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Breathing mode of nanoclusters: Definition and comparison to a continuous medium model
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Breathing modes are closely related to many physical properties of nanoclusters. Decades of research,
however, failed to formulate a general and unambiguous definition. Here we present a straightforward and
widely applicable definition of breathing modes based on power spectra of geometric quantities, namely, surface
area, volume, etc. Applying group theory, normal-mode analysis, and molecular dynamics simulations, we have
explored breathing modes of several Aln clusters with high and low symmetries. The results suggest that our
definition is able to cover not only common breathing modes but also some hidden modes. Our consistent
definition also allows us to make a comprehensive and in-depth comparison with Lamb’s continuous medium
model, which reveals some high-frequency breathing modes are explicable only at the atomic level.
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I. INTRODUCTION

Vibrational properties provide essential insights into the
nature of nanoclusters and serve as a unique characterization
for morphology [1], thermodynamic quantities [2,3], surface
effects [1,4], etc. Among normal modes, the so-called breath-
ing modes (BMs), simple and experimentally detectable, are
of fundamental interest.

BMs are usually considered a type of vibration which
induces expansion and contraction of a finite system. This
phenomenological picture of BMs, however, creates ambigu-
ity and inconsistency. For instance, BMs have been defined
as uniform modes [5–9], namely, in-phase or equal-amplitude
vibrations. The latter imposes an extremely stringent condi-
tion on nanoclusters, which requires all atomic sites except
the body center to be equivalent. In fact, for realistic systems,
only a few nanoclusters fulfill such a prerequisite. Considering
the facts mentioned above, most studies focused on radial
breathing modes (RBMs) [10–13]. The analytical theory for
RBMs in trapped systems formulated by Olivetti et al. [14]
may be the one capable of capturing some universal features.
To the best of our knowledge, out-of-phase BMs, such as
axial ones (ABMs, also known as quadrupolar modes), are
less studied [15]. Suppose we approximate nanoclusters to a
continuous elastic sphere belonging to the full O(3) rotation
group; both radial (D(0)

g ) and axial (D(2)
g ) breathing (Fig. 1) are

Raman active and thus experimentally non-negligible. What is
more, for low-symmetry nanoclusters, due to their asymmetric
normal modes, it is quite a challenge to define a reasonable
BM coinciding with the phenomenological description.

Considering the incompleteness of the definition for BMs,
Henning et al. suggested a solution by defining quasi-BMs,
in which some of the smallest deviations from uniform BMs
are taken as a criterion [16]. However, the “smallest de-
viation” still contains considerable ambiguity and may be
far from enough to encapsulate all cases. The projection
approach adopted by several authors [1,16–18] could ex-
clude out-of-phase BMs in some circumstances and could

also be problematic for degenerate ABMs (see Ref. [17] and
Sec. III A).

Apart from atomic models, Lamb studied BMs of an
isotropic sphere based on the continuous elastic theory (CET)
[19,20]. He classified vibrational modes into two types: (i) tor-
sional modes that preserve the density and (ii) spherical modes
that usually induce volume oscillations [21]. As discussed
above, we are concerned with only two spherical modes
with angular momenta l = 0 and l = 2, analogous to radial
and axial breathing, respectively. Lamb’s results show that
frequencies of spherical modes are proportional to the recip-
rocal of sphere diameters [19,22]. Among many nanoclusters
[1,3,18,23–25], this linear relationship is found to be valid for
the lowest-frequency BMs, even for clusters containing only a
few atoms. Naturally, one may ask when a CET would break
down. The question still remains open.

In this paper, we present a precise, semiphenomenological
definition for BMs. Applying group theory and numerical cal-
culations, we demonstrate that our definition is able to cover
not only common BMs but also some hidden modes. By com-
paring our results with Lamb’s continuous medium model, we
find that some high-frequency BMs can be explained only at
the atomic level.

II. METHOD

Information about BMs is encoded in the power spectra
(PS) of fluctuations in geometrical quantities [GQs, denoted
Q(t )]. Then we have

�Q(t ) = Q(t ) − 〈Q(t )〉, (1)

PS = F (〈�Q(0)�Q(t )〉). (2)

Here 〈·〉 is a time average, �Q(0)�Q(t ) is the time au-
tocorrelation function of �Q(t ), and F denotes a Fourier
transform. PS can easily be obtained from molecular dynam-
ics (MD) simulations. By appropriately choosing Q(t ) (see
below), peaks in PS would indicate only RBMs and/or ABMs.
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FIG. 1. Illustrations of (a) radial and (b) axial breathing modes of
an ideal elastic sphere. A monopolar RBM executes isotropic expan-
sion and contraction, while under a quadrupolar ABM it oscillates
between an oblate and prolate spheroid along an axis. At the atomic
level, symmetry decreases, and uncertainty arises, and normal modes
may not coincide with macroscopic vibrational modes. This poses a
challenge to precisely define BMs for nanoclusters, especially for
amorphous clusters.

