductive networks, such as t = 2.16 for the conductor-
insulator transition in CrO2/MgB2 (spherocylinder/sphere)
double-percolating composites [14] and those found in vari-
ous disordered composites [10,11].

III. SIMULATIONS

A. Methods

1. The mechanical contraction method for random packing

To model the structure of a given nanocomposite, it is
essential to produce dense random packings of its constituent
hard particles in simulations. Conventional molecular dy-

TABLE I. Values of percolation threshold pc and conductivity
critical exponent t obtained from experimental measurements at dif-
ferent temperatures T .

T pc t

300 K 0.360 ± 0.024 2.51 ± 0.05
270 K 0.295 ± 0.057 2.46 ± 0.06
250 K 0.307 ± 0.062 2.45 ± 0.06
220 K 0.315 ± 0.040 2.54 ± 0.05
200 K 0.293 ± 0.062 2.70 ± 0.08

namics simulations are too computationally expensive to be
practical when the precise microstates of the system are
not essential [28]. Standard Monte Carlo methods inherently
sample the equilibrium distribution of particle states [29],
while making rapid compression into a disordered, out-of-
equilibrium state is not compatible with the premise of the
model. Additionally, this results in poor performance since
in a dense state an unacceptably high fraction of trial moves
would fail the Metropolis criterion [30] for hard particles;
that is, a vast majority of potential translations or rotations
of particles produce states where particles overlap with their
neighbors. These states are invalid and thus must be rejected.

Because of these limitations, here we use an alternative
algorithm designed explicitly to produce random packings,
the Mechanical Contraction Method (MCM), as developed
in Ref. [31]. The premise of MCM is to take a system of
spherocylinder particles in an initial low-density random state,
and bring them together directly, moving each particle only
when it would collide with another and only just enough to
avoid overlaps. By this approach, the initial entropy of the
low-density phase is carried through the compression until the
entire system can no longer be transformed to a higher density
state [32]. Details of the method are given in Ref. [31], with
the implementation steps summarized below.

First, the particles’ positions and orientations are random-
ized at low density (with packing fraction <0.01) by a number
of hard particle Monte Carlo moves. At such low densities,
virtually all trial moves succeed; thus this step can be per-
formed quickly, even for large systems. This provides the
initial state for the MCM. Using the MCM algorithm, the
whole system is then scaled down by a small volume factor
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�V , and the position of every particle is scaled down ac-
cordingly, bringing them uniformly together. The algorithm
searches over all particles in the system in arbitrary order, to
identify neighboring particles that might be overlapping. This
is straightforward for spherocylinders which can be character-
ized as a set of points within radius R of a line segment of
length l . If the shortest distance k between the two particles’
axes of symmetry (within l/2 from the particle centroid) is
within 2R, they must be overlapping. The amount of overlap
is defined as δ = 2R − k.

The strategy of the MCM algorithm is to move a particle
i in a direction that reduces the total of its overlaps with
neighboring contacted particles j = 1, 2, , . . . ,C the most
quickly. This direction is determined by maximizing the effec-
tive speed, which is a weighted combination of translational
and rotational velocities with respect to all of its C contacted
particles [31]. Along this direction the particle i is moved
sufficiently far to reduce the smallest overlap δ j by a tiny
amount more than δ j/2, so that when particle j is moved in
the opposite direction by the same amount the pair will barely
break contact, typically separated by 1.0001 times the needed
distance. This will minimize the probability of producing new
overlaps when moving the particles. This process is iterated
until all overlaps are removed, whereupon the simulation box
is further reduced. The procedure is repeated until the system
cannot be further compressed with all the generated particle
overlaps being removed (within a large enough cutoff number
of trials).

We have implemented the MCM algorithm as a custom
module in HOOMD-Blue, an open-source general purpose
particle simulation engine [33–35] that was used for gener-
ating the related Monte Carlo moves in this algorithm (with
excluded-volume interparticle interaction). The custom mod-
ule developed is available at Ref. [36]. The acquired data were
visualized using OVITO open-source particle visualization
software [37] (see, e.g., Fig. 1).

