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Power law decay of local density of states oscillations near a line defect
in a system with semi-Dirac points
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We theoretically study the power-law decay behavior of the local density of states (LDOS) oscillations near a
line defect in a system with semi-Dirac points by using a low-energy k · p Hamiltonian. We find that the LDOS
oscillations are strongly anisotropic and sensitively depend on the orientation of the line defect. We analytically
obtain the decay indexes of the LDOS oscillations near a line defect running along different directions by using
the stationary phase approximation. Specifically, when the line defect is perpendicular to the linear dispersion
direction, the decay index is −5/4 whereas it becomes −1/4 if the system is gapped, both of which are different
from the decay index −3/2 in isotropic Dirac systems. In contrast, when the line defect is perpendicular to the
parabolic dispersion direction, the decay index is always −1/2 regardless of whether the system is gapped or
not, which is the same as that in a conventional semimetal. In general, when the defect runs along an arbitrary
direction, the decay index sensitively depends on the incident energy for a certain orientation of the line defect. It
varies from −5/4 to −1/2 due to the absence of strict stationary phase point. Our results indicate that the decay
index −5/4 provides a fingerprint to identify semi-Dirac points in 2D electron systems.
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I. INTRODUCTION

The discovery of graphene has triggered a boom of study
on the Dirac-Weyl fermions in condensed matter systems on
account of both rich physics therein and promising applica-
tions [1,2]. Graphene possesses a gapless energy spectrum
with linear dispersion around two inequivalent Dirac points in
its Brillouin zone [2]. This peculiar band structure contributes
to unique transport properties such as Klein tunneling [3]
and half-integer quantum-Hall effect [4]. When graphene is
subjected to anisotropic strain, the nearest hoppings also be-
come anisotropic and the Dirac points will move toward each
other [5–9]. Under critical anisotropy, two inequivalent Dirac
points merge into a semi-Dirac point (SDP), around which the
energy dispersion is linear in one direction and parabolic in
the perpendicular direction [7–9].

Besides strained graphene, SDP in an energy spectrum has
also been predicted in many other systems, such as strained or
electric-field modulated few-layer black phosphorus [10–15],
multilayer (TiO2)n/(VO2)m nanostructures [16–18], silicene
oxide [19], Bi1−xSbx thin film [20], striped boron sheet [21],
strained monolayer arsenene [22], and spiral multiferroic ox-
ide modulated surface states in topological insulators [23,24].
To date, a semi-Dirac spectrum has been observed exper-
imentally in potassium-doped few-layer black phosphorus
[10], tunable ultracold atomic honeycomb optical lattices [25],
and polariton honeycomb lattices [26]. Although the disper-
sion around a SDP is a combination of that in conventional
semimetals and Dirac materials, the low-energy physics in it
may exhibit unique features which can’t be fully understood
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by combing the existing results such as the unusual Landau
levels [7,8,17,27], optical conductivity [28,29], anisotropic
plasmon [30], and Fano factor in ballistic transport [31].

Impurities and defects in materials induce many interesting
physical phenomena, such as quasiparticle interference (QPI)
patterns [33–36] and the RKKY interaction between magnetic
defect lines [32] in graphene. QPI induced by line defects
or point impurities gives an oscillation pattern of the local
density of states (LDOS) in the vicinity of the imperfections
[33–36]. Those LDOS oscillations can be directly probed
using the scanning tunneling microscope [34–38]. The wave
vector corresponding to the QPI pattern depends on the ge-
ometry of the constant energy contour (CEC) [37]. Hence,
the relevant properties of Fermi surface can be extracted from
the LDOS, which makes the QPI image particularly useful
in probing the dispersion of the surface bands [34–38]. In
turn, the QPI patterns exhibit unique characteristics in dif-
ferent electron systems [36,38,39]. In a system with isotropic
Dirac points such as graphene or the surface states of three-
dimensional (3D) topological insulators, the power-law decay
behavior of LDOS near a line defect is x−3/2 [38,39], which
is much faster than x−1/2 in conventional two-dimensional
(2D) electron gas [36], where x is the distance away from
the line defect. These decay indexes serve as fingerprints to
characterize related physical systems [36,38,39]. Since the
low-energy dispersion around SDP is inherited from that in
conventional semimetals and isotropic Dirac materials, a nat-
ural question is, What is the power-law decay index of the
LDOS oscillations near a line defect in an electron system
with SDPs?

