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Spin and charge transport through a helical Aharonov-Bohm interferometer
with a strong magnetic impurity
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We discuss transport through an interferometer formed by the helical edge states of a quantum spin Hall
insulator. Focusing on the effects induced by a strong magnetic impurity placed in one of the arms of an
interferometer, we consider the experimentally relevant case of relatively high temperature as compared to
the level spacing. We obtain the conductance and spin polarization in a closed form for an arbitrary tunneling
amplitude of the contacts and arbitrary strength of the magnetic impurity. We demonstrate the existence of
quantum effects which do not show up in previously studied cases of weak magnetic disorder. We find optimal
conditions for spin filtering and demonstrate that the spin polarization of outgoing electrons can reach 100%.
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I. INTRODUCTION

A novel class of materials—topological insulators—has
become a hot topic in the last decade. These materials are in-
sulating in the bulk, but exhibit conducting states at the edges
of the sample [1–3]. The edge states demonstrate surprising
properties. In particular, in two-dimensional (2D) topologi-
cal insulators (TIs) edge states are one-dimensional channels
where (i) the electron spin is tightly connected to the electron
motion direction, e.g., electrons with spin up and spin down
propagate in opposite directions, and (ii) the electron transport
is ideal, in the sense that electrons do not experience backscat-
tering from conventional nonmagnetic impurities, similarly to
what occurs in edge states of the quantum Hall effect, but
without invoking high magnetic fields. The 2D topological
insulator phase was predicted in HgTe quantum wells [4,5]
and confirmed by direct measurements of conductance of the
edge states [6] and by an experimental analysis of the nonlocal
transport [7–10].

Considerable attention was paid to the analysis of the
Aharonov-Bohm (AB) effect in 2D TIs: The dependence of
the longitudinal conductance of nanoribbons and nanowires
on the magnetic flux piercing their cross section was studied
[11,12]; weak antilocalization was investigated in disordered
topological insulators, and oscillations with a magnetic flux
with a period equal to half of the flux quantum were predicted
[13,14]. The AB effect was discussed for almost closed loops
formed by curved edge states [15,16]. Also, the AB oscilla-
tions were observed in the magnetotransport measurements of
transport (both local and nonlocal) in 2D topological insula-
tors based on HgTe quantum wells [17] and were explained by
the coupling of helical edges to the bulk puddles of charged
carriers.

The purpose of the current paper is to study a standard
AB setup based on helical edge states (HESs) of a quantum

spin Hall insulator tunnel-coupled to the leads (see Fig. 1).
Such an interferometer was already studied theoretically at
zero temperature for normal [18–20] and ferromagnetic [21]
leads (Ref. [21] also contains a numerical analysis at finite
temperatures). A similar problem of zero-temperature inter-
ferometry by the edge states existing in graphene nanoribbon
structures was discussed in Ref. [22].

Here, we focus on the case of a relatively high tempera-
ture, T � �, where � = 2πvF /L is the level spacing which
is controlled by the total edge length L = L1 + L2, where
L1,2 are lengths of the interferometer’s shoulders. For typi-
cal sample parameters, L = 10 μm and vF = 107 cm/s, we
estimate the level spacing � ≈ 3 K. As seen from this esti-
mate, the case T � � is interesting for possible applications.
There is also an upper limitation for temperature. For good
quantization, T should be much smaller than the bulk gap
of the topological insulator: T � �b. For the first time the
quantum spin Hall effect was observed in structures based
on HgTe/CdTe [6] and InAs/GaSb [23], which had a rather
narrow bulk gap, less than 100 K. Substantially large values
were observed recently in WTe2, where a gap of the order
of 500 K was observed [24], and in bismuthene grown on
a SiC (0001) substrate, where a bulk gap of about 0.8 eV
was demonstrated [25,26] (see also the recent discussion in
Ref. [27]). Thus, recent experimental studies unambiguously
indicate the possibility of transport through HESs at room
temperature, when the condition

�b � T � � (1)

can be easily satisfied.
The high-temperature regime, T � �, was already studied

for single-channel AB interferometers made of conventional
materials [28–32], and it was demonstrated that flux-sensitive
interference effects survive in this case. Recently, we
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FIG. 1. Helical Aharonov-Bohm interferometer with the mag-
netic impurity placed in the upper shoulder.

discussed high-temperature electron and spin transport in
AB interferometers based on the helical edge states of a TI
[33,34]. We considered the setup shown in Fig. 1 and assumed
that there is a weak magnetic impurity (or weak magnetic
disorder). We found that both the tunneling conductance G
and the spin polarization P of outgoing electrons show sharp
resonances appearing periodically with a dimensionless flux,
φ = �/�0, with the period �φ = 1/2. Here, � is the external
magnetic flux piercing the area encompassed by edge states
and �0 = hc/e is the flux quantum. Simple estimates show
that the condition � ∼ �0 is achieved for an interferometer
with HESs of typical length L = 10 μm in fields B ∼ 3 Oe,
well below the expected magnitude of the fields destroying
the edge states [35–37].

