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Revealing strong correlations in higher-order transport statistics:
A noncrossing approximation approach
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We present a method for calculating the full counting statistics of a nonequilibrium quantum system based
on the propagator noncrossing approximation (NCA). This numerically inexpensive method can provide higher-
order cumulants for extended parameter regimes, rendering it attractive for a wide variety of purposes. We
compare NCA results to Born-Markov quantum master equations (QME) results to show that they can access
different physics, and to numerically exact inchworm quantum Monte Carlo data to assess their validity. As a
demonstration of its power, the NCA method is employed to study the impact of correlations on higher-order
cumulants in the nonequilibrium Anderson impurity model. The four lowest-order cumulants are examined, al-
lowing us to establish that correlation effects have a profound influence on the underlying transport distributions.
Higher-order cumulants are therefore demonstrated to be a proxy for the presence of Kondo correlations in a
way that cannot be captured by simple QME methods.
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I. INTRODUCTION

A. Background and overview

Electron transport through mesoscopic and nanoscale
junctions is a complex phenomenon where nonequilibrium
statistical mechanics is entwined with quantum many-body
effects [1–4]. Systems are driven out of equilibrium by, e.g.,
an external bias voltage or a temperature gradient, and their re-
sponse is measured. Perhaps the simplest response observable
in many experimental setups is the electronic current. Increas-
ingly, however, it has become both possible and desirable to
access so-called higher-order transport characteristics. This
includes the current’s fluctuations and its higher moments
[5–7] as well as the statistics of individual electron transfer
events [8]. Interestingly, ultracold-atom experiments can sim-
ulate electronic transport [9], and allow for directly extracting
statistical distributions of populations in different parts of the
system [10], marking another path towards detailed character-
ization of transport.

Theoretically, all such information can be obtained from
the full counting statistics (FCS) approach pioneered Levitov
and Lesovik [11,12], where all moments and cumulants of
transport events are efficiently represented by a single gen-
erating functional. Since its inception, this idea has attracted a
great deal of attention [13–27].

Many experimental studies concentrate on the current
noise and the current-to-noise ratio, also known as the Fano
factor. In both classical and quantum systems, these quan-
tities already contain information not present in the mean
current [28,29]: for example, they enable probing of effective
quasiparticle charges [30–32]. Moreover, noise measurements

have allowed researchers to, e.g., identify electron bunching
and antibunching during transport [7,29,33–37]; reconstruct
waiting- and dwell-time distributions [24,38–43]; and de-
termine the number and transmission probabilities of active
levels contributing to transport [44–51]. Other studies re-
ported the measurement of higher-order cumulants that further
elucidate the mechanisms underlying electronic transport
[52–54].

Given sufficient cumulants, it is in principle possible to re-
construct the full FCS. Much of the motivation for this comes
from insights regarding noninteracting systems, where the
exact FCS is given by the Levitov-Lesovik formula [12,55].
There, the ability to measure the FCS could provide indirect
access to theoretically intuitive but experimentally unattain-
able properties like channel coherence [56] and entanglement
entropy [57]. This scheme holds also true for interacting
systems, where the FCS provides insight onto many-body
quantum effects. For example, even though the role of elec-
tronic correlations is not yet well understood, it is known
that correlation-driven physics like the Kondo effect mod-
ify the current noise [58–60] and its higher-order cumulants
[25,61]. Still, the theoretical prediction of the FCS for inter-
acting systems is generally nonstraightforward and a variety
of theoretical approaches have been applied. Among the ap-
proximate approaches used are quantum master equations
(QME) [13,15,23,56,62–70] and Green’s function based ap-
proaches [4,39,71–79]. Numerically exact approaches to FCS
include the inchworm quantum Monte Carlo (iQMC) method
[24,25,80], the hierarchical equations of motions technique
(HEOM) [26,81], the density matrix renormalization group
approach [82–84], and the iterative path-integral method
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[65,77,85–87]. A variety of ongoing research programs are
aimed at extending exact approaches to new experimentally
relevant regimes, and at developing new exact and approxi-
mate methodologies.

B. Noncrossing approximations

At the present time, methods able to address Kondo physics
remain computationally expensive. Here, we propose a sim-
ple and inexpensive approximate scheme for evaluating FCS
that is based on one variation of the noncrossing approxi-
mation (NCA). The NCA and its extensions [88–90] have
long been a successful qualitative approach to several as-
pects of nonequilibrium Kondo physics in quantum transport
[91–102]. The approximation has multiple, inequivalent for-
mulations, most of which are unsuitable to the evaluation of
FCS due to the introduction of an auxiliary pseudoparticle
space [4]. The formulation used here is a lowest-order pre-
cursor of the hybridization-expansion-based iQMC method
[80,103], and the starting point of bold-line schemes that
preceded it [104–108]. It can easily be used to obtain high-
order cumulants or the complete FCS generating functional.
To highlight the advantages of the NCA, we contrast it with
the widely applied QME scheme, which completely neglects
Kondo physics [78]. We then establish that our NCA pro-
vides better results than the QME scheme by comparing with
numerically exact data obtained from iQMC. Finally, based
on the NCA, we provide a preliminary overview of the sig-
nature of nonequilibrium correlation effects in higher-order
cumulants.

C. Quantum master equations

One of the two methods to which we will provide direct
comparisons is the QME approach. Similarly to the NCA
to be presented below in Sec. IV, the QME approximation
is based on a second-order expansion in the dot-lead cou-
pling. In contrast to the NCA, the QME does not employ
a Dyson-type diagrammatic resummation scheme. Rather, it
uses a Liouville-space resummation based on the Nakajima-
Zwanzig equation [109–111]. This results in an analytically
solvable and intuitive equation of motion for the reduced den-
sity matrix, which is the method of choice in many contexts
[23,65,66,69,70,112–116].

QME methods have been widely employed in the eval-
uation of FCS [13,15,23,70,117]. Their numerically exact
generalization, the HEOM technique [96,118–126], has re-
cently been generalized to FCS in the context of vibrationally
coupled electronic transport [26].