Herein, this paper studies the power-law decay behavior of
the LDOS oscillations near a line defect in a 2D semi-Dirac
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system. The line defect is modeled by an ultrathin high rectan-
gular barrier, which is also adopted in previous works [39–41]
studying the LDOS oscillation near it on the surface of 3D
topological insulators. Using a low-energy k · p Hamiltonian,
we find that the LDOS oscillations are strongly anisotropic,
sensitively depending on the orientation of the defect. We
analytically obtain the decay indexes of the LDOS oscilla-
tions in various cases by using stationary phase approximation
[39–42]. Specifically, when the line defect is perpendicular to
the linear dispersion direction, the decay index of the LDOS
is −5/4 whereas it becomes −1/4 if the SDP is gapped,
both of which are different from the index −3/2 in systems
with isotropic Dirac points. However, when the line defect is
perpendicular to the parabolic dispersion direction, the decay
indexes are −1/2 regardless if the SDP is gapped or not,
which is the same as that in a conventional semimetal. Further,
when the line defect is perpendicular to an arbitrary direction
between the linear and parabolic dispersion directions, the
decay index sensitively depends on the incident energy due
to the absence of a strict stationary phase point. It varies from
−5/4 to −1/2. Our results indicate that the power-law decay
index −5/4 provides a fingerprint to verify the SDP in 2D
electron systems.

The rest of this paper is organized as follows. In Sec. II, we
introduce the low-energy effective model and the stationary
phase approximation. Section III presents some numerical
results and discusses the LDOS oscillations in various cases
combined with analytical analysis based on the stationary
phase approximation. In Sec. IV, we summarize our work.

II. MODEL AND METHOD

The effective low-energy Hamiltonian around a SDP is
[7,11]

H = h̄2k2
y

2m∗ σx + h̄vF kxσy + �σz, (1)

where σx, σy, and σz are the Pauli matrices, m∗ the effective
mass, and vF the Fermi velocity, and k = (kx, ky) the wave
vector. We also include a gap � in Hamiltonian Eq. (1) to
explore whether it impacts the LDOS oscillation or not. Typi-
cally, the two parameters in potassium-doped few-layer black
phosphorus [11] are vF = 3 × 105 m/s and m∗ = 1.42 me,
where me is the free electron mass. According to the data of
the angular resolved photoelectron spectroscopy measurement
in Ref. [10], Hamiltonian Eq. (1) is valid in the energy regime
within 0.4 eV relative to the SDP. The corresponding eigen-
value is

E±(kx, ky) = ±
√

h̄4k4
y

4m∗2
+ h̄2v2

F k2
x + �2, (2)

where E+/− is the conduction/valence band. The eigenvector
is

�k( r) =
(

1
χ

)
eik·r, (3)

with χ = (h̄2k2
y /2m∗ + ih̄vF kx )/(E + �). For � = 0, Eq. (2)

is the energy dispersion near a SDP. As shown in Fig. 1(c),
the energy band linearly (parabolically) disperses along the

FIG. 1. (a) Schematic diagram of the scattering problem. (b) The
profile of the electric potential. (c) Band structure and (d) density of
states near a 2D semi-Dirac point.

kx (ky) direction. Figure 1(d) depicts the density of states
(DOS) corresponding to Fig. 1(c). In contrast to the linearly
dependent DOS around the isotropic Dirac point [2], the DOS
around the SDP is proportional to E1/2 [17,30].

Following previous works studying the LDOS oscillations
near a line defect on the surface of 3D topological insulators
[39–41], we model the line defect as a ultrathin rectangular
electric barrier [see Figs. 1(b)]. The limitation of this barrier
is a δ potential if we keep Ud ≡ constant with decreasing
width (d → 0). We also study the LDOS oscillations near
the line defect by modeling it as a δ potential in the Ap-
pendix. Without loss of generality, we assume that the barrier
is parallel (perpendicular) to the η (ζ ) direction at angle
α ∈ [0, π/2] with respect to the x axis [see Fig. 1(b)], where
α = 0/π

2 corresponds to the line defect perpendicular to the
linear/parabolic dispersion direction. The potential profile is
U (ζ ) = U0[�(ζ ) − �(ζ − d )] with �(·) the Heaviside step
function. Then, the wave vectors kx and ky can be transformed
in terms of kζ and kη [30], i.e., kx = kζ cos α − kη sin α and
ky = kζ sin α + kη cos α.

As shown in Fig. 1(a), the scattering frame is divided into
three regions, i.e., the incident region I, the barrier region
II, and the transmitted region III. Owing to the translation
invariance in the η direction, the transverse wave vector kη is
a good quantum number. Therefore, the wave function admits
the form �k(ζ , η) = eikηηϕ(ζ ). The scattered wave is char-
acterized by the longitudinal wave vector kζ result from the
energy conservation. For briefness, we express all quantities
in dimensionless units by introducing a length unit l0 = 1 nm
and an energy unit E0 = h̄2/(2m∗l2

0 ) = 26.8 meV. Hereafter,
the lengths (energies) are in units of l0 (E0), and the wave
vectors are in units of 1/l0 throughout the paper. For certain
kη and E , the longitudinal wave vectors kζ of each region are
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governed by

