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Self-dual singularity through lasing and antilasing in thin elastic plates
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We show here that a coherent perfect absorber and laser (CPAL) enabled by parity-time (PT )-symmetry
breaking may be exploited to build monochromatic amplifying devices for flexural waves. The fourth-order
partial differential equation governing the propagation of flexural waves in thin-elastic piezoelectric plates
leads to 4 × 4 transfer matrices, and captures the interplay between propagating and evanescent waves that is
translated into PT -symmetry properties specific to elastic plate systems. We thus demonstrate the possibility
of using CPAL for such systems and we argue the possibility of using this concept to detect extremely
small-scale vibration perturbation with important outcomes in surface science (imaging of nanometer vibration)
and geophysics (improving seismic sensors like velocimeters). The device can also generate finite signals using
very low exciting intensities and/or alternatively can be used as a perfect absorber for flexural energy, by tailoring
the left and right incident wave amplitude and phase, with evident energy harvesting applications.
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I. INTRODUCTION

In recent years the use of resonant elements enriched the
properties of periodic media with the paradigm shift of meta-
materials. These are constructed from a judicious arrangement
of physical resonators whose size is very small compared to
the typical wavelength of interest [1] and permit some exotic
applications such as negative refraction [2] and scattering
cancellation technique [3,4]. Recently, the concepts of electro-
magnetic and acoustic metamaterials and metasurfaces [2–4]
have been extended to elastic waves in solid structures [5]
that possess unique features. For instance, the tensorial nature
of the equations governing elastic waves requires complex
analytical and numerical modeling that takes into account the
coupling between pressure and shear waves at solid interfaces
[6]. In the same vein, a particular type of elastic solid, the
thin-elastic plate (TEP) has drawn a growing interest in the
wave physics community [6,7]. The plate has a small vertical
dimension (thickness) in comparison to its lateral dimensions
and wavelengths [6], resulting in the vertical displacement of
the plate largely determined by the flexural mode (i.e., no
shear), sometimes designed as A0 mode [6]. The bending of
these TEPs can be described efficiently by the Kirchhoff-Love
(KL) equation [a fourth-order partial differential equation
(PDE)] and interestingly has a scalar nature in the case of
isotropic plates [6] [see Supplemental Material (SM) [8] for
derivation and model validation]. This feature allows for a
more straightforward numerical modeling of waves propa-
gating in isotropic TEPs. Subsequently, several designs have
been proposed for flexural waves, including cloaking [9–11],
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negative refraction [12], localized surface plate modes [13],
and elastic plate crystals [14,15].

In a different field of physics, it was shown in 1998
that non-Hermitian Hamiltonians with parity-time (PT )-
symmetry possess real eigenvalues [16]. First used in quantum
mechanics [17], this property was subsequently applied to
photonics because the paraxial wave equation is mathe-
matically equivalent to the Schrödinger equation [18,19],
leading to some remarkable properties such as an asymmetric
propagation of the modes or the existence of an excep-
tional point (EP) where the PT -symmetry is broken [20,21].
PT -symmetry gained a tremendous momentum among the
photonics community due to its promising applications, e.g.,
in environmental sensing [22], optical isolation [23], on-chip
optical systems [24], and cavity-mode selection in microring
lasers [25]. Recently, the similar asymmetric propagation be-
havior was reported for acoustic waves in balanced loss and
gain layers [26,27]. Intriguing applications of PT -symmetric
acoustic materials have been further envisioned, e.g., in unidi-
rectional invisibility cloaking [28], invisible acoustic sensing
[29], phononic lasing [30], and acoustic Willis coupling [31].
For elastodynamic waves, shunted piezoelectric (lead zirco-
nium titanate, i.e., PZT) thin materials may lead to gain/loss
in elastic plates (see SM [8]), depending on the resistance of
the shunted circuit [32–34], enabling a feasible platform to
study PT -symmetric-based physical properties [35–37].

We show in this paper the possibility to realize the equiva-
lent of lasing in elastic plates, i.e., FLASER, through coherent
perfect absorption and lasing (CPAL) effect thanks to gain
and loss values of Young’s modulus corresponding to the las-
ing threshold displaying a quantized behavior, which occurs
due to the topological character of the system. Both gain
and loss are obtained by using piezoelectric TEPs shunted
externally with electric circuits. All results are validated and
verified by means of a three-dimensional (3D) elasticity solver

2469-9950/2021/103(13)/134101(10) 134101-1 ©2021 American Physical Society

https://orcid.org/0000-0003-0351-4309
https://orcid.org/0000-0002-5924-622X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.134101&domain=pdf&date_stamp=2021-04-08
https://doi.org/10.1103/PhysRevB.103.134101


FARHAT, CHEN, GUENNEAU, AND WU PHYSICAL REVIEW B 103, 134101 (2021)

FIG. 1. Scheme showing the multiple layers and the interfaces
of a TEP, as well as the incoming and outgoing propagating and
evanescent flexural waves. The gray arrows show the x-y plane unit
vectors.

using finite-element-method (FEM)-based commercial soft-
ware COMSOL MULTIPHYSICS [38]. The spectral singularity can
be also used for coherent perfect absorber (CPA or antilasing)
in elastic plates.

