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Waveguide modes spatially resolved by low-loss STEM-EELS
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In an era of new developments in nanomaterials analysis enabled by the unprecedented spatial and energy
resolutions of electron energy-loss spectroscopy in the scanning transmission electron microscope (STEM-
EELS), it remains that the vast majority of works concern collective or single-particle excitations that are well
described by the electrostatic approximation, which neglects retardation and magnetic field effects. Here we
demonstrate a simple case in which that approximation is fundamentally inadequate. When the beam energy
is above the Cherenkov threshold and the geometric dimensions of the nanomaterial sample are on the order
of the wavelength of light in the material, spatial variations in low-loss (< 5 eV) spectral maps from guided
light modes may be observed. We demonstrate such observations for amorphous silicon disks and offer an
interpretation of the results based on the waveguide modes of a cylinder. We also demonstrate explicitly that
spatial variations from waveguide modes are manifest in analytic models for the especially simple geometry of a
STEM beam penetrating a dielectric ribbon. We discuss how these modes relate to those that have been observed

more generally in dielectric nanomaterials.
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I. INTRODUCTION

In recent decades, innovations in electron energy-loss spec-
troscopy in the scanning transmission electron microscope
(STEM-EELS) have enabled significant advances in existing
spectroscopic techniques to probe nanomaterials and have
also opened doors to new ones. Correction of the spher-
ical aberration intrinsic to round electron lenses [1,2] has
enabled subatomic-sized electron beams facilitating atomic-
resolution core-level mapping [3-8], and the introduction of
monochromators [9,10] has led to deep sub-100 meV (and
even near-meV) energy resolution—and the new field of vi-
brational spectroscopy in the electron microscope [11,12].
Together, high spatial and energy resolutions have allowed the
plasmonic [13—-17] and vibrational [18-27] modes of various
nanoscale materials to be mapped in detail. Used alongside
techniques like cathodoluminescence, such techniques now
allow investigators to converge on robust descriptions of
nanoscale materials systems [28,29].

Alongside these experimental innovations, continued ad-
vances in theory and computational methods have allowed
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theory and experiment to be closely compared. For plasmon
mapping using low-loss STEM-EELS, which is of particular
relevance here, both the discrete dipole approximation [30,31]
and the boundary element method [32,33] have been imple-
mented, allowing electrodynamic effects to be captured in
numerical simulations. For a precise match between theory
and experiment, an electrodynamic approach is undoubtedly
required. Yet in reviews of the literature [17,34], it is strik-
ing how successful the electrostatic approximation (i.e., the
approximation where the speed of light ¢ — co) has been
in describing the essential physics for many nanomaterials
geometries, despite its neglect of retardation and magnetic
fields. Indeed, apart from nanomaterials geometries that are
specifically tailored to generate electrodynamic effects (e.g.,
photonic crystals [35] or metallic arrays [36]), theoretical
treatments that compare the electrostatic and electrodynamic
approaches [22,37,38] have reported only modest differences
in the predicted STEM-EELS signals, with the incorporation
of electrodynamic effects often just redshifting modal fre-
quencies and lowering spectral intensities of the electrostatic
prediction by a few percent.

By contrast, silicon nanocavities are known to have Mie-
like resonances that can be excited by electrons [39], and
new STEM-EELS measurements by Flauraud and Alexan-
der [40,41] on amorphous silicon disks show electrody-
namic effects that cannot be captured by the electrostatic
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FIG. 1. Dielectric functions of crystalline silicon [44—46] (top)
and amorphous silicon (bottom). Real parts of the measured values
are plotted in blue, and imaginary parts are plotted in red.

approximation. In the constituent datasets of the latter work,
spectral maps in the low-loss region <2.4 eV were obtained
from amorphous silicon disks with diameters in the range
100-500 nm. These maps superficially resemble those pre-
dicted from the surface modes of thin disks [42] or oblate
spheroids [43]. Crucially, however, surface modes in the elec-
trostatic approximation require the real part of the dielectric
function to be negative at the resonance frequency, whereas
silicon has a dielectric function that is positive and increasing
in the energy range of interest, as shown in Fig. 1. Hence,
the results of Flauraud and Alexander are not attributable to
electrostatic surface modes. Further explanation is needed.