Consequently, we define a BM as the mode with obvious
peaks in PS. Obviousness here refers to some conventional
peak-detecting technique, for example, a relative or absolute
threshold above background noises. The choice depends on
practical contexts and intentions. We will soon see that, with
certain well-defined Q(t ), this semiphenomenological defi-
nition is straightforward and consistent. If Q(t ) is properly
chosen, the above definition is applicable to any system at
finite temperatures, even without calculating displacements or
inspecting symmetry.

Similar techniques have been applied to pinpoint RBMs of
carbon nanotubes [26–28] (note that RBMs for a cylindrically
symmetric system are not the same as those of spherical
bodies). In this work, we try to extend this approach to more
general circumstances and examine the underlying physics.

For RBMs, characteristic GQs could be volume V and
surface area S. Because of inherent uncertainty in GQs of
finite systems, we chose three different algorithms. One is the
ellipsoidal approximation (labeled Ve, Se); another is based on
convex bounding (denoted by Vh, Sh). Volume is also calcu-
lated as a sum of approximated Wigner-Seitz cells (marked
Vws). Explicit formulas of Ve and Se read [29]

Ve = 4

3
πRaRbRc, (3)

Se = 2πR2
c + 2πRaRb

sin(φ)
[E (φ, k) sin2(φ)

+ F (φ, k) cos2(φ)], Ra > Rb > Rc, (4)

where Ra, Rb, and Rc are radii of gyration and E (φ, k) and
F (φ, k) are incomplete elliptic integrals. Vh and Sh are defined
as the total volume of tetrahedra and the total area of surface
Delaunay triangles [30], respectively. Vws can be calculated as

Vws =
N∑

i=1

vi, (5)

vi = γi
4π

3

N∑
j

′
(

ri j

2

)3

. (6)

∑′ includes only the nearest neighbors within a cutoff
distance r (ws)

c ; γi is a constant or some smooth real function.
For details on Vws, see Refs. [31,32].

Each GQ presented above reflects some specific aspects of
shape distortion. They can be classified into two categories:
(i) Ve and Se mainly depend on the rms radius (RMSR, R) of
a nanocluster,

R =
√∑N

i=1 r2
i

N
, (7)

Ve ∼ O(R3), (8)

Se ∼ O(R2) . (9)

(ii) Vh, Sh, and Vws relate to pair distances {ri j}. Note that Sh

and Vh depend only on surface atoms, but Se and Vws, without
this feature, are less sensitive to surface waves. Similarly,
Ve is insusceptible to local rearrangements. For some BMs,
fluctuations in Vh are subtler than that of Sh, such as those
modes where the average density is nearly unchanged. This, of
course, does not ensure the cluster acts like an incompressible
elastic body since it may be subject to internal contraction.

For ABMs, radii of gyration (Rα) and flattening (eαβ =
|Rα − Rβ |/Rα) are reasonable and well-defined GQs. The
square root in eccentricity will increase round-off errors; thus,
we use flattening instead. Empirical studies show that errors
induced by subtracting two similar radii (i.e., |Rα − Rβ |) are
endurable. An issue arises when isotropic RBMs appear in
PS of Rα , which can be alleviated by comparing with RBM
signals. From this aspect, eαβ is much better since no isotropic
mode can emerge in the radii difference |Rα − Rβ |.

In MD simulations for finite systems, in order to maintain
the correct temperature, it is necessary to exclude the global
translation and rotation. However, some numerical methods
would generate tiny rotatory drifts even though the net total
angular momentum is subtracted periodically. Such tiny rota-
tory drifts are observable only in a sufficiently long run. Their
effects on the breathing mode are thus ignorable as the major
contributions in power spectra are short-time correlations.
Without suppressing rotary effects, a simple trick is to sort
Rα by length. Sorted values are denoted by R(s)

α and e(s)
αβ .

All GQs are instantaneous quantities. The monopolar na-
ture of RBMs necessitates a change in surface areas of a
cluster, whereas isotropic movements cancel differences be-
tween Rα so that eαβ remains constant. Since ABMs are
anisotropic, both Rα and eαβ undergo observable changes.

With GQs defined above, we performed constant-energy
MD simulations to calculate PS and identify BMs. The MD
time step is 1 fs, and the system is equilibrated at 100 K.
Newtonian equations of motion are integrated with the Nord-
sieck predictor-corrector algorithm [33,34]. The system first
is allowed to equilibrate up to a few nanoseconds and is then
simulated for a few more nanoseconds; PS are calculated from
MD trajectories.

As an illustration and verification, we calculated BMs of
several Aln. Three Mackay icosahedral clusters (Al13, Al55,
and Al147, Ih point group) and a disordered Al43 (Cs point
group) are chosen. Configurations of these clusters are avail-
able in the Cambridge Cluster Database [35]. The interatomic
potential is modeled by a highly transferable glue potential
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TABLE I. Breathing modes of Ih and Cs clusters.