(E − U )2 = �2 + [h1(kζ , kη )]4 + u2[h2(kζ , kη )]2, (4)

where h1(kζ , kη ) = kζ sin α + kη cos α, h2(kζ , kη ) =
kζ cos α − kη sin α, and the dimensionless quantities
u = 2m∗vF l0/h̄. This is a quartic algebraic equation about the
wave vector kζ except for the case of α = 0. For α �= 0, the
wave function in region j ( j = I, II, III) is

� j =
[

a j1

(
1

χ j1

)
eikζ j1 ξ + a j2

(
1

χ j2

)
eikζ j2 ξ

+ a j3

(
1

χ j3

)
eikζ j3 ξ + a j4

(
1

χ j4

)
eikζ j4 ξ

]
eikηη, (5)

where kζn (n = 1, 2, 3, 4) are the four solutions of Eq. (4).
In region I (ζ < 0), an incident mode ki

ζ = kζ1 propagating
to the right with vζ = (∂E/∂kζ )kη

> 0 may be scattered into

a reflected mode k f
ζ = kζ2 propagating toward the left with

vζ < 0 and an evanescent mode with Im(kζ3 ) < 0. In region
II (0 � ζ � d ), four modes exist due to the ultrathin barrier. In
region III (ζ > d ), there is a transmitted mode propagating to
the right and an evanescent mode with Im(kζ4 ) > 0. Based on
the above analysis, we have aI4 = aIII2 = aIII3 = 0. We also set
aI1 = 1 in region I to simplify the calculations. The remaining
eight unknown coefficients can be determined by applying the
boundary conditions of the wave functions and probability
current, which are given by

�I|ζ=0 = �II|ζ=0, �II|ζ=d = �III|ζ=d ,

v̂ζ �I|ζ=0 = v̂ζ �II|ζ=0, v̂ζ �II|ζ=d = v̂ζ �III|ζ=d , (6)

where v̂ζ = ∂Ĥ/∂kζ is the current operator. Then, the un-
known coefficients such as the reflection amplitudes r = aI2

can be determined by using the transfer matrix method [43,44]
combined with the boundary conditions in Eqs. (6). For α =
0, Eq. (4) is a quadratic equation about kx. There are only two
real solutions for kx, which means there is no evanescent mode
in Eq. (5). Similarly, we can set aI1 = 1, and the remaining
four nonzero coefficients can be solved using only the bound-
ary conditions of the wave functions, i.e., �I|x=0 = �II|x=0

and �II|x=d = �III|x=d .
In region I, the interference between the incident and re-

flected waves gives an oscillation pattern of the LDOS in real
space, i.e., the Friedel oscillations [33]. The LDOS near a line
defect is [39–42]

ρ(ζ , E ) =
∑

k

|�1(ζ , η)|2δ(E − Ek )

=
∫

|�1(ζ , η)|2δ(E − Ek )dk

=
∮

E
|�1(ζ , η)|2dkη = ρ0(E ) + δρ(ζ , E ), (7)

where ρ0(E ) is spatially independent, and it can be ignored. In
real scanning tunneling microscope experiments [34–38], one
often measures the spatially dependent part δρ(ζ , E ), which
is given by

δρ(ζ , E ) =
∮

E
Re

[
r
(
1 + χ∗

I1
χI2

)
ei(k f

ζ −ki
ζ )ζ ]dkη + δρ1(ζ , E ),

(8)

where δρ1(ζ , E ) originates from the evanescent mode and
decays to zero quickly for positions far away from the line
defect. Therefore, the LDOS oscillation is dominated by the
first term in Eq. (8). For positions away from the defect,
the LDOS oscillation sensitively depends on the phase factor

ei(k f
ζ −ki

ζ )ζ which oscillates rapidly. A pair of scattering sates
(ki

ζ , kη) and (k f
ζ , kη ) on the CEC result in a standing wave with

spatial period of 2π/|(k f
ζ − ki

ζ )| ≡ 2π/|�kζ |. Only the pair
whose period is stationary with respect to a small variation in
kη makes a dominant contribution to the LDOS oscillations
[39,41,42]. Those pairs of points on the CEC are called sta-
tionary phase points, which satisfy

∂�kζ

∂kη

|kη0 = ∂
(
k f
ζ − ki

ζ

)
∂kη

|kη0 = 0. (9)

The stationary phase points given by Eq. (9) can be divided
into two categories according to the sign of the second deriva-
tive (∂2�kζ /∂k2

η) in the neighborhood of these points. One
category is the extreme points (EPs) around which the second
derivatives have the same signs [39,41,42]. In this case, the
wave vector changes �kζ are maximum or minimum values
on the CEC. Another category is the inflection points around
which the second derivatives have opposite signs. In our work,
we only encounter the EPs. Between a pair of EPs, �kζ0 =
k f
ζ0 − ki