The purpose of this paper is twofold: first to explore
models of waveguide modes in STEM-EELS theoretically, in
both continuum semiclassical and discretized normal-mode
approaches, and second to explore how such models com-
pare to the experimental observations of silicon disks, whose
measurements are further explored here. In Sec. II we briefly
review how the waveguide modes manifest in well-known
analytic solutions for a relativistic electron beam penetrating a
dielectric ribbon. Although a Si layer surrounded by SiO; has
been treated electrodynamically in previous works [47,48],
the ability of classical Fermi-type loss models to capture the
spatial features of waveguide modes seems to have gone previ-
ously unremarked. In Sec. III, we develop a waveguide-mode
model for an electron beam running parallel to the wall of a
circular cylinder, and in Sec. IV we compare the results of this
model with the previously reported measurements on silicon
disks. We find good qualitative agreement between the trends
in data for modes imaged across five separate disks, although,
as we discuss in Sec. V, further numerical work is needed to
address the details of how the relative energies of modes shift
with changes in particle aspect ratios.

We show here how waveguide models can guide our
thinking about where electrodynamic effects will be most sig-
nificant in STEM-EELS, granted a few pertinent concessions.
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FIG. 2. Ribbon geometry, with ribbon material characterized by
the dielectric function ¢ from x = 0 to x = d, surrounded by a mate-
rial with the dielectric function &y. The geometry is pictured here in
cross section. The electron beam runs parallel to the z axis, piercing
the ribbon at x = x;, and is illustrated as a dashed vertical line.

Experimentally observed samples necessarily have a finite
thickness, whereas the waveguide models assume an infinite
thickness. Hence it is understandable that these models will
not capture the experimentally observed mode frequencies
precisely. Additionally, since waveguide models are quasian-
alytic, they are ill suited to the treatment of more complex
sample geometries, as also explored with new STEM-EELS
measurements [41]. Nonetheless, our approach already cap-
tures most of the trends in the low-order modes of simple
geometries and leads us to a generic observation: When the
STEM beam energy exceeds the Cherenkov threshold for a
given material (v > ¢/+/¢) and the dimensions of the ma-
terial are close to the wavelength of light in the material
(d > mc/w4/e), we should expect to observe guided light
modes in low-loss STEM-EELS. In this regime, electrostatic
interpretations will prove fundamentally inadequate.

II. DIELECTRIC RIBBON

The problem of a classical electron beam running parallel
to a dielectric surface has been treated in both electrostatic
[49] and electrodynamic [50] approaches and has been ex-
tended to account for arbitrarily many parallel layers [51]. Our
interest in this geometry is as a simple test case to explore
where electrodynamic effects become important, as revealed
by comparing an electrostatic model to an electrodynamic
one. For an electron traveling parallel to the z axis, this type of
model solves for d>P/dz dw, the electron energy loss per unit
distance. When the integration limits over the ribbon thickness
z grow large, the associated probabilities from d P/dw can ex-
ceed unity. This can be interpreted as the number of expected
scattering events for modes at the given energy [52].

Fermi-type loss models treat the electron classically and
take the position of the beam relative to the interfaces (Fig. 2)
and the dielectric functions as their input. The electron beam
is treated as a point particle whose trajectory along z = vt
induces an electric field in the dielectric material it passes,
consistent with standard boundary conditions. This excites a
field that pushes back on the beam, causing energy loss. The
loss spectrum is then extracted from the integrand of the work
as

dP_ e
do nwho

Reli-/OQ dz exp(—ia)z/v)Ezi“d(xo, zZ, w)}. (1

[e.¢]

134109-2



WAVEGUIDE MODES SPATIALLY RESOLVED BY ...

PHYSICAL REVIEW B 103, 134109 (2021)

Enforcing electromagnetic boundary conditions allows sur-
face effects to be conveniently captured by such models,
although they implicitly include bulk effects as well.

In both the electrostatic and electrodynamic calculations
(i.e., in calculations that both ignore and include retardation),
the momentum transfer along the direction of electron flight
is constrained to k, = w/v. Integrating the expression for
d’P/dz dw over a thickness L still leaves us with a sum over
modes of varying transverse wave numbers ky:

dP &L K
- = Im dkeribbon (kya Xp, @) |. (2)
0

do  mhv?