D. Inchworm quantum Monte Carlo method

The inchworm quantum Monte Carlo (iQMC) method
is a numerically exact framework able to evaluate trans-
port properties in correlated nonequilibrium impurity models
[80,103,127–133]. It has recently been used to evaluate the
FCS of both particle and energy transport in the presence of
electron-electron interactions [24,25,70].

In the present context, the iQMC framework can be consid-
ered a numerically exact generalization of the NCA method.
This does not mean that the NCA is immediately obsolete,

just as the availability of HEOM methods has not obviated
QME approximations. This is natural because iQMC results
are substantially more expensive to obtain than NCA results,
especially at steady state. Here, we employ the iQMC method
to validate our NCA results and illustrate their usefulness.

E. Outline of this work

We will proceed as follows: In Sec. II, we introduce the
model system investigated in this work. The FCS formal-
ism is outlined in Sec. III. The theoretical NCA framework
employed in this work is described in Sec. IV. In Sec. V,
we present our results: comparisons between NCA and QME
results are given in Sec. V A, physical implications are dis-
cussed in Sec. V B, and validation with respect to iQMC is
presented in Sec. V C. Finally, in Sec. VI, we conclude and
summarize our findings.

II. MODEL

We consider the nonequilibrium Anderson impurity model,
a minimal description for a finite, interacting quantum
dot coupled to two infinite noninteracting leads. The
Hamiltonian is

H = HD + HB + HDB, (1)

where HD is in the dot subspace, HB is in the bath subspace
comprising the left and right leads, and HDB encodes the
coupling between the dot and the leads.

The dot Hamiltonian is given by

HD =
∑

σ=↑,↓
ε0d†

σ dσ + Ud†
↑d↑d†

↓d↓. (2)

Here, the d (†)
σ denote creation and annihilation operators for

an electron of spin σ on the dot, ε0 is the single-particle occu-
pation energy, and U determines the strength of the Coulomb
interaction. Experimentally, the single-particle occupation en-
ergy can be tuned by an external gate voltage �gate. We model
the influence of such a gate voltage by setting ε0 = �gate − U

2 .
The leads are assumed to be a noninteracting continuum,

HB =
∑

σ∈{↑,↓}

∑
�∈{L,R}

∑
k∈�

εka†
kσ

akσ , (3)

where the a(†)
kσ

are creation and annihilation operators on a lead
level with index k, spin σ , and energy εk . The indices L and R
denote the “left” and “right” lead, respectively. Finally, the
coupling between the dot and leads is assumed to take the
linear form

HDB =
∑

σ∈{↑,↓}

∑
�∈{L,R}

∑
k∈�

(Vka†
kσ

dσ + H.c.), (4)

with coupling parameters Vk that can be parametrized in terms
of a coupling strength function

��(ε) = π
∑
k∈�

|Vk|2δ(ε − εk ). (5)

We explicitly consider symmetric coupling to the two leads,
each of which is taken to be a flat band with a soft cutoff:

�L(ε) = �R(ε) = �/2

(1 + eν(ε−εc ) )(1 + e−ν(ε+εc ) )
. (6)
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The overall strength of the dot-lead coupling is set by the
constant �, which is used as our unit of energy. The coupling
strength defines the hybridization functions


<
� (t ) = 1

π

∫
dε e+iεt ��(ε) f�(ε), (7)


>
� (t ) = 1

π

∫
dε e−iεt ��(ε)[1 − f�(ε)]. (8)

Here, f�(ε) ≡ 1
1+eβ(ε−μ� ) , where μL/R = ±V/2 are chemical

potentials set by a symmetrically applied bias voltage V , and
β is the inverse temperature in the leads. Moreover, we set
ν = 1/� and εc = 50�, much larger than all other energy
scales in the problem, such that we are effectively working in
the wide-band limit. With our choice of parameters, particle-
hole symmetry is obeyed for �gate = 0.

Throughout this work, the onsite Coulomb repulsion is set
to U = 8�. This determines a Kondo temperature of TK ≈
0.8� for the particle-hole symmetric case [58], which we use
as a reference for the emergence of the Kondo phenomenon.
Generally, the Kondo temperature depends on the gate voltage
[58] and we will comment on this at appropriate points below.
We will consider three representative lead temperatures: T =
0.25� < TK , T = 0.5� � TK , and 1.0� � TK , whereby TK is
the estimate for the Kondo temperature for the particle-hole
symmetric scenario. This means that we are exploring the
edge of the Kondo regime rather than the deep Kondo regime
where scaling behavior can be extracted. This choice is to
some extent motivated by the limitations of the methods used
in this work (cf. Sec. IV).

III. FCS AND COUNTING FIELDS

Determining the FCS of an observable means evaluat-
ing the generating function of its underlying probability
distribution, from which cumulants and moments can be ex-
tracted. We provide a brief overview of this approach and the
main concepts here, and recommend Refs. [19,134] for more
details.

Consider an experiment where at time zero the system is
prepared in a known initial density matrix where, e.g., the
number of electrons in the left lead L is known. The system is
allowed to evolve freely until time t , when the total number of
electrons in lead L is measured. Let PL(t, n) be the probability
that n electrons are found in this measurement. The generating
function is then defined as

ZL(t, λ) ≡
∑

n

PL(t, n)eiλn ≡ TrD+B{ρλ(t )}, (9)

where λ is known as the counting field. This defines
ρλ(t ) ≡ e−iHλtρ(0)eiH−λt , a counting-field-modified (or, for
brevity, simply “modified”) density matrix, which in turn de-
fines Hλ ≡ eiλ/2NL He−iλ/2NL , a modified Hamiltonian. NL =∑

σ∈{↑,↓}
∑

k∈L a†
kσ

akσ is the particle-number operator in the
left lead L. Modifying the Hamiltonian by the counting field
corresponds to transforming the dot-bath coupling strength of
the lead under consideration according to [135]

Vk (t±) → Vke±iλ/2, (10)

where t± is a time variable on either the backward (+) or
forward (−) branch of the Keldysh contour. This idea can be
generalized to other observables and counting fields [19].