ζ0 is the characteristic wave vector solely determined
by the geometry of CEC. The spatial dependence of the
LDOS can be evaluated by expanding the relevant quantities
in Eq. (8) to the lowest leading order about δkη around each
pair of EPs, which is given by

kη → kη0 + δkη, r → r0δkβζ

η ,

1 + χ∗
I1
χI2 → c0δkγζ

η , k f
ζ − ki

ζ → �kζ0 + �kζλδkλζ

ζ , (10)

Then, the asymptotic behavior of the LDOS is

δρ(ζ , E ) � ρA cos(�kζ0ζ + φ)ζ ν, (11)

where ρA = Re(i−νc0r0/λζ )�(−ν)(�kζλ)ν is the amplitude
of LDOS pattern, �kζλ is the lowest leading order derivative
of �kζ (kη ) at (ki

ξ , kη), ν = −(βζ + γζ + 1)/λζ is the power-
law decay index, �(x) is the Euler function, and φ is the initial
phase of each pair of EPs. The asymptotic decay behavior
of LDOS oscillations in Eq. (11) is valid if ζ � |�kζ0|−1

[39,41,42], which means the asymptotic region is energy de-
pendent.

III. LOCAL DENSITY OF STATES OSCILLATIONS

In this section, we present some numerical examples of the
LDOS oscillations when the line defects are along different
directions for the system with and without a gap, respectively.
To understand the numerical results better, we analytically ob-
tain the power-law decay indexes of the LDOS oscillations for
two special cases within the stationary phase approximation.

First, we consider the LDOS oscillation of α = 0 for
the gapless case ( � = 0). Figure 2(a) plots the reflectivity
R = |r|2 as a function of the transverse wave vector ky with
different energies. As shown in the figure, the reflectivity R
is always zero at normal incidence, i.e., ky = 0, due to the
Klein tunneling resulting from the time-reversal symmetry
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FIG. 2. (a) The reflectivity R as a function of ky at different
energies for α = 0. (b) The CECs of the incident (red line) and
scattering (green line) regions with E = 8. The black solid dots are
a pair of stationary phase points and |�kx0| is the characteristic wave
vector of the scattering process. (c)–(f) The spatial dependence of
LDOS at different energies. The red solid (blue dashed) lines are
the numerical (fitted) results. The green solid lines are the envelop
function of LDOS. In all figures, we have set U0 = 20 and d = 1.

of the effective Hamiltonian [30,45]. It increases at oblique
incidence with increasing incident angle due to the mismatch
of the wave vector [30,31]. Figure 2(b) depicts the CECs of
the incident area (red line) and the barrier area (green line).
As plotted in the figure, the scattering only occurs in the range
within the blue dashed lines resulting from the conservation of
ky. Figures 2(c)–2(f) present the spatial dependence of LDOS
with E = 3, 5, 8, 10, respectively. As depicted in the figure,
numerical results (the solid red lines) indicate that the LDOS
periodically oscillates with the distance away from the defect
with a decreasing amplitude, which implies an asymptotic
behavior.

As discussed in Sec. II, the LDOS oscillation can be
understood by using the stationary phase approximation. First,
by using Eq. (9), the pair of stationary phase points on the
CEC are (E/u, 0) and (−E/u, 0) [see the black solid dots
in Fig. 2(b)]. The second derivative (∂2�kx/∂k2

y ) at these
points are zero but negative in the neighborhood of them.
Hence, these two points [(±E/u, 0)] constitute a pair of maxi-

mum points, giving the characteristic wave vector as |�kx0| =
|−2E/u|. Therefore, the period of the LDOS oscillation is
2π/|�kx0| = πu/E , which means the higher the incident en-
ergy, the faster the LDOS oscillations. This explains why the
LDOS oscillates faster for higher energy in Figs. 2(c)–2(f).
To get the power-law decay index, we need to expand rel-
evant quantities around the EPs. Because the first, second,
and third derivatives of �kx(ky) at the EPs are all zero, we
have to expand it to the fourth order. Then, near the EPs, we
have �kx ≈ �kx0 + δk4

y /uE , 1 + χ∗
I1
χI2 ≈ −2iδk2

y /E , and
χI1 − χII1 ≈ [1/E − 1/(E − U0)]δk2

y . Therefore, the relevant
parameters are λx = 4, γx = 2 and cx0 = −2i/E . To obtain
the parameter βx, we need to calculate the reflectivity ampli-
tude. For a given E and ky, using the continuity condition of
the wave function, the reflectivity amplitude is obtained as

r = −i
2(χI1 − χII1 )(χI1 − χ∗

II1
)sin(qxd )

|χI1 − χII1 |2eiqxd − |χI1 − χ∗
II1

|2e−iqxd
, (12)