The cutoff k™ is chosen to match the aperture size or to
reflect the material’s atomic scale, whichever is smaller. In
the numerical examples below we have assumed a 150 prad
aperture, which determines the k, cutoff as kﬁ”t = Ocutp/h,
where p is the relativistic momentum of the electron.

When retardation is ignored, the calculation can be done
using the electrostatic potential alone [49]. For a beam at x
with 0 < xp < d as in Fig. 2, the electrostatic Fermi model
yields

Xﬁﬁ)on = Xbulk + Xsurfs (3)
where
1
Xbulk = %
( )(ekao + 62|k\(d—xo)) +2(e — g0 ) "
e [ e o] B
and where k = /kZ + (w/v)? = [k, for ak = (0, ky, /v).

When retardation is included, the theory of multilayered
slabs from Bolton and Chen [51] can be simplified [48] to
treat the same ribbon geometry pictured in Fig. 2 with

22 o

1 2y é’+
R 2
R = — k,(-) AL
Xribbon C]8k2{8 y\¢ 1= q L+L-
in which

q0 = \/Kj — eo(w/c)?,
ho = g+ oqo, (6)

where o determines the signs used in these expressions (i.e.,
o can be “+” or “—""), and

kﬁ —e(w/c)?,

h° = qeo + o qoe,

7 = h" exp(q(2d — x9)) — oh™ exp(gxo),
% = h™ exp(gxo) + oh™ exp(—gxo),
¢ =hTexp(gd) +oh™, @)

where the terms in Eq. (5) with tildes on top have the same
form as their counterpart expressions in Eq. (7), except with
h? terms replaced by h° as defined in Eq. (6).

In the limit where ¢ — oo, the electrodynamic expression
of Eq. (5) reduces to the electrostatic expression of Eq. (3).
Bolton and Chen remark that the term with tildes is associated
with the transverse electric (TE) waveguide modes, which
travel in some direction k; with E - k; = 0 and E, = 0, and
the term without tildes is associated with transverse mag-
netic (TM) modes, which travel in some direction k; with
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FIG. 3. Simulated spectra in electrostatic and electrodynamic ap-
proaches (plotted in red and blue, respectively), for beams of varying
energy (left to right: 10 keV, 30 keV, 300 keV), penetrating the
centers of ¢-Si ribbons of varying widths (top to bottom: 10 nm,
100 nm, 1000 nm) that are 100 nm thick. Spectra have units of
inverse eV.

E./E, = k;/k, and H, = 0. As with the electrostatic model,
the electrodynamic model includes both “bulk” and “surface”
effects, although this distinction is blurred for waveguide
modes. In the bulk limit for a material with a real-valued
dielectric function, the model of Bolton and Chen recovers
the Frank-Tamm formula for Cherenkov losses of a relativistic
electron [53].

Our numerical examples simulate electron energy-loss
(EEL) spectra for an electron beam piercing a crystalline
silicon ribbon surrounded by vacuum. For the ¢-Si dielectric
function, we have used ellipsometry data [44,45] supple-
mented by model values [46] at low energies (Fig. 1). Results
have been expressed as spectra by multiplying by a sample
thickness of 100 nm, for electron beam energies of 10, 30, or
300 keV.

As can be seen in Fig. 3, electrodynamic corrections in-
crease in importance as the beam energy increases and as
the ribbon width increases. In the higher energy range where
Re[e] < 0, the electrostatic and electrodynamic models match
qualitatively, hence the results are mainly captured by the bulk
electrostatic contribution. We conclude that electrodynamic
corrections are most significant in the range where Re[e] > 0.