Normally, the generating function ZL(t, λ) itself cannot
be directly accessed in experiments. However, experiments
can measure its moments and cumulants, or sometimes the
probabilities PL(t, n). In particular, the cumulants Cα

L (t ) of the
generating function are given by its logarithmic derivatives:

Cα
L (t ) = (−i)α

∂α

∂λα
ln [ZL(t, λ)]

∣∣∣∣
λ=0

. (11)

The first few cumulants have simple physical interpreta-
tions. The time derivative of the first cumulant corresponds to
the electronic current IL(t ) exiting lead L:

C1
L (t ) = 〈NL(t )〉 , (12)

∂

∂t
C1

L (t ) = IL(t ). (13)

The second cumulant is related to the variance of the popula-
tion in the lead,

C2
L (t ) = 〈

N2
L

〉
(t ) − 〈NL〉2 (t ). (14)

At steady state, its time derivative is the noise SL:

lim
t→∞

∂

∂t
C2

L (t ) = SL. (15)

Higher-order population cumulants and the full probability
distributions PL(t, n) can also be obtained from the generating
functional. These have a more complicated relationship with
the statistics of the current, but are arguably more straightfor-
ward than the latter to describe theoretically. For the scope of
this work, we will also consider the steady-state time deriva-
tives of the third and fourth cumulants limt→∞ ∂

∂t C
3
L (t ) ≡

SL2 and limt→∞ ∂
∂t C

4
L (t ) ≡ SL3. These quantities express the

skewness and the bifurcation of the underlying probability
distribution, respectively, and are of interest in a variety of
contexts [14,20]. Composite observables like the Fano factor
FL = SL/IL are often easier to obtain experimentally than the
cumulants themselves because they do not vary with the over-
all conductivity of the junction.

The standard Fano factor can be a problematic quantity
for studying Kondo physics because the low-energy features
are obscured by the zero-bias Nyquist-Johnson singularity
[29,136]. This stems from the different symmetry of I and S
with respect to the bias voltage. Deep in the universal Kondo
regime and at very low voltages, this can be rectified by defin-
ing a “backscattering” current that must be separated from the
unitary linear-response current [137,138]. Below, we discuss
an alternative and more widely applicable approach: to define
a set of generalized Fano factors in terms of higher-order
cumulants, while taking symmetry into account.

IV. METHODOLOGY

A. Noncrossing approximation

NCA refers to a wider class of inequivalent methods that
are perturbative in the dot-bath coupling. The name is moti-
vated by the fact these methods only consider contributions
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to the perturbative series, which have a diagrammatic repre-
sentation in which the hybridization lines do not cross. The
first installment of an NCA method roots back to Grewe
and Kuramoto [139,140] and was employed and extended
by various authors to account for finite electron-electron
interaction strengths [141,142] and nonequilibrium condi-
tions [92]. The corresponding formulation of the NCA uses
a pseudoparticle representation in order to make quantum
field theoretical methods such as Wick’s theorem applicable.
This, however, enlarges the underlying Hilbert space into
unphysical regions and relies on a representation where the
number of electrons on the dot is not well defined at any
given time. Consequently, in this formulation of the NCA, the
evaluation of FCS it is not straightforward. Still, this NCA
scheme is well suited to capture physics at temperatures that
are not far below the Kondo temperature and works well in
the large-U limit and for small bias voltages. The minimal
NCA does not correctly capture Kondo physics in the scaling
regime at quantitative accuracy, but this can be amended to a
large degree with the aid of vertex corrections [90,143–145].
These more advanced, but expensive, extensions of the
NCA method have been successfully employed in recovering
the temperature scaling behavior characterizing Kondo phe-
nomena in agreement with numerical renormalization group
calculations [146,147].

In this work, we employ a different NCA scheme, which
is based on the perturbative expansion of the restricted
propagator [cf. Eq. (22)] in terms of the dot-bath cou-
pling [97,106,107] and which represents a precursor of
the QMC methods based on the hybridization expansion
[80,103–106,108]. This NCA formulation employs the

occupation-number basis of the interacting dot, such that the
number of electrons on the dot is a well-defined quantity at
any given time. This allows for a straightforward calculation
of the FCS using the transformation in Eq. (10), while on the
downside, tools like Wick’s theorem are not applicable. We
will now describe the details of the propagator hybridization
expansion for the FCS generating function Z (t, λ) ≡ ZL(t, λ)
within the NCA. The approximation is based on a second-
order expansion of the time-evolution operator in the dot-lead
coupling, which is treated self-consistently within a Dyson
resummation scheme.

Using Eq. (9) in the context of Sec. II and assuming an
initial condition factorized between the dot and bath spaces,
ρ(t = 0, λ) = ρB ⊗ ρD, we obtain

Z (t, λ) = Tr[�(t, λ)] =
∑
αβ

〈β|ρD|β〉 Kβ
α (t, t, λ). (16)

Here, α and β are electron-number states in the interacting
dot, and the vertex function Kβ

α (t, t ′, λ) takes the form

Kβ
α (t, t ′, λ) = TrB{ρB 〈α|U †

−λ(t ) |β〉 〈β|Uλ(t ′) |α〉}. (17)

TrB denotes tracing over the bath degrees of freedom. We have
also made use of a modified time-evolution operator U±λ(t ) ≡
T exp[−i

∫ t
0 H±λ(τ )dτ ], where T is the time-ordering opera-

tor. The vertex function Kβ
α (t, t ′, λ) is the central object within

the specific NCA method used in this work. In other contexts,
without FCS, only the λ = 0 form appears. This can be used to
construct approximate expressions for the expectation values
of a variety of observables [90,103].