II. BACKGROUND AND MATHEMATICAL
FORMULATION

In the frequency-domain regime, i.e., assuming an e−iωt

time dependence and further supposing locally isotropic struc-
tures, the equation governing flexural waves in TEPs is given
by (see SM [8] for derivation)

�2W − β4W = 0, (1)

where W is the displacement in the vertical (z) direction, and
� represents the Laplacian operator. β is the flexural wave
number related to angular frequency through the quadratic
dispersion β2 = ω

√
ρδ/D with δ the TEP’s thickness, ρ its

density, and D its flexural rigidity, that is, Eδ3/[12(1 − ν2)]
with E and ν being its Young’s modulus and Poisson’s ratio,
respectively. The width of these layers (in the x direction as
seen in Fig. 1) is assumed to be identical and is set as 20 cm.
The thickness of the plate (in the z direction) is set as 2 cm,
unless otherwise stated. The other parameters of the plates are
taken as follows: densities of 2790 and 7500 kg/m3, which
correspond to a Duraluminium and PZT TEPs, respectively
[39]. It should be emphasized here that in all our calculations,
we make sure that the flexural wavelength λ is always much
larger than δ, i.e., λ � δ. Equation (1) is supplied with four
boundary conditions, owing to the order of the PDE, which
are continuity of the displacement W , its normal derivative
n · ∇W = ∂W/∂n, the bending moment Mn, and Kirchhoff’s
stress Vn [8]. Since the structures considered in this work are
invariant in the y direction (see Fig. 1) and due to the thin-plate
approximation (KL), only the components in the x direction of
the above-mentioned parameters contribute to the boundary
conditions, i.e., W , ∂W/∂x, D∂2W/∂x2, and D∂3W/∂x3, by
omitting the minus sign in the last two expressions.

The solutions of Eq. (1) in the one-dimensional (1D) case
(i.e., d4W/dx4 − β4W = 0) consist of coexisting evanescent
(imaginary wave number) and propagating (real wave num-
ber) flexural plane waves. Thus, the displacement field in
region l (as shown in Fig. 1) can be written as

Wl (x) = 
1
l eiβl x + 
2

l e−iβl x + 
3
l e−βl x + 
4

l eβl x, (2)

where βl denotes the flexural wave number in the layer l and

i

l , i = 1, . . . , 4 should be determined by the four boundary
conditions. The left and right regions are denoted, respec-
tively, by L and R subscripts, so

WL/R(x) = 
1
L/ReiβL/Rx + 
2

L/Re−iβL/Rx

+
3
L/Re−βL/Rx + 
4

L/ReβL/Rx. (3)

The coefficient 
3
L and 
4

R are shown only for symmetry rea-
son, but these should be identically zero since they correspond
to exponentially diverging terms (as shown in Fig. 1 by the
crossed terms). The expression of the boundary conditions at
each interface are given in SM [8].

III. PT -SYMMETRY PROOF-OF-CONCEPT

A. Piezoelectric realization of gain and loss

To begin with, a comment about loss and gain conventions
in this system should be emphasized: In this work, since a
time dependence of e−iωt is assumed, one can expect that a
positive imaginary part of Young’s modulus would account
for losses. Yet, by observing the dispersion relation of flexural
waves, and since D (and hence E ) appears in the denominator,
a positive imaginary part of E would account for gain of the
flexural wave number, as

1

Re(E ) + iIm(E )
= Re(E ) − iIm(E )

Re(E )2 + Im(E )2 . (4)

A shunted piezoelectric TEP [32,33] may lead to an effective
isotropic Young’s modulus (or flexural rigidity) with a pos-
itive (gain) or negative (loss) imaginary part, depending on
the use of an inductor and a positive (or negative) resistor (see
SM [8]). It is possible to electronically obtain the negative
resistance by making use of an active negative-impedance
converter (NIC) [40].