Where the electrostatic and electrodynamic predictions
differ dramatically, the sharp spikes in the electrodynamic
prediction arise from the TE modes, with a broad background
from the TM modes. Predicted STEM-EELS maps across
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FIG. 4. Simulated spectral maps across 100 nm thick c-Si rib-
bons, for ribbons of varying widths (from top to bottom, d = 10 nm,
100 nm, 1000 nm), shown as the sum of contributions (right) from
the TE waveguide modes (left) and TM waveguide modes (center).
Spectra all assume a 300 keV beam and have units of inverse eV.

ribbons of differing widths for a 300 keV beam in Fig. 4
clearly show standing-wave patterns, with the onset of cor-
responding nodal patterns occurring at slightly lower energies
for the TE modes and at slightly higher energies for the TM
modes. But at low energies, an extra band of TM contributions
without any nodes in E, presents itself, which means that for
thin layers the signal is dominated by TM mode contributions
[48].

These plots feature intriguing shifts in modal frequencies.
For one thing, the frequencies of observed modes decrease
when the ribbon’s width increases. This might be expected
from the intuitive notion that longer wavelengths correspond
to lower frequencies. We also notice that the frequencies
of corresponding modes decrease when the beam energy
increases. This may be less intuitively obvious, but in the
excitation of waveguide modes discussed below, one can see
more clearly how this results from physical constraints on
momentum transfer along the direction of electron flight.

III. DIELECTRIC CYLINDER

In this section, we develop a simplified treatment of in-
elastic scattering from waveguide modes in a nonmagnetic
dielectric cylinder of radius a surrounded by vacuum. In

Sec. IV we compare it with the data from amorphous silicon
disks. While a full treatment would include contributions of
the “leaky” modes [54] (or, with less interpretation, of the
radiation modes), the mathematical details for these are un-
clear for modes lacking azimuthal symmetry [55]. Here we
approximate the dielectric function for amorphous silicon by
only using its real part, as extracted from ellipsometry data
(see Fig. 1). This allows us to find the waveguide modes,
which are the only contributions we have considered.

To derive the waveguide modes of a cylindrical dielectric
rod, one can privilege the z components of the electric and
magnetic fields, those components pointing along the cylin-
drical axis. To discretize these modes, one can introduce a
fictitious length L, over which all components are periodic,
such that k, = 27¢/L,, where £ is some integer. All modes
are also described via an azimuthal mode label m. Together,
these lead to a spatial factor of exp(i(mf + k,z)) and a time
dependence exp(—iwt). The radial dependence of field com-
ponents is captured by the oscillatory function Bessel J,,,(k~r)
inside the cylinder and the decaying Bessel function K, (k;” r)
outside the cylinder, where

r {kf = Je(@w?/c? —k2, r<a ®
S V S/ ey r>a

and where o is the eigenfrequency for a mode.

Once the z components of the modes have been fixed, the
other components follow [56,57], and self-consistent bound-
ary conditions determine the mode frequencies. For the m = 0
modes (i.e., the modes with azimuthal symmetry), the modes
are either transverse electric (TE) or transverse magnetic
(TM). The TE modes are defined by the fact that E, = 0;
they cannot be excited by an electron beam running parallel
to the cylindrical axis. But the TM modes have an oscillatory
E, and H, = 0, and can be imaged by an beam parallel to
the cylindrical axis. The self-consistency condition for TM
modes is

k= Jo(k=a)

Jy (ks
£ ke
k> Ko(k>a)

x Ké(kia)> o ©

where the primes denote derivatives of the Bessel functions
with respect to their arguments. This expression can be used
to solve for mode frequencies. Notice that the condition that
k, is real-valued both inside and outside the cylinder sets the
upper and lower limits on the mode frequencies as

(10)

which also applies for the hybridized modes discussed
below.

Other modes, modes with azimuthal variation, cannot be
categorized according to the TE/TM distinction. The general
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eigenmode equation

1 J (k=
<_M+

1 K, (k7 a)
k= Jy(k=a)

k> K (k>a)

N ERAGT
k,»< J111(kr<a)

m2k?c? 1 1 2
= — + an

@? \(k7 ) ()
can be solved to find allowed mode frequencies. Following
Snitzer [57], the modes can be parameterized using a factor

_ o |H|
k:c |E;]
that depends on the ratio of the z components of the magnetic
and electric field amplitudes at the cylindrical surface (|E,|
and |H,|, respectively). We should expect P to diverge for
the TE modes and to approach zero for the TM modes. For
these hybridized modes, we label those modes that are more
like the TE modes as the EH modes, defined by the fact
that 1 < |P|, and we label those modes that are more like
the TM modes as the HE modes, defined by the fact that
0<|P| <.