To derive the NCA, one starts with the perturbative expan-
sion of Eq. (17) in the dot-lead coupling HDB,

Kβ
α (t, t ′, λ) =

∞∑
n,m=0

(i)n(−i)m
∫ t

0
dτ1· · ·

∫ τn−1

0
dτn

∫ t ′

0
dτ ′

1· · ·
∫ τ ′

n−1

0
dτ ′

nTrB{ρB 〈α| h−λ(τ1) . . . h−λ(τn)eiH0t |β〉

× 〈β| e−iH0t ′
hλ(τ ′

1) . . . hλ(τ ′
n) |α〉}, (18)

a diagrammatic representation of this expansion can for example be found in Refs. [97,107]. Here, h(τ ) = eiH0τ HDBe−iH0τ and
H0 = HD + HB. The NCA is based on the lowest nonvanishing correction, which is then iterated until self-consistency. The
approximation is obtained by expressing the vertex function in terms of this correction, resulting in the Dyson equation

Kβ
α (t, t ′, λ) = kβ

α (t, t ′) +
∑
α′β ′

∫ t

0

∫ t ′

0
dτ1dτ ′

1kβ

β ′ (t − τ1, t ′ − τ ′
1)ξβ ′

α′ (τ1 − τ ′
1, λ)Kα′

α (τ1, τ
′
1, λ). (19)

This is defined in terms of the the cross-branch hybridization self-energy

ξβ
α (t, λ) =

∑
σ∈{↑,↓}

∑
�∈{L,R}

(
<
� (t )e−iλt 〈α|dσ |β〉 〈β|d†

σ |α〉 + 
>
� (t )eiλt 〈α|d†

σ |β〉 〈β|dσ |α〉), (20)

and kβ
α (t, t ′), a term that is independent of the counting field

and will be introduced momentarily. The term NCA refers
to the fact that there are no crossing hybridization lines in
the diagrammatic representation of the terms included in this
approach (see, e.g., Ref. [107]). Higher-order expansions such
as the one-crossing approximation employ different forms for
the cross-branch self-energy [89,107,141].

We now return to the final quantity defined in Eq. (19), k.
This is a zeroth-order approximation for the vertex function

that can be written in the form

kβ
α (t, t ′) = δαβG∗

α (t )Gβ (t ′). (21)

Here,

Gα (t ) = 〈α|TrB[ρBUλ(t )]|α〉 (22)

is a single-branch propagator that is diagonal in the many-
particle basis of the dot due to the structure of the Hamiltonian
(1). Gα (t ) is also treated perturbatively in the dot-lead
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coupling

Gα (t ) = gα (t ) −
∫ t

0

∫ τ1

0
dτ1dτ2

× TrB{ρB 〈α| e−iH0t hλ(τ1)hλ(τ1) |α〉} + · · · , (23)

with gα (t ) = 〈α|e−iHDt |α〉 being the propagator on the isolated
dot. We note that Gα (t ) remains unmodified by the counting
field, due to being restricted to one branch of the Keldysh
contour such that all counting-field dependence on the right-
hand side of Eq. (23) cancels out. Again, based on the lowest
order of the expansion which is iterated until self-consistency
while neglecting diagrams that include hybridization lines, G
obeys a set of equations similar to those obeyed by K , but on
a single branch of the Keldysh contour:

Gα (t ) = gα (t )−
∫ t

0

∫ τ1

0
dτ1dτ2gα (t −τ1)�α (τ1−τ2)Gα (τ2).

(24)

The single-contour self-energy �α (t ) depends on the propa-
gator Gα (t ) and is given within the NCA by

�α (t ) =
∑

σ∈{↑,↓}

∑
�∈{L,R}

∑
β

(
<
� (t ) 〈α|dσ |β〉 〈β|d†

σ |α〉

+
>
� (t ) 〈α|d†

σ |β〉 〈β|dσ |α〉)Gβ (t ). (25)

Again, for a diagrammatic representation of this part of the
expansion as well as the single-contour self-energies we refer
to Refs. [97,107].

We conclude this section by commenting on the applica-
bility of the NCA method, in particular to Kondo physics.
Generally, the NCA is a method which is perturbative in
the dot-lead coupling suggesting that its applicability is re-
stricted to the strong interaction regime. Still, its nonlinear
nature makes its regime of validity hard to judge from sim-
ple analytical considerations. This problem is exacerbated for
nonequilibrium systems, systems with lower symmetry, and
complex observables. It has been argued that in equilibrium,
the NCA provides accurate results for systems exhibiting
strong interaction strengths U as long as the temperature T is
not too low [90]. However, under nonequilibrium conditions,
deviations from this rule have also been reported [106]. More-
over, the method presented here is exact in the atomic limit,
independent of the electron-electron interaction strength U .
It is formulated directly on the Keldysh contour, such that it
is applicable to nonequilibrium conditions and not restricted
to the linear response regime. Nevertheless, it is known that
NCA methods fail to provide accurate results in the small
temperature limit. As such and as we noted in Sec. I, it
fails to provide accurate results for the scaling behavior or
the Kondo temperature unless corrections are employed. We
therefore focus on higher-energy remnants of Kondo physics
and nonequilibrium effects. Even there, the treatment should
be considered qualitative rather than quantitative.

B. Quantum master equations

Similar to the NCA approaches outlined in Sec. IV A, the
QME method is based on a second-order expansion in the dot-
bath coupling. In contrast to NCA-based theories, the QME

approach does not employ a Dyson scheme to incorporate
a subset of diagrammatic contributions to the hybridization.
Rather, it uses a Liouville-space resummation.

The QME is an equation of motion for the reduced density
matrix of the dot �(t ) = TrB[ρ(t )], where ρ is the full density
matrix of the dot and the bath and TrB signifies a partial trace
over the bath degrees of freedom. A formally exact equation
of motion is provided by the Nakajima-Zwanzig equation
[109–111]. Expanding this to second order in the dot-bath
coupling, in combination with the Markov approximation,
results in the equation of motion [148]

∂

∂t
�(t ) = − i[HD, �(t )] −

∫ ∞

0
dτTrL([HDB,

× [e−i(HD+HB )τ HDBei(HD+HL )τ , �(t )ρL]]). (26)

For the system under consideration, the populations and the
coherences of the reduced density matrix decouple due to
the form of Hamiltonians HD and HDB as given in Eqs. (2)
and (4). As such, it is sufficient to consider the populations
pα (t ) = 〈α|�(t )|α〉 of the reduced density matrix, whose dy-
namics obey the rate equations

∂

∂t
pα (t ) =

∑
�∈{L,R}

β �=α

|ϑαβ |(��(ϑαβ (εα − εβ )) f�(εα − εβ ) × pβ (t )

−��(ϑβα (εβ − εα )) f�(εβ − εα ) × pα (t )). (27)

The α and β are, as before, states in the dot subspace; nα and
nβ are the number of electrons residing on the dot in the state
α and β, respectively; and ϑαβ = ±1 if nα − nβ = ±1, and
zero otherwise.