2. The random walk method for conductivity calculation

Determining the conductivity of large networks of irregu-
larly connected particles presents a considerable challenge. To
directly analyze the circuit formed by conducting particles and
use Kirchhoff’s laws requires the construction and solution
of a large set of linear equations, a procedure that is time
consuming. Moreover, the bulk conductivity of the system is
likely insensitive to many small changes in network structure.
A more efficient approach can be obtained by tracing a ran-
domly moving test charge through the system and calculating
its diffusion property, in a method analogous to the so-called
de Gennes “ant in a labyrinth” [38] and “termite” [39], in
concert with using the Nernst-Einstein relation.

This random-walk model was initially proposed by de
Gennes to explore the percolation transition in cross-linked
network systems [38], where he imagined a microscopic “ant”
lost in a labyrinth of nodes, some of which are connected by
bonds or chains. If these chains are sufficiently cross-linked
to create a percolating network, there should be a finite proba-
bility that from any arbitrary starting point the ant could walk
along the network to cover infinite distance. Later theoretical
work expanded upon this simple percolation test and used this

random-walk approach to measure properties related to the
diffusion processes, connectivity, and transport in disordered
systems or random networks [1,40]. These include the use
of the de Gennes ant to calculate the diffusion constant and
hence the conductivity of the random resistor network through
the Nernst-Einstein relation, the extension to the de Gennes
termite [39] to study the random superconducting network
consisting of normal conductors and superconductors, and
further to more complex cases of composites involving two
[41] or three [42,43] types of bonds with different conduc-
tances.

Here we use this random walk approach to obtain the con-
ductivity of the disordered system of conducting-insulating
spherocylinder nanoparticles, by imagining our ant as a test
charge diffusing through the particle network, subject to the
local conductivity of each particle. In practice, this is done by
initializing the random walker on an arbitrarily chosen particle
in the system consisting of all the clusters (i.e., the general
ensemble [40]), following the procedure for a “blind ant” [44].
At each step, the walker (ant) located at particle i chooses
at random one of the neighboring particles j which it is in
contact with. The ant moves to that particle if it is conductive;
otherwise the location of the ant remains unchanged. In either
case the amount of time t taken by the ant is increased by
one unit at every step. This corresponds to the assumption
that in our system of CrO2/Cr2O3 composites, only two types
of particle-particle conductance are taken into account, with
the interparticle hopping rates for a random walker being 1
and 0, respectively. The first case corresponds to the con-
ductive type between two CrO2 particles, and the second to
the nonconductive type between two Cr2O3 particles or along
a mixed CrO2-Cr2O3 link, neglecting any possible leakage
current through Cr2O3.

At the same time, each jump of the walker covers an
amount of displacement, measured between the geometric
centers of the particles, which is tracked and used to calculate
the mean-square displacement 〈r2(t )〉 as a function of total
time t spent by the walker. [We have also evaluated 〈r2(t )〉
based on the displacements between interparticle contacts and
obtained very similar results.] In our simulations the progress
of each random walk was tracked for 106 steps through the
system. The diffusion constant D can then be calculated via
the relation 〈r2(t )〉 ∝ Dt . It is, in turn, linearly proportional
to the dc conductivity σ of the system via the Nernst-Einstein
relation [40]

σ = (e2/kBT )nD, (1)

where n is the density of the charge carriers. We can then
map the behavior of the electrical conductivity of complex
networks onto the diffusion property of random walks. In the
disorderly packed system of binary composites studied here,
the carrier density n is determined by the concentration of
conductive (CrO2) particles with fraction p; thus it can be
approximated as n ∼ p f , where f is the packing fraction of
all the particles (CrO2 and Cr2O3) evaluated from simulations.
In our calculations for each system size, this procedure was
repeated with 20 different randomly selected starting particles
(i.e., 20 independent walks) in each simulated configuration
of binary spherocylinders, and the results were averaged over
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a large number of system configurations generated indepen-
dently.