Waveguide modes are typically labeled with two “quantum
numbers’—e.g., TM,,, or HE,,,—that refer, respectively, to
the azimuthal dependence (i.e., the factor of exp(imf)) and the
order of the solution (i.e., n = 1 labels the lowest-frequency
solution for a given m and k,, n = 2 labels the second-lowest-
frequency solution, etc.) [58]. Solutions of different k, but the
same m and n often have the same qualitative features.

If we wish to simulate the STEM-EELS imaging of these
modes, they must be correctly normalized [59]. In the projec-
tion approximation for a point probe at x = (xg, yo), the EEL
transition probability in terms of these normalized electric
field modes for mode labels ¢ (for k;), m (for 6) and n (for
solution number) leads to a transition probability [60] of

e \2
> t/jdz exp(iopmz/v)E;,, (X, 2)| ,
hwémn
13)

where, as above, v is the speed of the beam electron. From
this, the STEM-EEL spectrum becomes

1 Kk a)
k> Ky(k>a)

12)

2

Pémn(x) = <

dpP
do = Z Ppyn (X)8 (0 — g )- (14

tmn

The normalization introduces a factor of L, in Py,, which
leads to an expression of loss per unit length, d>P/dz dw, and
the integral over z picks out modes for which k, = wg,, /v.
Fig. 5 shows the essential features of this model. Using a
simplified dielectric model where ¢ = 11.7 (this is g for a-
Si), the dispersion relations for the azimuthal mode labels m =
0 and m = +£1 are plotted. The dashed black lines indicate
the frequency limits at each value of &, as given by Eq. (10).
The dashed dispersion curves in these plots represent the TE
modes (blue, m = 0) and the EH modes (purple, |m| > 1),
which are either not imaged (the TE modes) or imaged with
low intensity (the EH modes). The solid dispersion curves
in these plots represent the TM modes (red, m = 0) and the

300 keV beam
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FIG. 5. Theoretical dispersion relations and line-scan spectra for
an unbounded cylinder (see cartoon, top left). The cylinder has a di-
ameter 2a = 300 nm and an unvarying dielectric constant ¢ = 11.7.
For the azimuthal mode labels m = 0 and m = %1, dispersion rela-
tions are displayed in the leftmost column, with the m = 0 TE modes
plotted as dashed blue lines and TM modes plotted as solid red lines,
and with the EH and HE modes of the m = %1 dispersion relations
plotted as purple dashed lines and solid orange lines, respectively. A
gray line intersects these curves to pick out the modes that are imaged
for a 300 keV beam. The spectral contributions from modes with
m = 0 and m = %1 are shown on the same rows as their dispersion
relations, and the summed contributions (along with higher-order m
modes) are shown on the top row, where it can be seen that the TMj,
and HE,,, contributions dominate.

HE modes (orange, |m| > 1), which together dominate the
spectra.

The bottom two rows of the theoretical line-scan spectra on
the right of Fig. 5 show the contributions fromm = 0 and m =
41 modes, as imaged by 300 keV beams. The modal contri-
butions have been broadened by 0.1 eV. These beam energies
are reflected in the dispersion relation plots as gray lines. The
gray lines intersect dispersion curves where the k, = gy, /v
condition is fulfilled. These plots show why modes appear
at lower energies for a higher energy beam, since a higher
beam energy increases the slope of the intersecting gray line.
Notice that the summed contributions from m = £1 modes
lead to azimuthal symmetry in the measurements even though
the modes themselves vary azimuthally.