To obtains FCS, the populations are dressed by a counting
field pα (t ) → pα (t, λ) [13]. This corresponds to dressing the
transition rates in Eq. (27) according to

��(ϑαβ (εα − εβ )) → ��(ϑαβ (εα − εβ ))eiλϑαβ . (28)

The generating function is then calculated as the trace over
the modified reduced density matrix, which is the sum over
the modified populations:

Z (t, λ) = Tr[�(t, λ)] =
∑

α

pα (t, λ). (29)

V. RESULTS

Subsequently, we use the NCA methodology described
above to study the four lowest-order cumulants IL, SL, SL2,
and SL3 at steady state. As we are considering the steady
state, we henceforth drop the lead index L. Further, since
these quantities diverge linearly in time, we plot their first
time derivative. We will investigate their dependence on bias
voltage, gate voltage, and temperature.

A. Signature of correlations in observables associated
to higher-order cumulants

We begin by exploring the influence of Kondo physics on
higher-order cumulants. The aim of this section is to establish
the existence of effects in higher-order cumulants that are
related to the Kondo phenomenon at the edge of the Kondo
regime. We do not investigate the scaling regime of the Kondo

125431-5



A. ERPENBECK, E. GULL, AND G. COHEN PHYSICAL REVIEW B 103, 125431 (2021)

−0.1 0.0 0.1 −0.03 0.00 0.03 −0.05 0.00 0.05 −0.03 0.00 0.03

−5

0

5

Φ
g
a
te

[Γ
]

T = 0.25Γ T = 0.25Γ T = 0.25Γ T = 0.25Γ

−5

0

5

Φ
g
a
te

[Γ
]

T = 0.5Γ T = 0.5Γ T = 0.5Γ T = 0.5Γ

−5 0 5

V [Γ]

−5

0

5

Φ
g
a
te

[Γ
]

T = 1.0Γ

−5 0 5

V [Γ]

T = 1.0Γ

−5 0 5

V [Γ]

T = 1.0Γ

−5 0 5

V [Γ]

T = 1.0Γ

∂I/∂V ∂S/∂V ∂S2/∂V ∂S3/∂V
(a) (b) (c) (d)

FIG. 1. NCA results. The first derivative with respect to bias voltage is shown for the current (a), the noise (b), S2 (c), and S3 (d). From top
to bottom, the temperature increases from T = 0.25� to T = 0.5� and finally T = �. The black dashed lines, which serve as a guide for the
eye, indicate the conditions ε0 = μL/R and 2ε0 + U = μL/R that separate resonant from nonresonant transport.

model, where methods like NRG would be most appropriate.
Rather, we establish that the propagator NCA represents a
qualitatively better alternative to QME approximations for the
study of counting statistics. To this end, we compare NCA
results, where a qualitative signature of such phenomena is
expected, with QME results, where none is expected. This is
already a huge advantage of the NCA over the QME. We are
working at the edge of the Kondo regime where the dot-lead
coupling is not the smallest energy scale of the system. There-
fore, agreement between the NCA and the QME data can not
be expected, as this would require far higher temperatures,
where the temperature is the largest parameter of the system.
We refrain from considering such high temperatures in favor
of focusing on the installment of the Kondo phenomenon in
higher-order cumulants. Later, in Sec. V C, we evaluate that
the NCA predictions are more accuracy (yet not qualitative)
by comparing with numerically exact iQMC results.

Figure 1 provides an overview over the first derivatives
with respect to bias voltage of observables I , S, S2, and
S3 as a function of bias and gate voltage calculated by the
NCA method. These first derivatives, such as the conductance
∂I/∂V , are standard observables in various contexts. Columns
of panels correspond to the different observables, while rows
correspond to different temperatures. All derivatives with re-
spect to bias voltage presented in this paper are calculated
using the symmetric finite-difference method on a sufficiently
dense grid. Figure 1 contains a great deal of information in
a rather compact form. To make them easier to understand,
it is useful to focus on two particular sets of physical fea-
tures. First, the transition between resonant and nonresonant

transport, which is marked by dashed black lines, and for
which agreement between the NCA and the QME results
can be found in the large temperature limit. Second, features
associated with the emergence of Kondo and mixed-valence
physics are visible in some of the observables. The signature
of these correlation-driven effects is features centered around
zero-bias voltage, which are more pronounced for some ob-
servables than for others, and which disappear with increasing
temperature. Since this central feature and its bias-voltage
dependency are of primary interest, but can be weak in some
regimes, we henceforth consider the second derivative of the
cumulants with respect to the bias voltage.