where kx =
√

E2 − k4
y /u and qx =

√
(U0 − E )2 − k4

y /u. Ex-
panding the reflectivity amplitude near the EPs, we have
r ≈ rx0δk2

y with rx0 = sin(U0d/u)e−iU0d/uE−1, giving βx = 2.
One can also obtain the parameter βx by fitting the reflec-
tivity amplitude as a polynomial of δky numerically, which
is easier than calculating the reflectively amplitude analyti-
cally. Hereafter, we will use numerical fitting to obtain this
parameter. Then, the power-law decay index is ν = −(βx +
γx + 1)/λx = −5/4. Therefore, according to the analysis, the
LDOS oscillation in this case can be fitted as δρ(x, E ) �
ρA cos (− 2E

u x + φ)x− 5
4 . Based on Eq. (11), the amplitude ρA

depends on rx0, cx0, and the fourth derivative of �kx(ky) at
(E/u, 0). Taking all the factors together, we find the amplitude
is proportional to E−3/4 which means the higher the incident
energy, the smaller the amplitude. Unfortunately, we cannot
directly observe it in Fig. 2 because different incident energies
correspond to different pairs of EPs having different initial
phase. The blue dashed lines in Figs. 2(c)–2(f) show that the
fitted results for the LDOS are in excellent agreement with the
numerical ones. The asymptotic lines x−5/4 well describe the
asymptotic behavior of the LDOS, which clearly demonstrates
that the decay index is −5/4. However, the LDOS oscillations
close to the line defect depart from the asymptotic behavior
because the asymptotic region requires x � |�kx0|−1 = u/2E
[39,41,42]. This means that the higher the incident energy, the
smaller the distance needed to manifest asymptotic behavior.
We can also directly observe this feature in Figs. 2(c)–2(f).
More precisely, based on our calculation, we find the asymp-
totic behavior expressed by Eq. (11) works quite well if x is
one order larger than (�kx0)−1.

On the other hand, it is worth to point out that the de-
cay index −5/4 here is not only different from the decay
of −3/2 for isotropic Dirac materials [38–41] but also the
decay of −1/2 for conventional semimetals [36,37,41]. This
unique decay index originates from the unique anisotropic
band structure around SDP. In particular, compared with con-
ventional semimetals, there is Klein tunneling suppressing the
backscattering at normal incidence, promising a faster decay
than that of −1/2 [39]. In contrast to isotropic Dirac systems,
electrons are more difficult to transmit the barrier due to the
more severe mismatch of the wave vector at oblique incidence,
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FIG. 3. (a) The reflectivity R as a function of kx at different
energies for α = π/2. (b) The CECs of the incident (red line) and
scattering (green line) regions with E = 8. The black solid dots are
a pair of stationary phase points and |�ky0| is the characteristic wave
vector during the scattering process. (c)–(f) The LDOS oscillations at
different energies. The red solid (blue dashed) lines are the numerical
(fitted) results. The green solid lines are the envelop function of
LDOS. Other parameters are the same as those in Fig. 2.

resulting in a slower decay behavior than that of −3/2. It is
worth nothing that from the derivation, the decay index −5/4
is independent of the incident energy, the barrier height, or the
band parameters. Therefore, the decay index −5/4 can serve
as a fingerprint to characterize 2D semi-Dirac electrons.

Next, we turn to another special case of α = π/2.
Figure 3(a) shows the reflectivity R as a function of the trans-
verse wave vector kx with various energies. In contrast to the
case of α = 0, the reflectivity here is no longer zero at normal
incidence, i.e., kx = 0, due to the absence of Klein tunneling.
Instead, there is a total reflection at normal incidence resulting
from the severe mismatch of the wave vectors [see Eq. (4)]
between the incident and scattering states because of the high
electrical barrier. This is consistent with the previous results
[30]. Similarly, Figs. 3(c)–3(f) depict the LDOS oscillations
in this case with E = 3, 5, 8, 10, respectively. As shown in
the figure, numerical results (the solid red lines) indicate that
the LDOS periodically oscillates with distance away from

the defect with decreasing amplitude, which also implies an
asymptotic behavior in the oscillation pattern. Figure 3(b)
plots the CEC of the incident and barrier regions, respec-
tively. From Fig. 3(b), we find a pair of EPs (0,

√
E ) and

(0,−√
E ) satisfying Eq. (9) (see the black solid dots), giving

the characteristic wave vector as |�ky0| = 2
√

E . Hence, the
period of the LDOS oscillation in this case is 2π/|�ky0| =
π/

√
E , which also means the higher the energy, the faster

the oscillation pattern. Those features are well reflected in
Figs. 3(c)–3(f). Meanwhile, for a certain incident energy, the
period here is smaller than that in the case of α = 0. Following
the same process of α = 0, we can also obtain the asymp-
totic behavior of the LDOS by using the stationary phase
approximation. Specifically, near the EPs, we have �ky ≈
�ky0 + u2δk2

x /(2E
√

E ), 1 + χ∗
I1
χI2 ≈ 2. Hence, the relevant

parameters are λy = 2, γy = 0, and cy0 = 2. As plotted in
Fig. 3(a), the reflectivity is almost unit around the EP, giving
the parameter βy = 0 and ry0 = 1. Therefore, the power-law
decay index in this case is ν = −(βy + γy + 1)/λy = −1/2,
which means the spatial dependence of the LDOS can be
expressed as δρ(y, E ) � ρA cos (−2