IV. DISK MEASUREMENTS

A 300 keV convergent STEM probe (o ~ 17 mrad) was
deployed on five silicon disks whose diameters ranged from
100-500 nm. EEL spectra were recorded using a collection
angle of ~22 mrad. (Further specifications are provided in
our references [40,41].) Energies of the lowest-order modes
are sufficiently separated in the EEL spectra that we can track
them across disks of various sizes. Since experimental disk
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FIG. 6. For five disk diameters (scale bars represent 100 nm),
we show the HE;,-type mode maps (top row) and the TM;-type
mode maps (second row) as found directly in the STEM-EELS data,
summed over an energy window shown by the error bars on the
data points in the bottom row. In the bottom row, the experimental
frequencies are shown between theoretical predictions for the infi-
nite rod (lower dashed curve) and the thin disk (upper dot-dashed
curve). On the HE;; plot, two blue x’s represent additional modes
resembling those of the top row, which are visible only in the wider
disks.

thicknesses must be finite, energies predicted for a mode type
in the waveguide model with k, = wy,,,/v should be seen as
lower bounds on the modes for the measured disks. For an
upper bound on mode energies in the measured disks, we
used the “thin disk” approximation [61], which looks to fulfill
the condition k, = 27 /t, where ¢ is the disk thickness. This
condition gives the energy for a cylinder standing wave whose
nodes are at the disk faces. The disks measured here had
t ~ 100 nm.

These two limits are illustrated in Fig. 6, where for model-
ing now we use the real part of the a-Si dielectric function
(see Fig. 1). The two lowest-order modes can be seen in
EELS maps for each of the five disks, and the mode energy
as a function of disk diameter is plotted in the bottom row.
Assuming a disk thickness of 100 nm and a beam energy of
300 keV, the waveguide model (lower dashed line) and “thin
disk” approximation (upper dot-dashed line) in fact provide
bounds on the observed mode energies for two lowest-energy
waveguide modes, HE;-type and TMy;-type modes. The
experimental frequencies best match those predicted by the
waveguide model for the disks whose diameter is smallest,
which may be expected, as these are the only ones whose
thickness is comparable to its diameter. However, we note that
the additional dipole-type modes labeled with blue x’s in the
HE,; plot are not directly captured by the waveguide model
but may represent modes which the waveguide model predicts
will not be imaged, the TE(; modes, as discussed below.

2a=300 nm

measured modeled

dP

%103
|1 2501.67 eV (HE,) E. (HE3)
2 T T
N | 1s) o [ . .
| 1| |
] o5
| | |
-200 0 200 -200 0 200
- %103
2.25 eV o] 2:00 eV (TMp) | + E. (TMoyz)
4
| ‘
| 2
| 2\ i
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z (nm) z (nm)

FIG. 7. Low-frequency modes for the 2a = 300 nm disk. The top
row shows idealized line scans from radially averaged data. Each of
the four rows below this has a spectral map integrated over 0.1 eV
from the unprocessed experimental data (far left), a reflected radial
average of the experimental data (center left), a radial line scan of
the predicted intensity from theoretical waveguide mode(s) (center
right), and an in-plane map of E, for the theoretical waveguide mode
(far right). Dashed lines in the center columns represent cylinder
edges, and scale bars on spectral maps represent 100 nm.

Looking in more detail at the 300 nm disk in Fig. 7 shows
that the qualitative patterns observed in other low-order modes
also match the patterns expected from the cylinder waveguide
model. In the top row, where the radially averaged signal
is shown on the left and the waveguide model prediction is
shown on the right, the energy of the lowest order mode
is not sharp, perhaps from the continued presence of two
low-order modes. Even at higher energies, mode contributions
are summed in the experimental spectrum. For instance, the
summed contributions of the TMy; and HE,; modes in the
waveguide model compare more favorably with the observed
map variations at 1.72 eV than either model mode would on
its own. This is also true when comparing the TMg,- and
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HE),-type modes in the waveguide model with the observed
spatial variations in the STEM-EELS intensity at 2.25 eV.

V. DISCUSSION

The treatment above has focused on the middle ground
between two better-studied extremes. One extreme involves
narrow, thin samples and a moderately relativistic electron
beam, where the electrostatic approximation in low-loss
STEM-EELS often captures key features of EEL spectra. The
other involves wide, thick geometries and a highly relativistic
electron beam, in which case the Frank-Tamm formula for
electrodynamic bulk loss is often appropriate. Yet here we
have dealt with cases where the beam electron is swift enough
to introduce fundamentally electrodynamic effects but where
the sample geometry is not sufficiently extended to be de-
scribed by bulk loss. When the dimensions of the sample and
the wavelength of light in the material are comparable, and
when the electron beam travels more quickly than the speed
of light in a material, the possibility emerges for distinct,
spatially-varying modes to appear in EEL spectral maps.