Figures 2 and 3 provide an overview of the behavior of
of the second derivatives ∂2I/∂V 2, ∂2S/∂V 2, ∂2S2/∂V 2, and
∂2S3/∂V 2 as a function of bias gate voltage at different tem-
peratures in the NCA and QME approximations, respectively.
To facilitate comparison, the figures employ equivalent false
color representations of the data. Yet, we emphasize that
in the parameter regime under investigation no agreement
between the two approaches can be expected and neither
of the two methods is suspected to provide quantitative re-
sults. As before, we predominantly focus on two features,
first of which is the transition between the resonant and
nonresonant transport regime, which is again highlighted by
black dashed lines. The associated behavior is clearly apparent
in all QME plots and accentuated by the fact that the QME
method neglects broadening effects provided by the coupling
to the leads. In contrast to that, the NCA method accounts for
some broadening provided by the leads, the precise impact of
which depends on the parameters of the system as well as the
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FIG. 2. NCA results. The second derivative with respect to bias voltage is shown for the current (a), the noise (b), S2 (c), and S3 (d). From
top to bottom, the temperature increases from T = 0.25� to 0.5� and finally T = �. The black dashed lines, which serve as a guide for the
eye, indicate the conditions ε0 = μL/R and 2ε0 + U = μL/R that separate resonant from nonresonant transport. Red solid lines indicate the
parameters shown in Fig. 4.
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FIG. 3. QME results. The second derivative with respect to bias voltage is shown for the current (a), the noise (b), S2 (c), and S3 (d). From
top to bottom, the temperature increases from T = 0.25� to 0.5� and finally T = �. The black dashed lines, which serve as a guide for the
eye, indicate the conditions ε0 = μL/R and 2ε0 + U = μL/R that separate resonant from nonresonant transport.
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bias and the gate voltage. This broadening leads to an onset of
resonant transport, which is smeared over a wider bias regime
as compared to the QME results. This fact is emphasized
upon considering the second derivative with respect to bias
voltage; even to the extent that some features seen in the
QME are completely eliminated by broadening in the NCA.
However, in particular when comparing the NCA and QME
data for T = 1.0�, where other effects take a back seat, some
qualitative agreement between the approaches is observed.

The second feature is the emergence of Kondo physics
centered around zero-bias voltage, this time clearly visible in
the NCA plots, but completely missing from the QME data.
As can be seen by comparing the top and middle panels of
Fig. 2, higher cumulants reveal progressively richer and more
complex dependencies on the bias and gate voltages. Thus,
they provide increasingly detailed modes of characterization.
An interesting point to note is that the temperature at which
cumulants exhibit correlated phenomena does not appear to
vary significantly with the cumulant order. This is true both
in and out of equilibrium, and to some degree supports the
idea that the low-energy physics is controlled by a few uni-
versal energy scales even when a bias voltage is applied.
Moreover, we notice that the signatures for the Kondo effect
appear more pronounced and extend over a larger bias range
close to �gate = ±4�, in particular when compared to the
particle-hole symmetric case at �gate = 0. This can be ratio-
nalized with the dependence of the Kondo temperature on the
gate voltage, which is estimated to increase from TK ≈ 0.8�

for �gate = 0 to TK ≈ 2.8� for �gate = ±4� [58]. Still, we
emphasize again that the NCA may describe certain trends
correctly, but is not expected to give quantitatively reliable
results for the Kondo temperature. Also, at the parameter
regime under investigation, it can not be expected that the
shape of the Kondo features is solely determined by the Kondo
temperature. A more detailed study of these features requires a
more systematic study going beyond the NCA, where also the
deep Kondo regime and the scaling behavior can be accessed.

Further details are revealed by considering parameters
below the resonance condition, at a constant nonzero gate
voltage and a range of bias voltages. A cut of this kind across
the data of Fig. 2 is shown in Fig. 4, and the parameters chosen
for the cut are marked in Fig. 2 by solid red lines. We refrain
from reproducing the corresponding QME data here, as the
QME results do not contain information on the Kondo feature
(see Fig. 3) and would only complicate the plots. As even
(odd) cumulants are symmetric (antisymmetric) with respect
to bias voltage, it is instructive to directly compare I with
S2 and, respectively, S with S3. The data reveal that ∂2I/∂V 2

exhibits a single peak-dip structure which corresponds to the
well-known peak in conductance at low-bias voltage. Deep
in the Kondo regime, the width of the conductance will be
given by the Kondo temperature, but we do not expect the
NCA to reproduce such physics quantitatively. Here, at the
edge of the Kondo regime, we find that the resonance ex-
hibits additional broadening. Comparing this to the results for
∂2S2/∂V 2, another shoulder appears at low temperature at a
bias voltage of about V ∼ 1.5�. This indicates that the noise
analog of conductance ∂S2/∂V exhibits a structure where two
peaks centered around zero-bias voltage overlay each other.
The underlying physical mechanism for this feature can not
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FIG. 4. NCA results. The second derivative with respect to bias
voltage is shown for the current I (upper left), the noise S (upper
right), and the higher-order cumulants S2 (lower left) and S3 (lower
right). The gate voltage is set to �gate = 2�, the corresponding
Kondo temperature is estimated to be TK ≈ 0.87�. These are hori-
zontal cuts across the data in Fig. 2, as marked by the red solid lines.

be determined with certainty given the present methodology,
but it is known that higher-order cumulants are sensitive to
a wider energy range and the effect may be associated to
the availability of different transport channels at higher-bias
voltages. Similarly, ∂2S/∂V 2 shows a single pronounced peak
centered around zero-bias voltage, whereas at low temper-
ature, ∂2S3/∂V 2 develops distinctive side peaks at a bias
voltage V ∼ �. We assume that the width and the magnitude
of these features are associated to the Kondo temperature
in the deep Kondo regime. The realization that higher-order
cumulants show richer Kondo features suggests that they can
aid the identification of correlation effects. In particular, in
situations where higher-order cumulants are measured but the
availability of data is otherwise limited, such that standard
procedures like measuring the scaling of the conductance
with temperature are not possible. In many experiments and
numerical methods, it is difficult to measure small signals like
the current at very low-bias voltages. In such cases, consid-
ering higher-order cumulants may provide a diagnostic tool
for identifying Kondo correlations that is applicable at higher
biases and is characterized by larger signals.

B. Generalized Fano factors and their implications

As noted in Sec. III, the Fano factor F = S/I manifests
a singularity at zero voltage, where the current (odd with
respect to the bias voltage) disappears while the noise (even
with respect to the bias voltage) does not. F will be revisited
in Sec. V C, where we benchmark the NCA method against
numerically exact results. In the following, we consider the
generalized Fano factors F ′ ≡ S2/I and F ′′ ≡ S3/S. These
are the lowest-order ratios comprising only odd and even
cumulants, respectively. They are therefore free of singular
behavior at zero voltage, making them potentially useful for
exploring Kondo physics.
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FIG. 5. NCA results. The second derivative with respect to bias
voltage is shown for the generalized Fano factors F ′ = S2/I (a) and
F ′′ = S3/S (b). From top to bottom, the temperature increases from
T = 0.25� to �. The black dashed lines, which serve as a guide for
the eye, indicate the conditions ε0 = μL/R and 2ε0 + U = μL/R that
separate resonant from nonresonant transport.