√
Ey + φ)y− 1

2 with ρA =
π (∂2�ky/∂k2

x )−1/2/
√

2. In this case, the amplitude ρA only
depends on the reciprocal of the square root of the second
derivative (∂2�ky/∂k2

x = u2/E3/2), which is just the square
root of the curvature at EPs on the CEC. The blue dashed lines
in Figs. 3(c)–3(f) show the results fitted with the above for-
mula for the LDOS. As expected, the fitted results are in good
agreement with the numerical ones, and the asymptotic line
y−1/2 well describes the asymptotic behavior of the LDOS far
away from the line defect. This decay index is the same as that
in conventional metals [36,37,41] because both of them have a
parabolic dispersion. In the very vicinity of the line defect, the
LDOS oscillations depart from the asymptotic behavior be-
cause the asymptotic region requires y � |�ky0|−1 = 1/2

√
E

[39,41,42]. This means that the higher the incident energy, the
smaller the distance needed to manifest asymptotic behavior.
We can also directly observe this feature in Figs. 3(c)–
3(f). Specifically, we find that the asymptotic behavior starts
when y is 20 times larger than (�ky0)−1, based on our
calculation.

Next, we discuss the case of 0 < α < π/2, which means
that the line defect is along an arbitrary direction. In con-
trast to the two special cases, the decay indexes in this case
sensitively depend on the incident energy and the orientation
of the defect, i.e., the titled angle α, because the CECs are
titled ellipses. Here, we choose the results for α = π/4 as
an example to illustrate this feature. Figures 4(a) and 4(b)
show the LDOS oscillations near the defect for E = 5 and
8, respectively. From the figures, we find that the numerical
results (the red solid lines) also imply an asymptotic behavior
in the oscillation pattern. Following the analysis for the two
special cases (α = 0 and π/2), we can also try to fit the LDOS
by using a similar formula like Eq. (11). The fitted results
and asymptotic lines are indicated by the blue dashed and
green solid lines in the figures. The decay indexes here are
found to be −0.843 and −0.603 for E = 5 and 8, respectively.
We have also checked various cases with different incident
energies and α but do not present them here due to space limi-
tations. The LDOS oscillations for other angles α and incident
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FIG. 4. (a), (b) The LDOS oscillations at different energies for
α = π/4. (c) The CECs of the incident (red line) and scattering
(green line) regions with E = 8. (d) The power-law decay index as a
function the titled angle α with incident energy E = 8. The red solid
(blue dashed) line is the result for the system without (with) a gap.
Other parameters are the same as those in Fig. 2.

energies are similar to the results shown in Figs. 4(a) and 4(b).
However, the decay indexes are distinct from each other and
sensitively depend on the incident energy and α. The reason
is that the CECs are titled ellipses as depicted in Fig. 4(c) and
there is no such a strict stationary phase point on the CEC
satisfying Eq. (9). The red solid line in Fig. 4(d) plots the
decay indexes for various titled angles α with incident energy
E = 8 by fitting with the numerical results. The result shows
that the decay index sensitively depends on the orientation of
the defect (α) and varies from −5/4 to −1/2.

To explore whether the decay index −5/4 is unique, we
assume a gap ( �) in Hamiltonian Eq. (1) and redo the calcu-
lation. Figures 5(a) and 5(b) show the reflectivity as a function
of transverse wave vectors for α = 0 and π/2, respectively.
As shown in Fig. 5(a), for α = 0, the reflectivity is finite
at normal incidence due to the absence of Klein tunneling
resulting from the breaking of time reversal symmetry, which
is different from the result of the gapless case. For α = π/2,
the reflectivity is nonzero at normal incidence regardless of
whether there is a band gap. This is similar to that of the
gapless case. Figures 5(c)–5(f) plot the LDOS oscillations for
α = 0 and π/2 with different band gaps. Similar to the results
of the gapless case, the LDOSs oscillate periodically with a
decay magnitude near the line defect, which can be fitted by an
analytical function as expressed in Eq. (11). Here, for the case
of α = 0, the stationary phase points on the CEC are (k′

x0, 0)
and (−k′

x0, 0) with k′
x0 = √

E2 − �2/u, giving the period of
the LDOS oscillations as πu/

√
E2 − �2. This means the

larger the band gap, the slower the oscillation pattern for a cer-
tain incident energy. Meanwhile, the asymptotic region falls
into x � u/2

√
E2 − �2, which means the larger the band

FIG. 5. (a), (b) Reflectivity as a function of transverse wave
vectors for α = 0/ π

2 with different band gaps. (c), (d) The LDOS
oscillations with different band gaps for α = 0. (e)-(f) The LDOS
oscillations with different band gaps for α = π/2. The electron en-
ergy is E = 8 and other parameters are the same as those in Fig. 2.