Point Angular Irrep
group Typea Irrepb momentum Degeneracy Ramanc Infraredc Lamb moded of O(3)b

RBM Ag l = 0 (monopole) 1 + − n � 1, l = 0 D(0)
g

Ih ABM Hg l = 2 (quadrupole) 5 + − n � 1, l = 2 D(2)
g

RBM A′ l = 0 1 + +
Cs ABM A′, A′′ l = 0 1 + +
aSee text.
bIrrep is short for the irreducible representation.
cA + symbol (− symbol) indicates that a mode is Raman and/or infrared active (inactive).
dSee text and Refs [19,20]. Since Cs clusters are anisotropic, there can be no matching Lamb mode.

for aluminum, which is fitted by the force-matching method
[36]. Compared with experimental results, it can reproduce
bulk phonon frequencies fairly well [36,37], which is essential
for studying vibrational modes.

III. RESULTS AND DISCUSSION

A. Group theory analysis and normal modes

From symmetry considerations, one may conclude some
general features of BMs. Consider a continuous sphere first.
We focus on fundamental vibrational modes, and overtones
are simply ignored. Phenomenologically, RBMs are monopo-
lar modes of isotropic expansion and contraction with D(0)

g
symmetry, while ABMs generate a quadrupolar transforma-
tion between the oblate and prolate spheroids with D(2)

g
symmetry but not vice versa. Here l of an irreducible repre-
sentation (irrep) D(l )

g is the angular momentum in the physical
context.

Point groups of nanoclusters are all finite. Among them, the
Ih group has the highest symmetry in three-dimensional space,
which can embody both l = 0 (Ag) and l = 2 (Hg) multipo-
lar modes. For amorphous clusters, the fivefold degeneracy
would be lifted, and the quadrupole is split into combinations
(i.e., direct products) of several irreps. For instance, the non-
degenerate Cs group has only a single symmetry element, so
that the reducible representation of a quadrupole is 3A′ + 2A′′
[38]. Consequently, both A′ and A′′ modes are candidates for
ABMs in this case. With detailed analysis, we can obtain
all possible connections between BMs and groups, which is
summarized in Table I.

Symmetry constraints determine the possible changes in
particular GQs of nanoclusters. We must emphasize that group
theory implies only symmetry. (i) It tells us nothing about
addition information on shape variations, which is determined
by actual configurations and materials. (ii) Also, it never en-
sures any mode with a certain symmetry will be a BM.

To remedy issue (i), we perform a conventional normal
mode analysis by diagonalizing the dynamical matrix Di j ,
which reads

Di j = 1

m

∂2U

∂ri∂r j
i, j = 1, 2, . . . , N, (10)

where U is the interatomic potential. Our results suggest, for
Ih clusters, only RBM would cause the volume and surface
area to change, but fluctuations in the volume may be subtler
due to cancellations between different parts.

As for issue (ii), one must carefully check mode patterns.
The presence of degeneracy, nevertheless, makes it harder to
analyze since eigenvectors can be linearly combined in an
infinite number of ways. Here we propose a recombination
technique to resolve this issue and take Ih clusters as an illus-
tration. Let us, s = 1, 2, . . . , 5, be five complete orthonormal
eigenvectors of an ABM (Hg irrep). We can recombine them
to maximize its radial component, namely,

max
cs

u · r̂ =
5∑

s=1

csus · r̂ (11)

s.t.
5∑

s=1

c2
s = 1, (12)

where r̂ is a radial unit vector. Equation (12) ensures the
recombination (u) is also a unit vector. By transforming {cs}
to hyperspherical coordinates (r, φ1, . . . , φ4) and disregarding
angular ranges, one could lift all constraints to obtain a global
optimization, which has solutions forming a four-dimensional
lattice. Basin hopping [39] is the most effective algorithm for
this problem and converges after dozens of iterations.

As illustrated in Fig. 2, the recombined vector u [Fig. 2(a)]
is projected onto a plane perpendicular to the principal axis

(a () b)

FIG. 2. Quadrupolar displacement fields of (a) the atomic and
(b) continuous models; both are normalized to give unit length.
Vibrational eigenvectors of an ABM are calculated by diagonalizing
the dynamical matrix of Al55 and recombined to maximize the radial
component. Arrows in (a) demonstrate the projected distribution
of recombined vectors. Arrows in (b) refer to the continuous dis-
placement field numerically calculated from Lamb’s analytic results
[19,21]. Both models give very similar mode patterns, which sug-
gests the validity of CET at nanoscale.
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TABLE II. Radial breathing modes.