Here, we build upon some recent works that have shown
the possibility of using shunted external circuits to tailor gain
and/or loss in TEPs [35] or beams [36]. For instance, follow-
ing Ref. [41] it is possible to derive (see SM for more details
[8]) the effective equations of the piezoelectric (PZT) elastic
layers. In the case of a plate system using the stress tensor
that can be written in a vector form σ = (σxx, σyy, σxy)T and
the strain tensor ε = (εxx, εyy, γxy)T , these equations are

⎛
⎝εxx

εyy

γxy

⎞
⎠ =

⎛
⎜⎝

s′
xx s′

xy 0

s′
xy s′

xx 0

0 0 2(s′
xx − s′

xy)

⎞
⎟⎠

⎛
⎝σxx

σyy

σxy

⎞
⎠, (5)

with

s′
xx = sE

xx − iωd2
xzZ̃

δ + iωεT
zzZ̃

, (6)

and

s′
xy = sE

xy − iωd2
xzZ̃

δ + iωεT
zzZ̃

, (7)

with Z̃ = SZ , S is the area of the piezoelectric patch and the
impedance Z = R + iωL, where R and L are the resistance
and inductance shunted externally, respectively. Here, we con-
sider (unless otherwise specified) the parameters of PZT are
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FIG. 2. (a) Proposed device when operating at the lasing point. The size of the arrows is proportional to the strength of the wave. (b) Am-
plitude of the (left/right) transmittance/reflectance of the structure, in logarithmic scale. (c) Phase of the (left/right) transmittance/reflectance
of the same structure, in units of π . All three layers have the same width of 20 cm. The thickness of the TEPs is equal to 2 cm, its Poisson’s
ratio is equal to 0.334, its density to 2790 kg/m3, and its Young’s modulus is equal to 70 GPa. In the active/lossy layers, i.e., PZT, the density
is 7500 kg/m3, while Young’s modulus and Poisson’s ratio are taken from the effective parameters, of Eqs. (6) and (7), and its thickness is
0.5 cm. The dark stars indicate the results obtained by using 3D FEM COMSOL results (see Appendix C).

dxz = −2.74 × 10−10 C/N, sE
xx = 1.65 × 10−11 Pa−1, sE

xy =
−4.78 × 10−12 Pa−1, and εT

zz = 2000 ε0 where ε0 = 8.854 ×
10−12 F/m is the permittivity of free space [35,36,41]. Ow-
ing to Eq. (4) and Eq. (6) a positive (negative) value of R
corresponds to loss (gain) (see SM [8]). It is indeed further
noted that these equations have the same form as the equations
for the isotropic nonpiezoelectric thin plate, which means the
shunted PZT TEP can be treated as the effective isotropic
nonpiezoelectric plate with an equivalent Young’s modulus
E eff = 1/s′

xx (see SM [8]).

B. Proof-of-concept demonstration

The structures we consider [schematized in Fig. 2(a)] con-
sist of three elastic layers denoted as G, L, and P, which
stand for gain, loss, and passive, respectively. The possible
realization of gain and/or loss in such elastic structures is dis-
cussed in the previous section. Using Eq. (B3) of Appendix B
we compute the reflection and transmission spectra of this
structure when a flexural plane wave is impinging from the
left and/or the right. The results are depicted in Figs. 2(b) and
2(c) in the frequency range 115–130 Hz (which corresponds to
flexural wavelengths in the surrounding medium in the range
121.8–129.5 cm, i.e., λ � δ). Since PT -symmetric wave sys-
tems are reciprocal, the transmittance is the same for wave

incident from both directions. However, for this specific PT -
symmetric scenario, the reflectance is drastically different for
the right (rR) and left (rL) incidences as shown in Fig. 2(b).
Here we denote R = |r|2 and T = |t |2.

For instance, RL is nonzero for essentially all the spec-
tral range considered here, whereas RR undergoes a resonant
effect and vanishes around 122.8 Hz. By inspection of the
behavior of the phase shown in Fig. 2(c), we can clearly see
that the phase of RR is characterized by a jump around the
same frequency of 122.8 Hz. This phase jump of π confirms
the resonant asymmetric reflection from the PT -symmetric
system. The dark stars in Figs. 2(b) and 2(c) give the numer-
ical results obtained by making use of FEM that solves the
full elasticity equation in three dimensions (see Appendix C),
using COMSOL MULTIPHYSICS [38]. The two models agree very
well in the considered frequency range, as the wavelength is
around 1 m, i.e., λ � δ and hence the KL plate model works
well (only a small shift of the frequency can be observed of
less than 0.15 Hz).