In Sec. II, outcomes of the electrostatic and electrody-
namic models were compared for a thin ribbon of silicon in
vacuum, which showed that electrostatic and electrodynamic
models match at least qualitatively where the electron speed
v < c¢/+/Rele] when Re[e] > 0, and also when Re[e(w)] < 0.
But where v > ¢/+/Rele] and Re[e] > 0, waveguide modes
emerge that are absent from the electrostatic description. In
Sec. III, we developed these waveguide modes in an un-
bounded silicon cylinder, and in Sec. IV, we compared this
model to the observed STEM-EEL signals from silicon disks.
We note in passing that while the Fermi approach of Sec. II
and the normal mode approach of Sec. III should be formally
equivalent [62], the gap between one description and the other
has not been fully bridged here. We have not dealt in the nor-
mal mode approach with the fact that the dielectric function
is not strictly real-valued, which leads to nonradiative losses
that merit a more involved quantized treatment [63].

More significantly, different descriptions of a system can
lead to different conclusions about the causes of certain ef-
fects. For instance, sinusoidal variations of the waveguide
modes along the cylindrical axis may exceed the thickness
of the imaged sample, which Moreau et al. [47] concluded
could lead to an EEL signal being spread over a wider range
of frequencies. This is one possible explanation for why the
lowest-order mode in the radially averaged signal of Fig. 7
seems to extend from 1.0-1.4 eV. Yet a more likely explana-
tion is given in the optics literature [64,65]. Near the particular
disk dimensions of those displayed in Fig. 7 (d ~ 300 nm,

t =~ 100 nm), the frequencies of the numerically calculated
magnetic dipole (MD) and the electric dipole (ED) disk modes
approach one another. These MD and ED modes are similar,
respectively, to our HE;; and TE(y; modes. And while the TE
modes are a priori excluded from the waveguide description
since E, = 0 [see Eq. (13)], numerical calculations of similar
modes [66] show how the electric field can stretch above
and below the particle, providing one possible route toward
imaging with EELS. Indeed, a higher order TE mode may be
responsible for the “extra” dipole modes marked by the blue
“x” labels in the lower left subplot of Fig. 6 above [41].

The above classifications are described more fully in a
paper in preparation, in which STEM-EELS data from dielec-
tric forms are interpreted by considering the electromagnetic
resonances that may be excited in the nanostructures, with
the eigenmodes determined using a numerical solver [41].
Complementary to the work presented here, this approach
allows dielectric resonances to be compared across geome-
tries. For instance, disk modes that we have identified as
HE;;, TMy;, and HE;; modes might relate, respectively, to
MD, toroidal/vertical electric dipole, and a higher-order mag-
netic mode, an ordering in terms of ascending frequency that
is reproduced in other geometries [65]. However, since this
eigenmode approach does not determine the impulse response
of STEM-EELS, it does not model the spectral data, in con-
trast to the approach using waveguide modes pursued here.

VI. CONCLUSION

At beam energies above the Cherenkov threshold, electro-
dynamic effects become increasingly important to low-loss
STEM-EELS measurements as sample dimensions grow com-
parable to the wavelength of light in the material. Simulations
for crystalline silicon nanoribbons indicate that the spatial
variations of TE and TM waveguide modes may be observed
in EELS data using a swift STEM beam (v? > ¢?/¢) when the
ribbon width is ~100 nm. Simulations for silicon cylinders
using waveguide modes are able to capture key low-order
modes appearing in STEM-EELS measurements on disks of
amorphous silicon whose diameters are in the range 100—
500 nm. The lowest-energy modes in each disk resemble the
HE;; waveguide modes, and the next-to-lowest-energy modes
resemble the TM; waveguide modes. For disks of thickness
t, the unbounded cylinder model gives a lower bound on the
experimental mode energy where k, = w/v, and the “thin
disk” model gives an upper bound on the experimental mode
energy at k, = 2 /t. Such limits help to establish guidelines
for which STEM-EELS signals must be considered as essen-
tially electrodynamic, where any electrostatic interpretation
will be fundamentally unsuitable.
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