Geometric quantitiesb

Cluster Mode IDa Irrep Frequency (THz) Ve Vws Vh Se Sh R(s)
α Rα e(s)

αβ eαβ

Al13 Ra
13 Ag 9.274 + + + + + + +

Ra
55 5.687 + + + + + + +

Al55 Rb
55 Ag 6.445 + + + + + + +

Rc
55 11.87 + − +

Ra
147 3.426 + + + + + + +

Rb
147 4.460 + + + + + −

Rc
147 5.511 + − + + + +

Al147 Rd
147 Ag 7.549 + + + + + +

Re
147 8.628 + + + + + +

R f
147 10.09 + − +

Rg
147 12.15 + − −

Ra
43 2.026–2.449c + +

Rb
43 3.358 + + +

Al43 Rc
43 A′ 5.589–6.049c + − − + + +(x)d +(xy)d

Rd
43 6.223 + + + + −

Re
43 6.536 + + + + +

aMode ID gives the name of each mode.
bGeometric quantities are defined in Sec. II. A + symbol denotes a clear signal, and a − symbol means a weak signal; otherwise, a blank cell
implies the mode is undetectable.
cAs peaks are broadened, shifted, and overlapped due to more profound anharmonicity in Al43, some modes at very close frequencies are
grouped together as a band of breathing modes.
dα, β = x, y, and z are the short, medium, and long axes of Al43, respectively. Combinations such as αβ = xy are planes defined by two axes.

z, which resembles the corresponding m = 0 displacement
field [Fig. 2(b)] of a continuous elastic sphere. m is the
projected angular momentum along the z axis. Our method,
consequently, enables us to directly compare both models.
Conversely, the widely known projection method, which
projects atomic vibrational modes onto a continuous elastic
displacement field, was found to be erroneous when applied
to ABMs [17]. For isotropic clusters (e.g., Al55), peaks re-
sembling a Hg degenerate mode “smear” around the real one.
For anisotropic clusters (e.g., Al43), the degeneracy is partially
lifted. In this situation, contributions from spherical and tor-
sional modes would mix together [17]. Both drawbacks can
be understood from issue (ii) mentioned earlier and will not
emerge in our recombination technique.

Mackay icosahedron (Ih group) is a common quasicrystal
packing structure of nanoparticles [40]. Suppose a Mackay
cluster AlN consists of n � 1 icosahedral shells, with 10n2 +
2 atoms in each shell. From group theory, one may deduce the
times of occurrence of Ag and Hg irreps, respectively,

c(Ag) = 1
48 [4n3 + 18n2 + 20n + 3 − 3(−1)n], (13)

c(Hg) = 1
48 [20n3 + 42n2 + 28n + 3 − 3(−1)n]. (14)

By checking mode patterns, such as in Fig. 2(a), we found the
numbers of RBMs and ABMs are

c(RBM) = c(Ag), (15)

c(ABM) = 1 < c(Hg). (16)

Our analysis is different from previous works [1,17], in which
only one RBM per cluster was identified.

B. Breathing modes from MD simulations

In Tables II and III, we present BMs of those four clusters.
Selected examples of PS are depicted in Fig. 3. Frequencies
calculated by the MD and dynamical matrix agree fairly well
since anharmonicity is weak at 100 K. The + symbol in-
dicates a clear peak, where the signal-to-noise (SN) ratio is
greater than 10; a − symbol means a faint signal with 0.1 <

SN ratio � 10; otherwise, a blank cell in Tables II and III
implies the signal is imperceptible if SN ratio � 0.1 or even
nonphysical. Rb

43 in Table II and Al in Table III are actually
the same mode. Such a dual role reflects the amorphousness
of Al43, where an axial mode can also produce recognizable
radial movements in all directions.

In practice, some GQs may be more efficient than others
for given modes, which can be easily seen from Tables II and
III. Notably, there is a qualitative difference between Ih and Cs

clusters. For the former, Vws and Sh are the best for RBMs,
while unsorted eαβ is suitable for ABMs. However, for Cs

clusters, ellipsoidal bounding Ve and Se are better to identify
RBMs, but sorted R(s)

α and e(s)
αβ are the most effective to locate

ABMs. We emphasize that sorted GQs are not valid for icosa-
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TABLE III. Axial breathing modes. See the footnotes to Table II for additional details.

Geometric quantities

Cluster Mode ID Irrep Frequency (THz) Ve Vws Vh Se Sh R(s)
α Rα e(s)

αβ eαβ

Al13 A13 5.576 − + + +
Al55 A55 Hg 2.528 + +
Al147 A147 1.117 + +

As A′′ 2.702 +(z) +(zx)
Al43 Am A′ 2.863 +(y, z) +(yz)

Al A′ 3.358 + + + +(x) +(xy)

hedral clusters (AlN , N = 13, 55, 147) since each of them has
12 equivalent directions, distributed isotropically. Thermal
fluctuations will interrupt the sorting procedure (Sec. II) and
generate nonphysical signals. Therefore, one must restrict the
use of the sorted GQs (here referring to radii of gyration) to
nonspherical systems.