Importantly, condition (1) ensures the universality of spin
and charge transport (see the discussion in Refs. [33,34]),
which do not depend on details of the systems, in partic-
ular, on the device geometry. A very sharp dependence of
the conductance and the spin polarization on φ, predicted in
Refs. [33,34], is very promising for applications for tunable
spin filtering and in the area of extremely sensitive detec-
tors of magnetic fields. We also demonstrated that charge
and spin transfer through the AB helical interferometer can
be described in terms of an ensemble of flux-tunable qubits
[34] that opens a wide avenue for high-temperature quantum
computing.

In this paper, we generalize the results obtained in
Refs. [33,34] for the case of a strong impurity. The main
aim of this study is to achieve a better understanding of the
physics of helical edges and to make certain predictions that
could be experimentally verified. It should be noted that de-
spite the huge amount of studies devoted to helical states, a
number of basic physical issues remain unclear, in particular,
the mechanisms of electron scattering in such states. On the
one hand, the observed conductance of such states is signif-
icantly lower than the conductance of an ideally conducting
wire, which could be explained by the presence of magnetic
impurities. On the other hand, experimental groups studying
the transport through helical states claim that the samples used
in experiments are practically free of magnetic impurities, so
that, contrary to observations, helical states should be ballis-
tic. An attempt to explain the apparent contradiction by the
presence of scattering centers in the form of so-called charged
puddles has not yet found a clear experimental confirmation.
In this situation, it is very desirable to study scattering upon a

controlled defect, e.g., on a ferromagnetic island or ferromag-
netic tip, whose magnetic moment can be controlled either
by an external magnetic field or mechanically by changing
the angle between the tip and the edge state. Such an island
or a tip can in no way be considered as a weak magnetic
impurity. Rather, it represents a strong classical defect. The
theory developed in the present work allows us to quantita-
tively describe the effect of such defects on the conductance
and spin polarization of tunneling electrons. In particular we
show that the value of spin polarization increases dramatically
in the case of strong impurity.

We study electrical and spin transport through an AB he-
lical interferometer containing a single magnetic impurity of
arbitrary strength and find optimal conditions for spin filter-
ing. We also demonstrate that with increasing the impurity
strength, new quantum processes come into play which do not
show up for a weak impurity. Most importantly, we confirm
the idea which was put forward previously [34] but has not
yet been verified by direct calculations. We demonstrate that a
strong magnetic impurity inserted into one of the interferome-
ter’s shoulders blocks the transition through this shoulder and
only the other shoulder remains active. As a result, the spin
polarization of outgoing electrons can achieve 100%. Remark-
ably, this mechanism is robust to dephasing by a nonmagnetic
bath, works at high temperatures, and thus has high prospects
in quantum computing.

II. MODEL

We consider tunneling charge and spin transport through
an AB interferometer based on HESs. We limit ourselves to
a discussion of a setup with a single strong impurity placed
into the upper shoulder at the distance x0 (along the edge)
from the left contact (see Fig. 1). We discuss the dependence
of the tunneling conductance G and spin polarization of out-
going electrons P on the external dimensionless magnetic flux
φ. Similar to Refs. [33,34], we neglect the influence of the
magnetic fields on the helical states.

We assume that the impurity is classical [38] with a large
magnetic moment M (M � 1) and describe such an impurity
by the following scattering matrix,

ŜM =
(

eiζ cos θ i sin θeiϕ

i sin θe−iϕ e−iζ cos θ

)
. (2)

One can show that the forward scattering phase ζ can be
absorbed into the shift of φ and is put to zero below. We ne-
glect the feedback effect related to the dynamics of M caused
by an exchange interaction with an ensemble of right- and
left-moving electrons [39] assuming that the direction of M
is controlled, e.g., by an in-plane magnetic field, which does
not affect the AB interference, or by the magnetic anisotropy
of the impurity Hamiltonian. The scattering of electrons may
also happen off the ferromagnetic tip placed in the vicinity of
HESs.

We suppose that HESs are tunnel-coupled to metallic leads.
These leads are modeled by single-channel spinful wires so
that electrons are injected into the helical states through the
so-called tunnel Y junctions. Different spin projections do
not mix at the tunneling contacts so that electrons entering
the edge with opposite spins move in opposite directions
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FIG. 2. Point contact between the helical edge state and the spin-
ful wire. Blue (red) lines correspond to spin up (down) electrons.
Solid lines depict trajectories inside the interferometer. Dashed lines
show incoming and outgoing electron trajectories. Dotted lines illus-
trate reflection by contact.