In order to understand this peculiar behavior (asymmetric
reflection), we check the scattering matrix of the system. The
reflection and transmission are computed from Eq. (B3) and
denoted as r and t , without the subscripts, since only one type
of flexural wave contributes to the far-field scattering. Then,
these coefficients can be used to define the scattering matrix
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FIG. 3. (a) Contour plot of the amplitude of the eigenvalues
versus frequency and RS. The dark stars give the results obtained
by using FEM full 3D elasticity. (b) Eigenvalues for (increasing with
arrow’s direction) loss/gain values, i.e., RS = (50, 75, 85, 100, 105,
110, 125, and 150) 
m2. Thick lines correspond to RS = 100 
m2.
The inductance of the piezoelectric layer is LS = 0.1 Hm2. The
thickness of the layers is equal to 2 cm, the density and Poisson’s
ratio of the passive layers are 2790 kg/m3 and 0.334, respectively,
while the density of the gain/loss layers is 7500 kg/m3 and their
thickness is 0.5 cm.

(in terms of solely the propagating waves) as follows:

S̃(β ) =
(

t rR

rL t

)
, (8)

where rR and rL denote the reflection coefficient from the
right and the left, respectively. The matrix of Eq. (8) obeys
the relation S̃∗(β ) = S̃−1(β ), where ∗ denotes the complex
conjugate, and hence, it can be deduced that rLr∗

R + tt∗ = 1.
The eigenvalues of the scattering matrix (s±) are obtained
as function of the S parameters (t, rR, and rL), i.e., s± =
t ± √

rLrR = t (1 ± i
√

(1/T − 1)).
Figures 3(a) and 3(b) depict the absolute value of the two

eigenvalues of the scattering matrix (corresponding to propa-
gating waves, i.e., given in Eq. (8) versus the spectral range
considered earlier for different values of RS. It can be clearly
seen from the two-dimensional (2D) plot of Fig. 3(a) that for
each value of RS there exists a different frequency, where the
spontaneous symmetry breaking takes place (or equivalently,
the EP occurs). Moreover, the dark stars show the numerical

results obtained again using FEM and demonstrate a good
agreement between two models (i.e., using FEM and TMM:
transfer matrix method). More specifically, let us consider
curves with thicker lines in Fig. 3(b) showing the case of
Figs. 2(b) and 2(c). For frequencies higher than 122.8 Hz
(blue highlight), we can observe non-unit-modular eigenval-
ues. This stems from the fact that |t |2 > 1, and the flexural
system is thus in the so-called broken phase [26]. On the
contrary, for frequencies lower than 122.8 Hz (yellow high-
light), s± have both the unit module and are nondegenerate,
implying that the system is in the exact phase. Around this
critical frequency, a sudden phase change occurs when the
PT -symmetric structure flips from a broken-PT to a PT -
symmetric domain: An EP takes place. For a small value of
RS = 50 
m2, the EP frequency is around 127 Hz, while for
RS = 150 
m2, a redshift close to 117 Hz can be observed.
This behavior is confirmed by observing the phase of rL, that
undergoes an abrupt jump of π radians, around the same
frequencies [8], validating the possibility of tuning the EP
location by varying Im(E ) of gain/loss layers. Such a large
tunability of the EP with the amount of (equal) loss (and/or
gain) in E is somehow specific to flexural waves, as in acous-
tics, for example, the location of the EP is less sensitive to the
value of Im(ρ) [42]. More detailed analysis of the peculiarity
of flexural PT -symmetric systems is given in SM [8] and
showcases more degrees of freedom to tune and thus control
the location and even shape of the EP zone, essentially due
to its parabolic dispersion relation and the coupling between
propagating and evanescent waves at the interfaces between
the gain/loss layers, which differentiates its physics from other
waves.

IV. CPAL FOR ELASTICITY

A. Peculiarity of flexural PT -symmetry: Interplay
of propagating and evanescent waves

Flexural waves propagating within a piezoelectric TEP
were shown to obey the KL equation, i.e., Eq. (1) in the fre-
quency domain. In addition to propagating flexural waves, i.e.,
e±iβx, there exist evanescent (inhomogeneous) flexural waves,
differentiating the TEP from its acoustic counterpart, in which
only propagating waves are considered. In a free propagating
domain, only the propagating component survives as shown
in Eq. (3) where the evanescent wave is proportional to e±βL,Rx

for negative and positive x, respectively. Since these evanes-
cent waves decay exponentially as they travel away from
their corresponding interfaces, they do not contribute to the
scattering coefficients, which are measured in the far field.
Yet, in order to fully characterize the scattering of flexural
waves, we have to take into account the contribution of all
kinds of waves at the inner interfaces (shown in Fig. 1).
What is more intriguing is that evanescent waves establish
propagating components, in the presence of gain and loss.
This behavior is unlike the case of elastic plates without
loss and/or gain, where the evanescent waves are confined
to interfaces.