gap, the longer the distance needed to manifest asymptotic
behavior for a certain energy. Those features can be clearly ob-
served in Figs. 5(c) and 5(d). Near those two points, we have
�k′

x ≈ −2k′
x0 + δk4

y /u
√

E2 − �2 and 1 + χ∗
I1
χI2 ≈ 2�/(E +

�). Thus, the relevant parameters are λ′
x = 4, γ ′

x = 0, and
c′

x0 = 2�/(E + �). The reflectivity amplitude around ky =
0 is r ≈ r′

x0 with r′
x0 = U0�/[2E (E − U0 + �) − U0� +

i
√

uq′
x(E2 − �2) cot(q′

xd )] and q′
x =

√
(U0 − E )2 − �2/u,

giving the parameter β ′
x = 0, which is different from the result

of the gapless case. Therefore, the power-law decay index
for a gapped semi-Dirac system is ν = −(β ′

x + γ ′
x + 1)/λ′

x =
−1/4. The LDOS oscillations can be fitted as δρ(x, E ) �
ρ ′

Ax cos (−2k′
x0x + φ)x− 1

4 . The amplitude ρ ′
Ax depends on r′

x0,
c′

x0 and the fourth derivative of �k′
x(ky) at (k′

x0, 0). It is a
complex function of the incident energy and band gap. The
blue dashed lines in Figs. 5(c) and 5(d) show the fitted results
for the LDOS. They are in good agreement with the nu-
merical ones. Moreover, the envelop function x−1/4 perfectly
describes the asymptotic behavior of the LDOS. It is worth
pointing out that the −1/4 decay behavior of the LDOS is
also valid near the bottom (top) of the conduction (valence)
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band for small band gaps. For higher energy LDOS oscil-
lations with small gaps, the decay index may be different
but it is usually difficult to realize in real experiments be-
cause higher Fermi surface requires high carrier density in
the sample. On all accounts, the decay index can’t be −5/4
(the decay index of gapless case) as long as the SDP is
gapped, which further indicates that the −5/4 decay behavior
can serve as a fingerprint to verify the SDP in 2D electron
systems. Similarly, for the case of α = π/2, the EPs are
(0, k′

y0) and (0,−k′
y0) with k′

y0 = (E2 − �2)1/4. Near those
two points, we have �k′

y ≈ −2k′
y0 + u2δk2

x /2(E2 − �2)3/4,
and 1 + χ∗

I1
χI2 ≈ 2E/(E + �), which results in the relevant

parameters λ′
y = 2 and γ ′

y = 0. It can be seen from Fig. 5(b)
that the reflection amplitude is not zero near the EPs, thus,
we obtain β ′

y = 0. Hence, the decay index in this case is
ν = −(β ′

y + γ ′
y + 1)/λ′

y = −1/2, which is same as that of the
gapless case. Therefore, the LDOS oscillation can be fitted as
δρ(y) ∝ cos (−2k′

y0y + φ)y− 1
2 . The amplitude of the LDOS

in this case is a complex function of the incident energy and
band gap. It is more easily to obtain it by fitting with the
numerical data. The blue dashed lines in Figs. 5(e) and 5(f)
are the fitted results, which are in good agreement with the nu-
merical results. The envelop function y−1/2 perfectly governs
the asymptotical behavior of the LDOS oscillations, which
indicates that the power-law decay index is −1/2 for defects
perpendicular to the parabolic dispersion direction regardless
of whether the SDP is gapped or not. The asymptotic region
in this case is x � (E2 − �2)−1/4/2, which also indicates
that the larger the band gap, the longer the distance needed
to manifest asymptotic behavior for certain energies. For
0 < α < π/2, the decay indexes also depend on the incident
energy and the orientation of the defect. The blue dashed line
in Fig. 4(d) plots the decay indexes for various titled angles
α with incident energy E = 8 and gap � = 3 by fitting with
the numerical results. From the figure, we find that the decay
index depends on the orientation of the defect and varies from
−1/4 to −1/2.

IV. SUMMARY

In summary, using quantum mechanical scattering theory
and the method of stationary phase approximation, we studied
the LDOS oscillations near a line defect in the semi-Dirac
electron system and analytically obtained the power-law de-
cay indexes for two special orientations of the defect. When
the line defect is perpendicular to the linear dispersion di-
rection, the decay index is −5/4 for gapless SDP and −1/4
when the SDP is gapped, both of them are different from the
decay index −3/2 in isotropic Dirac systems. When the line
defect is perpendicular to the linear dispersion direction, the
decay index is always −1/2 regardless of whether the SDP is
gapped or not. This is the same as that of conventional met-
als because both of them have a parabolic dispersion. There
is no such universal decay index when the line defect runs
along an arbitrary direction due to the absence of stationary
phase points on the CEC. Our results can be tested by the
scanning tunneling microscope [34–38], and the decay index
−5/4 provides a fingerprint to detect semi-Dirac electrons.
The power-law decay behavior is more likely to manifest itself

at higher Fermi levels, which means it is more easily observed
in samples with higher carrier concentrations.
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APPENDIX