3. Finite-size scaling

Continuum percolation models for disordered particle sys-
tems exhibit the same form of critical phenomena as the
more-studied lattice percolation models by virtue of univer-
sality. This critical behavior is characterized by power-law
scaling relations of geometrical, statistical, or some functional
properties in terms of the particle probability or fraction p near
the percolation threshold pc [1], such as the scaling of conduc-
tivity σ ∝ (p − pc)μ when p → pc as examined here for the
metal-insulator nanocomposite. Another important quantity
is the correlation length ξ , scaling as ξ ∝ |p − pc|−ν , which
represents the characteristic size of the finite clusters [1,4].

In principle, all such critical behaviors are defined in the
limit of infinite system sizes, requiring simulations to be re-
lated to the infinite system to obtain accurate scaling relations
and critical exponents. It is particularly important for an accu-
rate determination of pc, because it defines the reference point
of all the scaling relationships for the other critical properties
of the system. The definition of pc is the particle concentra-
tion or fraction at which the infinite system is first able to
generate an infinite, percolating cluster. However, for finite
systems what is measured instead is the effective percolation
threshold as a function of the specific finite system size L,
i.e., peff

c (L). Thus the finite-size scaling is needed to extract
the infinite-system results of pc = peff

c (L → ∞) and critical
exponents from the finite-size simulations, for which we adopt
the method of Ref. [45] as outlined below.

In practice, for each system size L, at a given value of
p the probability P(p, L) of getting at least one cluster of
conducting particles that spans through the system across
two sides of any direction is first evaluated over a number
of independent realizations of system configurations (in the
random packing state prepared by the mechanical contraction
and MC methods described above). The value of peff

c (L) can
then be calculated by determining the value of p at which
this spanning probability P(p = peff

c , L) = 1/2. P(p, L) of a
finite-size system is expected to follow the scaling relation [1]

P(p, L) = 
[(p − pc)/�(L)], (2)

where 
 is the scaling function, and � is the percolation tran-
sition width, which tends to decrease towards 0 as L increases
towards the thermodynamic limit, typical of phase transitions.
The percolation transition width scales as [1,45]

�(L) ∝ L−1/ν, (3)

which provides a simple way to determine the correlation-
length exponent ν, leading, together with Eq. (2), to

peff
c (L) − pc ∝ L−1/ν, (4)

a scaling relation that is used to obtain the accurate result of
the percolation threshold pc.

In the calculations this is done by fitting P(p, L) with a
function of the sigmoidal form. In Ref. [45] for a system
of spheres, the scaling fitting function was chosen as (1 +
erf{[p − peff

c (L)]/�(L)})/2, i.e., the cumulative distribution
function (CDF) for the normal distribution. In the currently

studied system consisting of highly anisotropic spherocylin-
ders, the probability distribution P(p, L) does not have an
antisymmetric form with respect to P = 1/2, as seen from
our simulation results; thus, here the fitting function is as-
sumed as the CDF for the skew normal (SN) distribution

SN[(p − ξ )/ω, α], where the location, scale, and shape pa-
rameters of the SN distribution are denoted by ξ , ω, and α,
respectively. If α = 0 the CDF for the normal distribution
(as used in Ref. [45]) is recovered. For each system size
L, defining peff

c as the value when 
SN(p = peff
c ) = 1/2 and

y0 = (peff
c − ξ )/ω, we have 
SN[(p − ξ )/ω, α] = 
SN[(p −

peff
c )/ω + y0, α], with very similar value of y0 obtained from

our simulation results of different L. Thus when setting ω ≡
�(L), P(p, L) can be fitted to the scaling function

P(p, L) = 
SN

[
p − peff

c (L)

�(L)
, α(L)

]
. (5)

We have applied both fitting functions, i.e., CDFs for normal
and skew normal distributions, to the simulation data and
obtained very similar results of pc (within numerical errors)
after performing the finite-size scaling of Eq. (4). However,
the CDF 
SN for the skew normal function is a better fit
for P(p, L) curves than the CDF for the normal distribution.
Therefore, in the following only the results obtained from
fitting to Eq. (5) are presented.