C. The linear relationship

The most notable result of Lamb’s analysis is the linear
relationship between eigenfrequencies ν and the reciprocal of
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FIG. 3. Selected power spectra of geometrical quantities for (a)–
(c) Al13 and (d)–(f) Al55. (a)–(c) compare the characteristics of three
sets of geometric quantities (volume and surface, Rα , and e(s)

αβ ). Vol-

ume and surface in (a) clearly identify the RBM Ra
13, while e(s)

αβ in
(c) unambiguously pinpoints the ABM A13. Focusing on the RBM
labeled as Rc

55, (d)–(f) highlight the performance of three algorithms
for volume. The ellipsoidal approximation Ve, oversimplified, fails
to capture this mode. [Note that the miniature signal in (d) alone
could not be confidently identified as a breathing mode.] The volume
sum of Wigner-Seitz cells Vws is the most efficient one, while convex
bounding Vh is acceptable but not so satisfactory. (d), (e), and (f)
exemplify peaks that are “imperceptible,” clear (+), and weak (−),
respectively.

the diameter 1/d . Due to the uncertainty of nano-objects, the
mathematical definition of the diameter d is not quite rigorous.
Instead, we use Wigner-Seitz radii rs of bulk aluminum to
approximate cluster diameters [41],

rs = 3

√
3

4πρ
, (17)

d = 2rsN
1/3, (18)

where ρ is the bulk density. For aluminum, rs = 1.095 Å [42].
Figure 4 illustrates the frequency-diameter relationships.

Clearly, for Ih clusters, the lowest frequencies of BMs
[branches (b) and (c) in Fig. 4] scale quasilinearly with 1/d .
Similar results were confirmed both theoretically and experi-
mentally in other metallic nanoclusters of a broader size range
[1,3,18,23–25]. From underlying principles, we shall believe
this linearity holds for larger aluminum clusters, as their cutoff
wavelength is longer, which is essential to the continuous
medium approximation.

The low-symmetry Al43 is an oblate spheroid; naturally, it
may not match the predictions of Lamb’s model. However,
from Fig. 4, we can roughly conclude their frequencies are
very close to two fundamental branches [i.e., Fig. 4, branches
(b) and (c), BMs with the lowest frequencies] of Ih clusters. A
comparative CET solution for an ellipsoid cannot be written
in a closed form, and numerical methods are required. As a
reference, Visscher et al. have developed a nice scheme based
on the Hamilton’s principle [43]. Such comparison, however,
is beyond our scope.

D. Breakdown of continuous elastic theory

Apparently, for BMs with higher frequency, as shown in
Fig. 4, the quasilinear relationship breaks down. One reason
is the reduction of eigenmodes [2,17]. For instance, AlN has
only 3N − 6 vibrational modes. As N decreases, most Lamb
modes would be entirely eliminated, which is a characteristic
feature of nanoclusters.

Despite the above facts, one may still suspect two branches
of RBMs connected by dashed lines [Fig. 4, branches (d) and
(e)] may be high-frequency l = 0 Lamb modes. A careful
comparison of mode patterns, however, confirms they are spu-
rious. Note that Lamb’s model assumes spherical symmetry;
the following discussions are focused on only Ih clusters.

The first disparity between CET and the atomic model is
the occurrence of nonradial displacements. Such a property
can be qualified by a normalized quantity called radiality,
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FIG. 4. The quasilinear relationship between BM frequencies ν

and the inverse of the diameter 1/d . Frequencies are calculated
from MD simulations at 100 K, and diameters are approximated by
Wigner-Seitz radii (see text). The two lower branches (b) and (c) are
related to Lamb’s fundamental l = 0 RBM and l = 2 ABM, respec-
tively. Normal modes of (b) and (c) are in-phase vibrations, whereas
others involve out-of-phase motions. Branches (d) and (e) are spu-
rious Lamb modes since they seem to exhibit the same quasilinear
behavior as (b) and (c). The detailed study rejects such likelihood
since some of them have nonradial displacements or nonidentical
outline shapes, conflicting with predictions of CET (Sec. III D). BMs
of low-symmetry Al43 also stay close to Lamb’s modes (b) and (c),
even though Al43 is approximately ellipsoidal.

inspired by Henning et al. [16],

δr =
√√√√ 1

N − Ne

N∑
i=1;ui,r �=0

|ûi · r̂|2 ∈ [0, 1]. (19)

ûi is a unit vector along the displacement of the ith atom, and
Ne is the number of atoms to be excluded, where either ui or
r vanishes. Within CET, D(0)

g symmetry permits only radial
movements (δr = 1), so that many authors have defined RBM
as a purely radial mode [10,12,13]. We found two phenomena
contrasting this definition. First, several T1u dipolar modes of
Al13 also have δr = 1, but without any breathinglike feature
at all. (Note that RBMs should have even parity.) Second, a
few RBMs of Al147 bear δr < 1; as shown in Fig. 6, atoms
on the outermost edges have nonvanishing transverse shifts.
Those shifts are caused by local symmetry breaking; namely,
for each particular atom on the edge, its first-nearest neigh-
bors distribute asymmetrically. Although branch (d) in Fig. 4
seems like a Lamb mode, the existence of tangential torsion
under Rg

147 (Table II) rules out such a possibility.