In this Appendix, we discuss the LDOS oscillations
near the line defect which is modeled as a δ potential. When
the line defects run along the linear dispersion direction,
the potential profile is U (x) = U0δ(x), which is the limita-
tion of the rectangular potential U (x) = U0�(x)�(d − x) if
U0 → ∞, d → 0, and U0d ≡ constant. Since the momentum
is conserved in the y direction, we can express the wave
function as �k(x, y) = eikyyϕ(x). Because the secular equation
[H (−i∂x, ky) + U0δ(x)]�k(x, y) = E�k(x, y) is a first-order
partial differential equation with respect to x, the wave func-
tion is discontinuous at x = 0. The boundary condition at
x = 0 is given by [46,47]

�k|x=0+ = e−iσyτ�k|x=0− , (A1)

where τ = U0d/u is a constant. By using Eq. (A1), we obtain
the reflection amplitude as

r =
(
k4

y + iukxk2
y

)
sin τ

iukxE cos τ − E2 sin τ
. (A2)

Following the procedure of stationary phase approximation,
expanding the reflectivity amplitude near the EPs (±E/u, 0)
gives r = δk2

y sin τ/(Eeiτ ), which means the parameter βx =
2, which is the same as that in the case of rectangular potential.
The other two relevant parameters λx and γx are solely deter-
mined by the CEC and independent of the choice of potential,
i.e., λx = 4, γx = 2. Therefore, the power-law decay index
here remains ν = −(βx + γx + 1)/λx = −5/4, which is the
same as that in the main text. Figures 6(a), 6(b), and 6(d) plot
the reflectivity R = |r|2 and LDOS oscillations counterpart to
Figs. 2(a), 2(c), and 2(e). As shown in the figures, we find
there is only a little quantitative difference between the reflec-
tivity and LDOS oscillations caused by the δ potential and the
rectangular one. The numerical (the red solid lines) and fitted
(the blue dashed lines) results both clearly demonstrate that
the power-law decay index of LDOS oscillations are identical,
i.e., decaying as x−5/4.

When the line defect runs along the parabolic dispersion di-
rection, the potential profile is U (y) = U0δ(y). In this case, the
wave function admits the form �k(x, y) = eikxxϕ(y). Because
the Schrödinger equation [H (−i∂y, kx ) + U0δ(y)]�k(x, y) =
E�k(x, y) is a second-order partial differential equation with
respect to y, the boundary condition is [48]

�k|y=0− = �k|y=0+ ,

σx(∂y�k|y=0+ − ∂y�k|y=0− ) = U0�k|y=0. (A3)
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FIG. 6. The first (second) row is the result for the defect perpendicular to the linear (parabolic) dispersion direction. (a), (e) The reflectivity
R as a function of ky/kx at different energies. (b), (d), (f), (h) The spatial dependence of LDOS at different energies. The red solid (blue dashed)
lines are the numerical (fitted) results. The green solid lines are the envelop function of LDOS. The strength of the δ potential is U0d = 15
(U0 = 15) when the line defect is perpendicular to the linear (parabolic) dispersion direction.

According to Eqs. (A3), the reflection amplitude is obtained
as

r = U 2
0 ky − 2U0E

2i
(
U0E − 2k3

y

) − (
U 2

0 ky − 2U0E
) . (A4)

Similarly, expanding the reflectivity amplitude near the pair
of EPs (0,±√

E ) gives r = U0/(2i
√

E − U0), which means
the parameter βy = 0. It is the same as that in the case of
rectangular potential. The other two relevant parameters λy

and γy are solely determined by the CEC and independent of
the choice of potential profile. Therefore, the power-law decay
index here remains −1/2, which is identical to that in the
case of rectangular potential. Figures 6(e), 6(f), and 6(h) plot
the reflectivity R = |r|2 and LDOS oscillations counterpart to

Figs. 3(a), 3(c), and 3(e). From the figures, we find there is
only a little quantitative difference between the reflectivity
and LDOS oscillations caused by the δ potential and the
rectangular one. The numerical (red solid lines) and fitted
(blue dashed lines) results both clearly demonstrate that the
power-law decay index of LDOS oscillations are identical,
i.e., decaying as y−1/2.

In summary, different choices of the potentials will not
bring about different decay indexes. The reason is that the QPI
only depends on the energy dispersion, i.e., the CEC of the
system. The scattering potentials cannot change the geometry
of the Fermi surface or the stationary phase points. Hence,
the power-law decay indexes of the LDOS oscillations caused
by the line defect are independent of whether we choose a δ

potential or a rectangular one to model it.
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