To summarize, by running a series of trials of various
values of p across the transition regime near peff

c for a range
of system sizes L, we can first evaluate �(L) and peff

c through
the fitting to Eq. (5) and directly measure how they scale as a
function of L. The next step is to use these scaling relations
to identify the value of ν from Eq. (3) and then, based on
Eq. (4), extrapolate to the infinite system to obtain the true
percolation threshold pc. The precise value of pc identified
from Eq. (4) can then be used to determine other critical ex-
ponents via scaling relations, particularly the critical exponent
μ for conductivity σ ∝ (p − pc)μ calculated from the random
walk (de Gennes ant) method described above.

B. Simulation results

Using the methods described above, we conducted a se-
ries of simulations of randomly packed conducting-insulating
spherocylinders, for six systems with total number of particles
N = 1728, 2744, 4096, 5832, 8000, and 10 648. In each
system, the particle number is of the form N = m3 where
m is an integer ranging from 12 to 22, to allow for simple
initialization in a cubic-shape simulation box with periodic
boundary conditions. All the spherocylinders were taken to
be of the same size, with 0.16 units in diameter d and 1.04
units in length, corresponding to an aspect ratio of 6.5, the
same as that of CrO2/Cr2O3 nanocomposites. A typical sim-
ulation started with a cubic box of edge length 2.5 m, to
ensure sufficient spacing between the spherocylinders for the
initial randomization steps. The positions and orientations of
the particles were initially thermalized with 104 hard-particle
Monte Carlo steps at a density <0.01. Then the MCM algo-
rithm described above was applied to generate the final dense
disordered state with the corresponding compressed system
size L. For the example of 223 = 10 648 particles, the fully
compressed system has an edge length of around 9 units,
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with L/d = 56.54. The list of contacting particles obtained
during the steps of the MCM routines for overlap removal was
utilized to identify connected clusters and percolation paths of
the final dense packing state through the Hoshen-Kopelman
algorithm [46] with off-lattice extension [47]. For a given sys-
tem, at each fraction p of conducting particles, we performed a
large number of replicate simulations, R, with different initial
random number seeds, to generate different configurations of
dense random packing through MCM for each p to ensure
the results were independent. For our initial hypothesis explo-
ration, the number of replicates was chosen in such a way that
the expected relative statistical error

√
N/N + √

R/R < 0.1.
We then refined our data by adding approximately the same
number of runs for each p, bringing the total statistical error
close to 0.05. For example, for a system of N = 223 = 10 648
particles, we generated 355 independent configurations via
MCM to evaluate the system property at each p, while for
N = 123 = 1728, we used 530 replicates for each p.

Figure 4(a) shows the plots of the spanning percolation
probability P calculated over a range of p near the percolation
threshold, for two different particle numbers, N = 1728 and
N = 10 648. A smaller N (corresponding to a smaller system
size L) yields a broader probability distribution, with a larger
width of percolation transition �, as expected. The quantita-
tive values of � and the effective percolation threshold peff

c for
various system sizes L were determined through the fits of the
calculated probability data to Eq. (5), with results presented in
Figs. 5 and 6, respectively.

Following the finite-size scaling procedure described
above, we first determine the value of the correlation-length
critical exponent ν by fitting the values of transition width �

to Eq. (3), as shown in Fig. 5. It gives ν = 0.646 ± 0.005,
which in turn is used to fit the values of peff

c plotted against
L−1/ν according to Eq. (4). The fitting result, presented in
Fig. 6, is used to determine the extrapolated value of the
percolation threshold pc = 0.312 ± 0.002 in the limit of in-
finitely large system of randomly packed spherocylinders.
This value of pc agrees well with the experimental finding
of pc = 0.305 ± 0.026 reported in Sec. II B for CrO2/Cr2O3

nanocomposites. We note that the value of correlation-length
exponent ν (= 0.646) obtained here is smaller than the stan-
dard value of 0.876 in three dimensions, which could be
attributed to the relatively large errors of width � evaluated
in the fitting (see Fig. 5) and limited number of particles used
in our simulations.

An alternative method to identify pc can be used by noting
that given a certain geometry of the constituent particles and a
dimensionality of the system, the critical spanning probability
at p = pc is a universal quantity [17]. Thus, for systems of
different finite sizes the corresponding spanning probabilities
P(p, L) are expected to cross at p = pc. This is consistent
with our simulation results given in Fig. 4(b), which shows a
narrow range of such crossing points located from p = 0.307
to 0.317 due to numerical variations, well agreeing with the
result of pc = 0.312 obtained above from finite-size scaling.