For both observables, it is once again more convenient
to plot the second derivative with respect to bias voltage. In
Fig. 5 these are shown at the same parameter ranges used
in Figs. 2 and 3. F ′ and F ′′, respectively, are shown in the
left and right panels, temperature increases as we go to lower
panels. Both generalized Fano factors exhibit sharp, well-
defined Kondo features at low temperatures. As before, these
correlation driven features disappear at higher temperatures.

The separate cumulants in Fig. 2 are dominated by the
signature of the transition between off-resonant and resonant
transport. Remarkably, however, in Fig. 5 F ′ exhibits Kondo
features of comparable scale to those delineating the resonant
transport edge, and F ′′ is dominated by the Kondo features.
This suggests that symmetry-corrected higher-order Fano fac-
tors contain detailed information regarding correlation effects,
and may be a more sensitive probe of such physics than lower-
order quantities.

As the temperature is lowered and the Kondo effect devel-
ops, the value of F ′ and F ′′ at low-bias voltages increases,
except near the resonance condition. Since the Kondo effect
enhances the current I , an increase in F ′ implies that S2

is more strongly enhanced than I . Correspondingly, the un-
derlying probability distribution describing electron transfer
becomes increasingly skewed. Similarly, while the behavior
of the noise is more complicated, S is mostly suppressed by
Kondo physics, and the same is true for S3. An increase in

F ′′ therefore implies a weaker suppression of S3 than that of
S, and an increasingly bifurcated probability distribution. A
more detailed analysis of the probabilities PL(t, n) would be
interesting in this regard, but is beyond the scope of this work.

C. Comparison with numerically exact results

It is clear from the data that we have presented so far
that, when considering higher-order transport cumulants, the
NCA method captures physics not accounted for by the QME
method. This is not entirely surprising since it is known to do
so for single-particle correlation functions and for the current.
However, since both these techniques are approximate, it is
not at all obvious that the NCA actually provides higher accu-
racy as well. We will therefore compare the NCA and QME
results to numerically exact iQMC data, in order to assess
which approximate method provides more accurate results.

Figure 6 depicts the Fano factor F and its generalizations
F ′ and F ′′ as functions of the bias voltage, once again for three
different temperatures. Solid lines represent NCA data and
dashed lines represent QME data. Dots indicate iQMC results
converged with respect to all numerical parameters. Error bars
and shading on these dots correspond to confidence intervals
(see Appendix A for details regarding how these are obtained).
We do not consider second derivatives with respect to the
bias voltage here since obtaining these accurately in iQMC
involves further technical challenges. Similarly, we refrain
from discussing data below a bias voltage of 0.5. We note
that in general, lower voltages and higher-order cumulants are
more difficult to access in iQMC (see Appendices A and B).
Consequently, if one is interested in accessing the details
and the scaling of the features discussed above, it might be
advantageous to resort to another numerically exact method.

The left panel of Fig. 6 shows the Fano factor F . As
noted in Sec. V B, at low-bias voltages F is dominated by
the Nyquist-Johnson singularity and the isolation of Kondo-
related features is difficult, but here we focus on the accuracy
of the different methods. Generally speaking, reasonable
agreement can be observed between the NCA, QME, and
the iQMC results for all temperatures, both qualitatively and
quantitatively. At high temperatures and low voltages, NCA
and QME results are almost indistinguishable from each other
and accurately capture the trends in the exact result. Impor-
tantly, however, the QME always predicts Poisson statistics
with a Fano factor of 1 at large bias voltages. The NCA
correctly captures deviations from this, a result validated by
the iQMC data.

Results for the generalized Fano factor F ′ are presented
in the middle panel of Fig. 6. Overall, the three methods
predict a qualitatively similar dependence of F ′ on bias volt-
age and temperature, though there are qualitative differences.
The QME method predicts larger values than the NCA ap-
proach, while the outcome of the NCA calculations is in better
agreement with the iQMC data. Despite the increased errors
associated with the iQMC results for F ′, it is possible to estab-
lish that the NCA method provides more accurate results than
the QMC approach. However, a quantitatively accurate obser-
vation, especially at low voltages and temperatures where the
Kondo effect can be most cleanly defined and observed, is
beyond the iQMC data at hand.
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FIG. 6. Fano factor F (a); and generalized Fano factors F ′ = S2/I (b), and F ′′ = S3/S (c), at a gate voltage of �gate = 2�. Colors
correspond to different temperatures. Solid lines are NCA results, dashed lines are QME results, and circles are numerically exact results
obtained with iQMC. The dashed black line in the plots highlights the value 1, which is associated with a (classical) Poissonian distribution.

For the second generalized Fano factor F ′′ depicted in the
right panel of Fig. 6, the error associated with the iQMC
scheme dominates the exact data to the extent that trends in
the bias and temperature dependence are nonobvious. For this
Fano factor, the iQMC method in its current implementation
breaks down, indicating an area where the usage of approxi-
mate schemes is more favorable. When comparing the QME
and the NCA results, the QME approach again predicts larger
values for F ′′ than the NCA method. As before, the NCA data
are in better agreement with the iQMC results, hinting towards
a higher accuracy of the NCA method. For a more detailed
analysis, better iQMC data are required.

VI. SUMMARY

We developed a simple theoretical approach based on
the noncrossing approximation (NCA) to the study of full
counting statistics (FCS) in nonequilibrium transport, and im-
plemented it for the Anderson impurity model. The approach
can be easily generalized to more generic models. Its accuracy
can be improved by diagrammatic means, for example, by
considering one-crossing and vertex corrections. The NCA
method requires substantially more modest computational
resources than its numerically exact counterpart, the inch-
worm Monte Carlo (iQMC) method, and is for most practical
purposes almost as easy to use as the commonly employed
quantum master equations (QMEs). In the present case, the
QME and NCA data were generated on a desktop workstation
within a few hours and approximately a day, respectively,
while the iQMC results were generated over several days on a
small cluster. Despite this simplicity, the NCA captures some
physics not present in the QME approximation.