B. Analysis of the CPAL effect

Inspired by this behavior of EP for flexural waves, we
consider the possibility of CPAL effect. It is well known that
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FIG. 4. (a) Amplitude of the eigenvalues in the frequency domain where CPAL takes place for LS = 1.08, 1.1, and 1.12 Hm2 (red,
black, and blue, respectively). For the higher frequency regime, see SM [8]. Points A and B indicate lasing and perfect absorption operation,
respectively. (b) Transmittance and reflectance from the CPAL structure. The inset plots the output coefficient � given in Eq. (9). The dark star
curves are FEM-based results (obtained using the 3D full elasticity module of COMSOL [38]). (c) Numerically computed (3D FEM) snapshots
of flexural energy |W |2 for the FLASER in (a) at operating frequency 196.6 Hz (Point A) when the incident wave impinges from left (top) and
right (bottom). (d) Same as in (c) but for the CPA mode (Point B) at the same frequency with 
2

R = Ms
21


1
L . The colorbars are normalized by

the amplitude of the incident waves.

in optics, PT -symmetric systems can operate as coherent
perfect absorbers by totally absorbing the incoming energy
(from impinging waves) and as lasers by emitting coherently
outgoing waves [43–45]. These two phenomena can be char-
acterized by the overall output coefficient

� =
∣∣
2

L

∣∣2 + ∣∣
1
R

∣∣2

∣∣
1
L

∣∣2 + ∣∣
2
R

∣∣2 , (9)

which accounts for the ratio of total outgoing intensity to
that of the incoming waves. Although absorbing and even
perfectly absorbing structures using different mechanisms
have been widely studied in acoustics [46–48] and elasticity
[49,50], the effects of lasing and CPAL effect for elastic plates
have not been investigated to the best of our knowledge.
For instance, to obtain efficient lasing, we maintain a similar
structure as before (see Fig. 3) and apply higher inductance,
as well as blueshifting frequencies. The result is plotted in
Fig. 4(a), which depicts the eigenvalues |s±| for frequencies
185–205 Hz. The plot is given for three values of LS (1.08,
1.1, and 1.12) Hm2 and |s−| can reach the lasing regime,
with |s−| ≈ 103, at frequency around 196.6 Hz (denoted A).
The complementary eigenvalue |s+| ≈ 0 is reminiscent of the
CPA regime as in fact we have s+ = 1/s∗

−. Thus, at the same
frequency, we have the lasing regime (s−) where the outgoing
energy is hugely amplified and the CPA regime (s+) where

the outgoing energy is canceled (i.e., the all impinging signal
is absorbed by the flexural system).

Figure 4(b) shows the transmittance T and reflectance R
spectra for a unit-amplitude flexural wave incidence. Both T
and R reach extremely high values at the frequency of Point A,
i.e., 196.6 Hz. The coefficient � shown in the inset of Fig. 4(b)
gives a better picture of the lasing efficiency of the device. At
the same frequency the spike reaching 105 manifests the lasing
effect. All these results are validated by the FEM model and
show good agreement as can be seen by the dark star curves.
To further demonstrate this effect, in Fig. 4(c) we plot the
flexural energy computed by COMSOL MULTIPHYSICS [38] in
the vicinity of the CPAL device where a normally incident
flexural wave of unit amplitude is impinging from the left (top
panel) and the right (bottom panel). In both cases, the scat-
tered waves (both transmitted and reflected) are significantly
amplified (in the range of 105). However, for one scenario (left
incidence) the transmittance is higher than the reflectance. For
the other scenario (right incidence) the reflectance dominates
as can be seen from the plots.

These results demonstrate the potential of using a simple
and compact (60 cm total width and 2 cm thickness) flexural
system to achieve the equivalent of a flexural laser that we
might coin a FLASER. Consider a flexural wave with very
small vertical displacement, of amplitude |W | ≈ 10 μm (i.e.,
|W | � δ) incident on the CPAL. Although this signal is very
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small, it will be amplified by the CPAL flexural device, to
the point that the output displacement will be in the range of
1 cm, i.e., |W | ≈ δ. Now to relate this effect to the transfer
matrix (see Appendix B) it is straightforward to see that las-
ing may occur, when we have finite (propagating) outgoing
signals 
2

L and 
1
R for very small incoming signals. This may

occur for Ms
22 = 0 (and the outgoing waves are related through

Ms
12 = 
1

R/
2
L) without considering the evanescent fields, as

can be concluded from Eqs. (B3) and (B4) in Appendix B.
Yet, this is generally not possible, as the evanescent fields 
4