Finally, we ran another series of simulations and applied
the random walk method of the de Gennes ant described above
to calculate the system conductivity σ for a narrow range of p
above pc. A large system size with N = 223 = 10 648 parti-
cles was used, with 350 independent configurations generated

FIG. 4. Spanning percolation probability as a function of fraction
p of the conducting spherocylinders, for (a) two sample systems with
N = 1728 (open circles) and N = 10 648 (filled squares) particles,
and (b) an enlarged portion for all six systems of different N . Each set
of simulation data (shown as symbols) is fitted to Eq. (5), with results
shown as dashed curves. The vertical dashed line in both (a) and
(b) indicates the location of pc = 0.312.

via MCM for each p. In each configuration 20 independent
random walks of “blind ants” (with randomly chosen start-
ing points) were conducted, and the outcomes were averaged
over 350 × 20 = 7000 trials at each p to obtain the mean-
square displacement 〈r2(t )〉. The asymptotic regime of t =
5 × 105–106 was used to calculate the system conductivity
σ . The corresponding results of σ are presented in Fig. 7,
where the conductivity data have been rescaled with respect to
σ (p = 1), the conductivity of the system consisting of purely
conducting particles that was evaluated at N = 10 648. Using
these data to fit into the scaling relation σ ∝ (p − pc)μ, we
determined the critical exponent μ of the system conductivity,
yielding μ = 1.62 ± 0.04.

This calculated value of the conductivity critical exponent
is within the range of previous findings of 1.3 � t � 4.0 in
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FIG. 5. Width � of the percolation transition as a function of
system size L rescaled by the particle diameter d . The error bars are
from the fitting of Eq. (5) to obtain � at each L. The dashed line is
the power-law fit to Eq. (3), yielding a value of the critical exponent
ν = 0.646 ± 0.005.

disordered composites [10–12], but much smaller than the
value of t = 2.52 measured for this system experimentally.
This discrepancy may be understood in light of the analysis of
Ref. [12], given that in the nanocomposite system studied here
the electrical transport between any two adjacent spherocylin-
ders is mainly governed by their interfacial resistance (due to
the presence of surface oxide layers). Thus, the scaling of the
system conductivity should be written as [12]

σ ∝ (p j − p jc)μ ∝ (
p2 − p2

c

)μ = (p − pc)μ(p + pc)μ, (6)

where p j is the occupation probability of the conducting
interjunction (proportional to the average contact number be-

FIG. 6. Effective percolation threshold peff
c as a function of

(L/d )−1/ν . The dashed line is the fit to Eq. (4), and its intersection
with the y axis gives the percolation threshold pc = 0.312 ± 0.002
for the infinite system with L → ∞.

FIG. 7. Rescaled conductivity, σ (p)/σ (p = 1), as a function of
p − pc for systems of N = 10648 particles. The fitting to the scaling
relation σ ∝ (p − pc )μ (shown as the dashed line) gives the conduc-
tivity critical exponent μ = 1.62 ± 0.04.

tween conducting particles), and p j ∝ p2 with p the fraction
or concentration of conducting particles, as confirmed in our
numerical simulations. When p is close to pc (as in our com-
putation of σ shown in Fig. 7), from Eq. (6) the conductivity
scaling behavior is dominated by σ ∝ (p − pc)μ, recovering
the standard scaling relation for σ , with the value of μ =
1.62 ± 0.04 identified above. On the other hand, when p is
far enough from the percolation threshold pc, as occurred in
our experimental measurement and data analysis (see Fig. 3),
the range of μ < t � 2μ for the conductivity exponent t , as
measured for σ ∝ (p − pc)t , is expected [12], leading to a
lower bound of μ � μl = t/2 = 1.26 for the experimental
result t = 2.52 ± 0.03 given in Sec. II B. Our computed result
of μ is then consistent with the experimentally measured value
for the critical exponent, suggesting that our model correctly
captures the essential electrical property of this percolating
network of disordered spherocylinders.