FIG. 5. Nonradial surface deformation caused by a few high-
frequency RBMs of Al147. Each mode makes the cluster transform
between a pair of polyhedra. For example, R f

147 (ν = 10.09THz)
prompts Al147 to move back and forth between (a) and (b). For
clarity, deformation is exaggerated, and polyhedra are scaled to the
same size. As illustrated in each panel, nonradial motions of atoms
on the edge distort surface-center hexagons from regular ones. This
phenomenon contradicts Lamb’s prediction, where RBMs produce
purely radial vibrations. Rd

147 is the only one which keeps the icosa-
hedral outline unchanged, as in (c) and (d).

The second discrepancy with CET arises from surface
mode patterns. From the similarity principle, two elastic
spheres of different sizes under a RBM must have exactly the
same outlines. Figure 6 depicts the shapes of Al55 and Al147

under selected RBMs, exaggerated for clarity. Indisputably,
Figs. 6(a) and 6(e) or Figs 6(b) and 6(f) do not resemble each
other; thus, branch (e) in Fig. 4 is also fictitious.

FIG. 6. Stellations induced by selected high-frequency RBMs of
(a)–(d) Al55 and (e)–(h) Al147. (a) [or (b)] and (e) [or (f)] are two
modes connected by the dashed line in Fig. 4(e), while (c) [or (d)]
and (g) [or (h)] represent the fundamental Lamb mode in Fig. 4(b).
Two clusters under the same Lamb mode have very similar shapes,
e.g., small stellated dodecahedra in (c) and (g), as well as spheres in
(d) and (h). Because neither (a) and (e) nor (b) and (f) resemble each
other, they do not belong to any Lamb mode.
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FIG. 7. (a)–(f) projected distributions of recombined displace-
ments of Hg modes and (g) their continuous analogy derived from
CET. (a)–(f) are calculated from the dynamical matrix of Al147 and
recombined with a method described in Sec. III A. (g) demonstrates
a numerical solution to the quadrupolar mode of Lamb’s model,
plotted in scaled polar coordinates (rω, θ ), where r is the radius of
an elastic sphere and ω is the angular frequency. A low-frequency
mode (ω = ωL) has a scaled radius rωL = RL , i.e., the innermost
circle in (g), which has mode patterns similar to those of the ABM
demonstrated in (a). When ω happens to reach ωs and rωs = Rs,
there will be no radial displacement on the surface; thus, the elastic
sphere exhibits only internal vortical twists, resembling the mode in
(d). In addition, this form of vibration does not show any breath-
inglike pattern at all. As ω increases, patterns in (g) suggest both
types would occur repeatedly. From (a)–(f), however, it is clear that
most atomic quadrupolar modes cannot be explained by Lamb’s
theory.

So far, we have reached the conclusion that CET can repro-
duce displacement fields well for the lowest-frequency RBMs
alone.

E. Predictions beyond continuous elastic theory

As already discussed in Sec. III A, for Ih clusters, we found
all Ag modes are RBMs but only one ABM among several
Hg modes. To demystify the inequality between Hg irreps and
ABMs, Figs. 7(a)–7(f) depict projected distributions of se-
lected Hg modes of Al147, and Fig. 7(g) shows a displacement
field derived from CET. The lowest-frequency ABM uniquely

exhibits breathinglike behavior. It confirms that not every
mode with the required symmetry is a BM. As frequency in-
creases, however, CET predicts the ABM will appear multiple
times, except in the unlikely event that ω happens to have
some critical values (e.g., ωs in Fig. 7). Again, CET fails to
accurately predict the atomic behavior at higher frequency,
although a few modes such as that in Fig. 7(d) indeed exhibit
the vortical patterns.

Out-of-phase vibrations could appear for high-frequency
RBMs, which is very similar to optical phonons. Even though
they are beyond the applicable scope of CET, Lamb’s model
still successfully predicts their existence [ j1 changes sign for
ξ > 4.5 in Eq. (20); see below]. One question is, What do
they look like? They were ignored in previous work [5,41],
for their signals are weaker and do not preserve cluster shapes
but bring about transformations between a pair of polyhedra.
The latter phenomenon is very interesting. Most deformations
are stellations of a regular icosahedron, including Kepler-
Poinsot and excavated polyhedra, as depicted in Figs. 5 and
6. Forasmuch as the Ag irrep is totally symmetric, all such
deformations maintain the full icosahedral symmetry (Ih point
group). Remarkably, only the fundamental BMs [lines (b)
and (c) in Fig. 4] of each cluster involve purely in-phase
motions.