L
and 
3

R cannot be assumed to be zero at the boundary of the
system. Hence, one must include the intermediate evanescent
waves in deriving the scattering properties of the system. The
deduced reflection coefficients, for a left incidence (without
loss of generality) can be obtained [8] from the terms of
the S matrix, i.e., those of the first column that give the
reflection/transmission coefficients of both propagating and
evanescent waves, and that can be explicitly given by

r1 = S11 =

∣∣∣∣−Ms
21 Ms

24

−Ms
41 Ms

44

∣∣∣∣
�Ms

; r2 = S21 =

∣∣∣∣M
s
22 −Ms

21

Ms
42 −Ms

41

∣∣∣∣
�Ms

,

(10)

where | · | is the determinant function and �Ms = Ms
22Ms

44 −
Ms

42Ms
24. This system has to satisfy the general condition that

for a unit-amplitude incident signal (
1
L = 1) the outgoing

signals diverge. Equivalently, if the incidence is taken near
zero and if we require finite scattering signals, as occurs in
lasing, we must ensure that the denominator of the expressions
in Eq. (10) is zero, which yields �Ms = 0, which is markedly
different from the simple condition Ms

22 = 0 for acoustic or
optical systems, for example [see Fig. 7(b) in SM [8] for the
comparison of both conditions]. For the transmitted signals,
it is easy to obtain their expressions (see Appendix B), i.e.,
t1 = S31 = Ms

11 + Ms
12S11 + Ms

14S21.

V. DISCUSSION

The complexity of flexural CPAL, discussed in the previous
section, stems thus from the interplay between propagating
and evanescent waves that cannot be ignored for flexural
systems, as clearly demonstrated by the lasing equation that
intertwines amplitudes of both kinds of waves. The variation
of the parameter � ∝ 1/(�Ms)2 responsible for huge outgo-
ing amplitudes (i.e., FLASER) is depicted in Fig. 5 versus
the frequency of the flexural wave and LS. The dark red
regions correspond to the FLASER regime (i.e., �Ms ≈ 0).
We can clearly see that if FLASER is defined when the log-
arithmic amplitude of the lasing parameter is above 30 dB,
a narrow lasing region (interval) in terms of LS can be de-
fined for each frequency, below (above) which no lasing can
occur. From this landscape of LS we find that this behavior
is hyperbolic (dark red region). The magnified view given
in the inset of Fig. 5 further shows that the FLASER effect
takes place indeed at discrete locations shaped as a vertical
rhombus. This means that the FLASER effect is extremely
sensitive to frequency, and slightly less sensitive to the ex-
ternal parameter LS, giving some freedom to experimental
design. A similar reasoning can be made for the CPA ef-

FIG. 5. Contour plot of � versus frequency and LS in logarith-
mic scale, i.e., 10 log10(�). Dark red regions correspond to the lasing
regime (�Ms ≈ 0). The inset shows a magnified view marked by the
white dashed square.

fect. In fact, for perfect absorption to occur, we must cancel
the outgoing waves for finite incoming waves. The same
analysis as before shows that for the CPA to take place,
we must ensure that Ms

11

1
L + Ms

13

3
L = 0 and Ms

21

1
L +

Ms
23


3
L = 
2

R. Yet, in the CPA case, 
3
L = 0 as it corre-

sponds to an exponentially growing field when x → −∞.
Thus for the CPA operation, evanescent waves are not directly
present in the condition on the amplitudes. However, their
indirect effect on the M matrix is still present. Therefore, we
need to launch two waves incoming from opposite directions,
and by changing their amplitude and phase ratio, we will be
able to selectively excite the lasing or CPA mode, as can be
seen in Fig. 4(d). If their complex ratio Ms

21 = 
2
R/
1

L, we
will achieve the CPA operation mode. In the rest of the cases,
i.e., Ms

21 �= 
2
R/
1

L we will have the FLASER mode. This is,
however, a very narrow-band effect for both CPA and lasing,
as seen in Figs. 4(a) and 5.