IV. DISCUSSION AND CONCLUSIONS

We have investigated a binary composite system of
randomly packed spherocylinders, to examine the relation be-
tween structural (percolation) and transport properties of the
system. The composite consists of metal (CrO2) - insulator
(Cr2O3) nanoparticles that are of identical rodlike particle
geometry but distinct functionality. Our experimental (pc =
0.305 ± 0.026, t = 2.52 ± 0.03 with μl = 1.26) and com-
putational (pc = 0.312 ± 0.002, μ = 1.62 ± 0.04) results for
both the percolation threshold and conductivity critical expo-
nent are in good agreement. The small observed variations
can be partially attributed to a different degree of disorder in
experimental and theoretical arrangement of the spherocylin-
ders. While in our simulations we have used a completely
disordered system, the samples fabricated for the experimen-
tal measurements have a substantial degree of local nematic
order, which, in turn, may affect the threshold and the critical
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exponent values. The effects of polydispersity and particle
irregularity, which are unavoidable in the experimental setup
(see Fig. 1) but neglected in the simulations, may also account
for the discrepancy between the experimental and computa-
tional results. In addition, the experimental results near the
classical percolation threshold pc may have been affected by
the presence of tunneling percolation at lower values of p.

We note that our large-scale simulation result for the site
percolation threshold of spherocylinders with an aspect ratio
of 6.5, i.e., pc = 0.312 ± 0.002, is very close, within numer-
ical errors, to the threshold found in Ref. [22] for jammed
disordered spheres [pc = 0.3116(3)], which, in turn, is al-
most identical to the threshold of the simple cubic lattice
(pc = 0.311608 [17,19]). These three systems are geometri-
cally quite distinct, with very different packing factors and
different distribution of coordination numbers, although their
average coordination numbers Z̄ are close. The coordination
number for the simple cubic lattice is exactly 6, the disordered
jammed sphere packing has coordination numbers ranging
from 4 to 12, with an average of 6 [22], while for the ran-
dom close packing of spherocylinders with a 6.5 aspect ratio
studied here, a broader distribution of coordination numbers is
obtained, ranging from 0 to 16 with an average of Z̄ = 5.83 ±
0.07 (averaged over 200 simulations with 10 648 particles
each).

This value of Z̄ is much lower than the isostatic value
of Z̄ = 2d f = 10 for spherocylindrical particles with d f =
5 degrees of freedom per particle [48] at sufficiently large
aspect ratios, indicating that the randomly packed systems
examined here are not strictly jammed. It is likely due to
the use of MCM, which has been known to produce states
of lower Z̄ for long rods with high aspect ratio [49] and
the use of insufficiently small contact tolerance in our nu-
merical simulations as compared to that generating random
jammed packings of spheres [22,50]. This results in a dis-
ordered packing state of spherocylinders that are not fully
jammed, similar to the nanocomposite system studied here

experimentally for which the strict jamming with higher Z̄ is
usually not accessible.

Although systems with the same average coordination
number Z̄ are likely to have similar values of pc, such a
close agreement is unexpected, given the different distribution
of coordination numbers and noting that some other systems
with the same average coordination number of 6 do not have
such close values of pc (see Table 1 of Ref. [22]). This re-
sult implies that not only the values of the threshold may
be unaffected by the exact details of particle ordering, as
in the case of ordered lattice versus disordered packing of
spheres with the same average coordination number, as has
been pointed out in Ref. [22], but it may also be insensitive
to the details of the particle geometric shape. While this may
still be fortuitous, the coincidence seems less likely, given the
independent research on three different systems, and with our
latest result presented here for the dense disordered state of
spherocylinders that are geometrically distinct from spheres.
If this result also holds for other systems, it may indicate a
possible universality of the percolation threshold based on
a more profound underlying mechanism which is presently
unknown and needs further investigation.

These results are relevant for future device applications of
functional nanoparticle composites, for which the ability to
control the percolation threshold is critically important. They
can also be of interest for a broader range of packing and
percolation systems, such as drug release and the design of
drug tablets [51], for which the percolation of soluble drug
nanoparticles in the packed soluble/insoluble composite plays
an important role [22].
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