Signal damping makes it harder to detect out-of-phase
RBMs experimentally, which can be deduced from CET as
well. We start from the displacement field derived from Navier
equations [44], given in spherical coordinates (r, θ, φ),

u(l=0) = Ah j1(hr)r̂ = Ah j1(ξ )r̂, (20)

where A is the amplitude, h = ω/vl is the ratio of angular
frequency ω to longitudinal sound speed vl , ξ = hr is a di-
mensionless quantity, jn denotes spherical Bessel functions of
the first kind, and r̂ is a radial unit vector. Higher-frequency
RBMs induce smaller displacements on the surface and a
more modest change in continuous RMSR Rc,

Rc =
√∫

�

r2ρ(r)d3V

/ ∫
�

ρ(r)d3V , (21)

i.e., a continuous version of Eq. (7), since both f (ν) and g(ν)
(defined below) decrease monotonically,

f (ν) = sup {| j1(hr)|, h � 2πν/vl}, (22)

g(ν) = sup {|Rc(h)/Rc(0) − 1|, h � 2πν/vl}. (23)

Accordingly, signal intensities of Vh, Sh,Ve, and Se would
decrease as frequency increases; the same trend is shown in
Table II.

IV. SUMMARY

To resolve ambiguous and erroneous interpretations of
breathing modes, we proposed a more general and consis-
tent definition based on geometric quantities and their power
spectra. Our approach is capable of covering all types of
BMs (radial and axial, in-phase and out-of-phase BMs) and
practical for finite temperatures, regardless of cluster symme-
tries. By comparing BMs between nanoclusters and isotropic
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elastic spheres of Lamb’s model, we find that stellated ge-
ometry and tangential movements can be understood only
at the atomic level, where continuous elastic theory breaks
down. Also, a comprehensive study on the vibrational prop-
erties of additional spherical and nonspherical clusters is still
highly desirable. Although the exact details of the vibrational
properties, such as BM frequencies and nonradial surface de-
formation, are specific to aluminum clusters, our methodology

remains general purpose and unrestricted by the system under
study.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Grant No. 11874148). Computations are
supported by the ECNU Public Platform for Innovation.

[1] H. E. Sauceda, D. Mongin, P. Maioli, A. Crut, M. Pellarin, N.
Del Fatti, F. Vallée, and I. L. Garzón, J. Phys. Chem. C 116,
25147 (2012).

[2] A. Tamura and T. Ichinokawa, J. Phys. C 16, 4779 (1983).
[3] H. E. Sauceda and I. L. Garzón, Phys. Chem. Chem. Phys. 17,

28054 (2015).
[4] A. Posada-Amarillas and I. L. Garzon, Phys. Rev. B 54, 10362

(1996).
[5] E. Ghavanloo, S. A. Fazelzadeh, and H. Rafii-Tabar, Int. Mater.

Rev. 60, 312 (2015).
[6] A. Arbouet, N. Del Fatti, and F. Vallee, J. Chem. Phys. 124,

144701 (2006).
[7] G. V. Hartland, Annu. Rev. Phys. Chem. 57, 403 (2006).
[8] N. Del Fatti, C. Voisin, D. Christofilos, F. Vallée, and C.

Flytzanis, J. Phys. Chem. A 104, 4321 (2000).
[9] N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, and C. Flytzanis,

J. Chem. Phys. 110, 11484 (1999).
[10] D. Polli, I. Lisiecki, H. Portalès, G. Cerullo, and M.-P. Pileni,

ACS Nano 5, 5785 (2011).
[11] T. Zhou, C. Xu, X. Zhang, C. Cheng, L. Chen, and Y. Xu, Acta

Phys. Chim. Sin. 24, 1579 (2008).
[12] H. Portales, L. Saviot, E. Duval, M. Fujii, S. Hayashi, N. Del

Fatti, and F. Vallée, J. Chem. Phys. 115, 3444 (2001).
[13] J. H. Hodak, A. Henglein, and G. V. Hartland, J. Chem. Phys.

111, 8613 (1999).
[14] A. Olivetti, J. Barré, B. Marcos, F. Bouchet, and R. Kaiser,

Phys. Rev. Lett. 103, 224301 (2009).
[15] K. D. Sattler, Handbook of Nanophysics: Nanoparticles and

Quantum Dots (CRC Press, Boca Raton, FL, 2016).
[16] C. Henning, K. Fujioka, P. Ludwig, A. Piel, A. Melzer, and M.

Bonitz, Phys. Rev. Lett. 101, 045002 (2008).
[17] N. Combe and L. Saviot, Phys. Rev. B 80, 035411 (2009).
[18] J. G. Aguilar, A. Mañanes, F. Duque, M. J. López, M. P.

Iñiguez, and J. A. Alonso, Int. J. Quantum Chem. 61, 613
(1997).

[19] H. Lamb, Proc. London Math. Soc. s1-13, 189 (1881).
[20] H. Lamb, Proc. London Math. Soc. s1-13, 51 (1881).
[21] L. Saviot and D. B. Murray, Phys. Rev. B 72, 205433 (2005).
[22] A. C. Erigen and E. S. Suhubi, Elastodynamics, Vol. 2, Linear

Theory (Academic, New York, 1975).