VI. CONCLUSIONS

To sum up, an effect reminiscent of lasing is discovered
in this paper by making use of PT -symmetry in a specific
frequency and gain/loss regimes. This mechanism takes roots
in the CPAL effect, first proposed for optics [43]. This CPAL
device can be used as an ultrasensitive flexural sensor to
detect submicrometer displacements or as a perfect absorber
of flexural energy. However, in stark contrast to Maxwell’s
equations, the flexural wave equation assumes displacements
that are small in comparison with the thickness of the plate, so
our device could be used as a source, since by applying very
small displacements, these will be amplified and coherently
transmitted to the surroundings. On the detection side, if some
strong signal/noise impinges on the device, it can be hugely
amplified and can lead to its dislocation. One way to avoid this
unwanted effect is to use a filter that cancels out incoming sig-
nals above a certain threshold. Our work can thus pave the way
to several interesting applications in surface science and civil
engineering, e.g., in precision-displacement sensing, vibration
control of mechanical systems, and seismic energy harvesting.
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APPENDIX A: TRANSFER MATRIX FORMALISM

When we need to compute the transfer matrix
corresponding to the layer l shown in Fig. 1, we
only have to relate the column vector Wl (xl ) =
(Wl , dWl/dx, Dl d2Wl/dx2, Dl d3Wl/dx3)T to Wl (xl+1), as
Wl+1(xl+1) = Wl (xl+1), through the continuity condition at
the interface xl+1. This consists thus in finding the propagator
of these flexural waves. For this, let us give the set of matrices,
defined at the coordinates xl and xl+1,

Ml
l =

⎛
⎜⎜⎜⎝

(iβl )0eiβl xl (−iβl )0e−iβl xl (−βl )0e−βl xl (βl )0eβl xl

(iβl )1eiβl xl (−iβl )1e−iβl xl (−βl )1e−βl xl (βl )1eβl xl

Dl (iβl )2eiβl xl Dl (−iβl )2e−iβl xl Dl (−βl )2e−βl xl Dl (βl )2eβl xl

Dl (iβl )3eiβl xl Dl (−iβl )3e−iβl xl Dl (−βl )3e−βl xl Dl (βl )3eβl xl

⎞
⎟⎟⎟⎠, (A1)

and

Ml+1
l =

⎛
⎜⎜⎜⎝

(iβl )0eiβl xl+1 (−iβl )0e−iβl xl+1 (−βl )0e−βl xl+1 (βl )0eβl xl+1

(iβl )1eiβl xl+1 (−iβl )1e−iβl xl+1 (−βl )1e−βl xl+1 (βl )1eβl xl+1

Dl (iβl )2eiβl xl+1 Dl (−iβl )2e−iβl xl+1 Dl (−βl )2e−βl xl+1 Dl (βl )2eβl xl+1

Dl (iβl )3eiβl xl+1 Dl (−iβl )3e−iβl xl+1 Dl (−βl )3e−βl xl+1 Dl (βl )3eβl xl+1

⎞
⎟⎟⎟⎠. (A2)

Thus we have the following relation:

Wl (xl+1) = Ml+1
l

⎛
⎜⎜⎜⎜⎝


1
l


2
l


3
l


4
l

⎞
⎟⎟⎟⎟⎠, (A3)

and

Wl (xl ) = Ml
l

⎛
⎜⎜⎜⎜⎝


1
l


2
l


3
l


4
l

⎞
⎟⎟⎟⎟⎠. (A4)

Hence, it is straightforward to derive

Wl (xl+1) = Ml+1
l

(
Ml

l

)−1
Wl (xl ), (A5)

where the associated transfer matrix of layer l is �l =
Ml+1

l (Ml
l )

−1
. If we have N layers, we must first take the prod-

uct of all these matrices, i.e., �s = �N · �N−1 · · · �l · · · �1.
If we define also the incoming and outgoing matrices in the
same way, we can then compute the overall transfer matrix of
the multilayered structure, i.e.,

Ms = (
MN+1

out

)−1
�sM

1
in. (A6)

The matrix Ms is 4 × 4 and obviously different from trans-
fer matrices in electrodynamics and acoustics that are 2 × 2.
The main difference comes from the existence of evanescent
waves, localized only at the interfaces between layers.

APPENDIX B: SCATTERING MATRIX FORMALISM

We wish to characterize the kind of structures given in Fig. 1, when a flexural plane wave impinges on it. To do so, we need
to relate the outgoing waves to the incoming ones, or in a sense the coefficients of the displacement fields in these two regions.
In fact, the transfer matrix ensures that

Ms

⎛
⎜⎜⎜⎝


1
L


2
L


3
L


4
L

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝


1
R


2
R


3
R


4
R

⎞
⎟⎟⎟⎠. (B1)

By writing down this linear system and rearranging the terms that correspond to incoming and outgoing flexural waves (both
propagating and evanescent), we can rewrite it in the following way, by remarking that 
1