To showcase the advantages of the NCA approach to FCS,
we compared it against the QME method for the first few
transport cumulants. Unsurprisingly, this illustrated that the
first shows signatures of the Kondo effect while the latter does
not. More interestingly, it showed that the NCA predicts a rich
and detailed set of features in the higher-order cumulants.

Experimentally, it is often advantageous to consider ratios
between transport cumulants, like the Fano factor. How-
ever, at low-bias voltages the Fano factor is dominated by
a Nyquist-Johnson singularity that obstructs one’s view of
Kondo-related features. We explored a set of generalized,
symmetry-motivated Fano factors constructed from higher-

order cumulants that are designed to remove this singularity.
Within the NCA method, we showed that these quantities
embody excellent probes of Kondo physics.

Finally, we established the accuracy of the method upon
comparison with numerically exact benchmarks obtained
from the iQMC scheme. We showed that the predictability of
approximate NCA method is superior to data provided by the
QME approach. For the Fano factor, we demonstrated that the
NCA can even provide qualitative results.
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APPENDIX A: CALCULATING OBSERVABLES
ASSOCIATED WITH HIGHER-ORDER CUMULANTS

WITHIN THE IQMC SCHEME

In this Appendix, we describe how the observables
I = ∂

∂t C
1, S = ∂

∂t C
2, S2 = ∂

∂t C
3, and S3 = ∂

∂t C
4 were calcu-

lated for the steady state within the iQMC framework. We also
provide an account of how confidence intervals are estimated.
Whereas the main goal of this paper is to introduce the NCA
methodology and its advantages to theorists and experimental-
ists interested in transport counting statistics, this Appendix is
aimed at more specialized readers interested in numerically
exact methodologies like the iQMC.

In steady state, all cumulants increase linearly with time.
We simulate time propagation using the iQMC method until
the cumulants display a linear dependency on time. Then, we
perform a linear fit to this part of the data. Using the outcome
of the fitting routine and averaging over all possible initial
conditions, we determine the observables. This procedure is
visualized in Fig. 7 for a representative data set. Figure 7
also allows for an assessment of the intrinsic noise of the
iQMC method and the requirement of a linear behavior of the
respective cumulants. The error for the iQMC data is then es-
timated upon considering extremal values for lines connecting
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FIG. 7. Visualization of the procedure for determining the ob-
servables and the corresponding errors from iQMC data. The
representation data set shown here corresponds to T = 0.25 and
V = 1. The finite counting field used for the calculation is λ = 0.75.
The individual panels show the behavior of the different cumulants as
a function of time. The different lines correspond to different initial
conditions, the fits are marked by dashed lines.

two points within the time range where the cumulants dis-
play a linear dependence with time (different colored dashed
lines in Fig. 7). Again, we average over all initial conditions,
whereby we perform a Gaussian error propagation. Strictly
speaking, this approach suffers from the fact that the different
initial conditions are not statistically independent. Still, the
scheme provides a reasonable estimate for the underlying
error.

In contrast to the iQMC method, the approximate NCA
and QME approaches employed in this work do not exhibit
a statistical error. As such, the derivatives entering the expres-
sions for the observables can be calculated by means of finite
differences and no fitting procedure is required. Again, the
system is propagated until the steady state establishes.

APPENDIX B: COUNTING-FIELD DEPENDENCE
OF iQMC DATA

The cumulants within the FCS framework are given by the
derivatives of the logarithm of the generating function Z (t, λ)
with respect to the counting field λ at λ = 0 [see Eq. (11)]. For
numerical applications, the generating function is determined
for finite values of the counting field and the derivative with
respect to λ is calculated, for example, by means of finite
differences.

For the iQMC scheme, the statistical error associ-
ated with the different cumulants depends on the finite
value employed for the counting field. Within this work,
we calculate the derivative by means of symmetric finite
differences

C1(t ) = − i
∂

∂λ
ln [Z (t, λ)]

∣∣∣
λ=0

≈ ln[Z (t, λ f )] − ln[Z (t,−λ f )]

2λ f
, (B1a)
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FIG. 8. Visualization of the dependence of the iQMC data on
the finite counting field λ f used for the numerical calculation for
different bias voltages V . The representation data set shown here
corresponds employs to T = 0.25�. The individual panels show
the behavior of the different Fano factors discussed in Sec. V C.
The different lines correspond to different bias voltages, the shaded
areas indicate an estimate for the underlying error. For reference,
the scaling of the individual panels corresponds to the scaling of the
associated plots in Fig. 6.

C2(t ) = − ∂2

∂λ2
ln [Z (t, λ)]

∣∣∣
λ=0

≈ ln[Z (t, λ f )] − ln[Z (t, 0)] + ln[Z (t,−λ f )]

λ2
f

, (B1b)

etc., for the finite counting field λ f . The dependence of the
(generalized) Fano factors studied in Sec. V C on the finite
counting field λ f used for calculating the derivative is visual-
ized in Fig. 8. For large values of λ f , the error is small but the
estimate for the derivative provided by the numerical deriva-
tive deviates from the true value. With decreasing λ f , the error
associated with the iQMC data increases. Moreover, as higher-
order cumulants depend on higher-order derivatives with
respect to the counting field, the numerical error increases
and determining accurate data for quantities depending on
higher-order cumulants becomes increasingly challenging.

We mention that there are also other possible approaches
to determine the derivative with respect to the counting field.
As such, an alternative but more expensive route is to obtain
the full FCS and calculate the generating function Z (t, λ)
for various different values of λ. In this case, the derivatives
can be determined analytically for a polynomial fit for the
counting-field dependence of the generating function. This
approach was employed, for example, in Ref. [24].
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