[23] J. G. Aguilar, A. Mañanes, M. J. López, M. P. Iñiguez, and J. A.
Alonso, Int. J. Quantum Chem. 56, 589 (1995).

[24] F. Calvo, J. Phys. Chem. C 116, 7607 (2012).
[25] F. Calvo, J. Phys. Chem. C 115, 17730 (2011).
[26] N. R. Raravikar, P. Keblinski, A. M. Rao, M. S. Dresselhaus,

L. S. Schadler, and P. M. Ajayan, Phys. Rev. B 66, 235424
(2002).

[27] J. Kürti, G. Kresse, and H. Kuzmany, Phys. Rev. B 58, R8869
(1998).

[28] M. Machón, S. Reich, H. Telg, J. Maultzsch, P. Ordejón, and C.
Thomsen, Phys. Rev. B 71, 035416 (2005).

[29] D. W. Lozier, Ann. Math. Artif. Intell. 38, 105 (2003).
[30] B. Delaunay, S. Vide, A. Lamémoire, and V. De Georges,

Classe Sci. Math. 6, 793 (1934).
[31] D. Y. Sun and X. G. Gong, J. Phys.: Condens. Matter 14, L487

(2002).
[32] M. Ji, D. Sun, and X. Gong, Sci. China Ser. A: Math. 47, 92

(2004).
[33] A. Nordsieck, Math. Comput. 16, 22 (1962).
[34] J. R. Beeler, Radiation Effects Computer Experiments (Elsevier,

New York, 2012).
[35] D. J. Wales, J. P. K. Doye, A. Dullweber, M. P. Hodges, F. Y.

Naumkin, F. Calvo, J. Hernández-Rojas, and T. F. Middleton,
“The Cambridge cluster database,” (2001) .

[36] F. Ercolessi and J. B. Adams, Europhys. Lett. 26, 583 (1994).
[37] Y. Mishin, D. Farkas, M. J. Mehl, and D. A.

Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).
[38] A. Gelessus, W. Thiel, and W. Weber, J. Chem. Educ. 72, 505

(1995).
[39] D. J. Wales and J. P. K. Doye, J. Phys. Chem. A 101, 5111

(1997).
[40] A. L. Mackay, Acta Crystallogr. 15, 916 (1962).
[41] M.-Y. Ng and Y.-C. Chang, J. Chem. Phys. 134, 094116 (2011).
[42] P.-G. Reinhard and E. Suraud, in Introduc-

tion to Cluster Dynamics (Wiley, Grünstadt,
Germany, 2008), pp. 259–266.

[43] W. M. Visscher, A. Migliori, T. M. Bell, and R. A. Reinert, J.
Acoust. Soc. Am. 90, 2154 (1991).

[44] W. Cheng, S.-F. Ren, and P. Y. Yu, Phys. Rev. B 71, 174305
(2005).

134108-8

https://doi.org/10.1021/jp309499t
https://doi.org/10.1088/0022-3719/16/24/011
https://doi.org/10.1039/C5CP00232J
https://doi.org/10.1103/PhysRevB.54.10362
https://doi.org/10.1179/1743280415Y.0000000002
https://doi.org/10.1063/1.2185631
https://doi.org/10.1146/annurev.physchem.57.032905.104533
https://doi.org/10.1021/jp994051y
https://doi.org/10.1063/1.479089
https://doi.org/10.1021/nn201468h
https://doi.org/10.1016/S1872-1508(08)60065-0
https://doi.org/10.1063/1.1396817
https://doi.org/10.1063/1.480202
https://doi.org/10.1103/PhysRevLett.103.224301
https://doi.org/10.1103/PhysRevLett.101.045002
https://doi.org/10.1103/PhysRevB.80.035411
https://doi.org/10.1002/(SICI)1097-461X(1997)61:4<613::AID-QUA2>3.0.CO;2-Z
https://doi.org/10.1112/plms/s1-13.1.189
https://doi.org/10.1112/plms/s1-13.1.51
https://doi.org/10.1103/PhysRevB.72.205433
https://doi.org/10.1002/qua.560560515
https://doi.org/10.1021/jp302071a
https://doi.org/10.1021/jp205656m
https://doi.org/10.1103/PhysRevB.66.235424
https://doi.org/10.1103/PhysRevB.58.R8869
https://doi.org/10.1103/PhysRevB.71.035416
https://doi.org/10.1023/A:1022915830921
https://doi.org/10.1088/0953-8984/14/26/101
https://doi.org/10.1360/04za0008
https://doi.org/10.1090/S0025-5718-1962-0136519-5
https://doi.org/10.1209/0295-5075/26/8/005
https://doi.org/10.1103/PhysRevB.59.3393
https://doi.org/10.1021/ed072p505
https://doi.org/10.1021/jp970984n
https://doi.org/10.1107/S0365110X6200239X
https://doi.org/10.1063/1.3563803
https://doi.org/10.1121/1.401643
https://doi.org/10.1103/PhysRevB.71.174305