L, 
3
L, 
2

R, and 
4
R are the incoming

coefficients and 
2
L, 
4

L, 
1
R, and 
3

R are the outgoing coefficients,⎛
⎜⎜⎜⎝

Ms
11 Ms

13 0 0

Ms
21 Ms

23 −1 0

Ms
31 Ms

33 0 0

Ms
41 Ms

43 0 −1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝


1
L


3
L


2
R


4
R

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−Ms
12 −Ms

14 1 0

−Ms
22 −Ms

24 0 0

−Ms
32 −Ms

34 0 1

−Ms
42 −Ms

44 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝


2
L


4
L


1
R


3
R

⎞
⎟⎟⎟⎠. (B2)
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Without loss of generality, let us further assume that we excite this system from the left side by propagating waves and that we
are interested in characterizing the reflection and transmission of each kind of flexural wave. This signifies that we excite by a
unitary incident plane wave or 
1

L = 1 and 
3
L = 
2

R = 
4
R = 0. Also by this definition, we have the reflection (transmission)

coefficients r1 and r2 (t1 and t2) of the propagating and evanescent waves, respectively. This linear system can be written as⎛
⎜⎜⎜⎝

−Ms
12 −Ms

14 1 0

−Ms
22 −Ms

24 0 0

−Ms
32 −Ms

34 0 1

−Ms
42 −Ms

44 0 0

⎞
⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎝

Ms
11 Ms

13 0 0

Ms
21 Ms

23 −1 0

Ms
31 Ms

33 0 0

Ms
41 Ms

43 0 −1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

r1

r2

t1
t2

⎞
⎟⎟⎟⎠, (B3)

with the scattering matrix expressed as

S =

⎛
⎜⎜⎜⎝

−Ms
12 −Ms

14 1 0

−Ms
22 −Ms

24 0 0

−Ms
32 −Ms

34 0 1

−Ms
42 −Ms

44 0 0

⎞
⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎝

Ms
11 Ms

13 0 0

Ms
21 Ms

23 −1 0

Ms
31 Ms

33 0 0

Ms
41 Ms

43 0 −1

⎞
⎟⎟⎟⎠. (B4)

The important terms of the S matrix, i.e., those of the first column that give the reflection/transmission coefficients of both
propagating and evanescent waves, can be explicitly given by

S11 = r1 =

∣∣∣∣−Ms
21 Ms

24

−Ms
41 Ms

44

∣∣∣∣∣∣∣∣M
s
22 Ms

24

Ms
42 Ms

44

∣∣∣∣
and S21 = r2 =

∣∣∣∣M
s
22 −Ms

21

Ms
42 −Ms

41

∣∣∣∣∣∣∣∣M
s
22 Ms

24

Ms
42 Ms

44

∣∣∣∣
, (B5)

for the reflected part, where |A| denotes the determinant of a
square matrix A, and by

S31 = t1 = Ms
11 + Ms

12S11 + Ms
14S21 and

S41 = t2 = Ms
31 + Ms

32S11 + Ms
34S21, (B6)

for the transmitted part.

APPENDIX C: 3D FEM COMSOL MODELING

The time-harmonic Navier equations, which govern the
propagation of elastodynamic waves in the plate, are written
as

∇ · [C : ∇u(x)] + ρω2u(x) = 0, (C1)

where we have excluded the source term required to generate
a plane flexural wave. The unknown in this tensorial equation
is the displacement field

u(x) = [u(1)(x), u(2)(x), u(3)(x)]T , (C2)

with x = (x1, x2, x3) and C is the rank-4 (symmetric) elas-
ticity tensor with entries Ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk ),
i, j, k, l = 1, 2, 3, i.e., isotropic, λ and μ being the Lamé
parameters, ρ the mass density, and ω the angular frequency
of the wave.

We set stress-free boundary conditions at the top and bot-
tom boundaries of the plate:

(C : ∇u) · n = (C : ε(u)) · n = 0, (C3)

where ε(u) is the rank-2 strain tensor with entries εi j =
1/2(∂ui/∂x j + ∂u j/∂xi ) and n is the outward pointing normal
to the boundaries. We solve the exact 3D form of Eq. (C1)
using the commercial finite element software COMSOL MULTI-
PHYSICS [38].

In order to excite the structure of Fig. 2(a), we make use
of the port boundary condition recently added by COMSOL to
its solid mechanics module [38]. We define a displacement in
the z-direction incident normally towards the layered CPAL
structure. On the side boundary we set Floquet-Bloch bound-
ary conditions to ensure continuity of the elastic displacement.
The mesh is taken equal to λmin/10, where λmin is the smallest
flexural wavelength. Last but not least, before performing
the frequency-domain study, a boundary mode analysis is
performed to calculate accurately the propagation constant. It
should be emphasized that one has to take great care with this
modeling as only a slight deviation can make the receiving
port totally reflective.

In order to validate our modeling, we compare the re-
sults of an analytical situation where a single elastic layer is
present, first without loss or gain, and then with loss and gain
(see SM [8]).
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