(see Fig. 2). Such contacts are characterized by two ampli-
tudes r and t , obeying |t |2 + |r|2 = 1. We assume that t and r
are real and positive and parametrize them as follows:

r =
√

1 − e−2λ, t = e−λ, 0 < λ < ∞. (3)

III. CALCULATION OF CONDUCTANCE
AND POLARIZATION

The transmission coefficient T , the spin transmission coef-
ficient Ts, and the spin polarization P = Ts/T are expressed
via the fractions of transmitted electrons Tα with spin pro-
jection α = ↑,↓. Introducing the transfer matrix t̂ of the
interferormeter as a whole, we get

T = 1
2 (T↑ + T↓) = 1

2 〈Tr(t̂ t̂†)〉ε, (4)

Ts = 1
2 (T↑ − T↓) = 1

2 〈Tr(t̂σzt̂
†)〉ε, (5)

where the thermal averaging, 〈· · · 〉ε = − ∫
dε(· · · )∂ε fF (ε), is

performed with the Fermi function fF (ε). Here, we assume
that the incoming electrons are unpolarized. The tunneling
conductance of this setup is given by

G = 2
e2

h
T , (6)

where factor 2 accounts for two conducting channels.
The transfer matrix t̂ is defined as follows,(

a↑

a↓

)
= t̂

(
b↑

b↓

)
, (7)

where (b↑, b↓) and (a↑, a↓) are the amplitudes of incoming
(from the left contact) and outgoing (from the right contact)
waves, respectively (see Fig. 1). The transfer matrix corre-
sponding to ŜM reads

M̂ = 1

cos θ

(
1 i sin θeiξ

−i sin θe−iξ 1

)
, (8)

where ξ = ϕ − 2kx0 and k is the electron momentum. The
matrix t̂ is expressed in terms of M̂ as follows [34],

t̂ = r2e2π iφL1/L

t

(
eikL1 0

0 e−ikL1

)(
t 0
0 1

)
ĝ

(
1 0
0 1/t

)
,

ĝ = 1

1 − e2π iφM̂

(
t2eikL 0

0 e−ikL/t2

)M̂

(
1 0
0 −1

)
. (9)

The matrix ĝ can be represented as follows,

ĝ = cos θ

[(
0 0
0 −1

)
+

∑
α=±

1 + αĤ

1 − t2ei(kL+α2πφ0 )

]
, (10)

where φ0 obeys

cos(2πφ0) = cos θ cos(2πφ), (11)

and

Ĥ =
(

a beiξ

be−iξ −a

)
. (12)

The coefficients

a = i
e−2π iφ − cos(2πφ0) cos θ

cos θ sin(2πφ0)
, (13)

b = e−2π iφ tan θ

sin(2πφ0)
(14)

obey a2 + b2 = 1 and depend on the strength of the impurity
and the magnetic flux only, while the dependence on the en-
ergy is encoded in the exponents e±iξ entering the off-diagonal
terms of Ĥ .

The possibility to express the transmission amplitude t̂ in
terms of resonance denominators (10) is of primary impor-
tance for further high-temperature averaging. It allows us to
do exact thermal averaging for an arbitrary magnetic impu-
rity strength, in distinction with previous calculations [33,34],
where a perturbative expansion over impurity strength was
used for the calculation of T and P . We first note that the
energy dependence in the transfer matrix t̂ appears not only in
the resonance denominators but also in terms eikL1 and ei2kx0 .
However, for relevant combinations Tr(t̂ t̂†) and Tr(t̂σzt̂†), all
energy-dependent terms in the numerators cancel. It reflects
the universality of the HES-based interferometers. AB oscil-
lations do not depend on the details of the setup: The position
of the impurity x0, length of the shoulders L1,2, and the Berry
phase δ. This phase arises because the local spins of electrons
propagating in opposite directions can slowly rotate along the
edge (staying orthogonal to each other). It is given by one-half
of the solid angle, subtended by the spin direction during the
circumference of the interferometer. This phase is irrelevant
in the high-temperature regime as was thoroughly discussed
in Ref. [33] and in the Supplemental Material of Ref. [34].
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FIG. 3. The spin polarization P for different values of the mag-
netic impurity strength.

Thus, we average only the following combinations:〈
1

1 − t2ei(kL+α2πφ0 )

1

1 − t2e−i(kL+β2πφ0 )

〉
ε

= 1

1 − t4e(α−β )2πφ0
,〈

1

1 − t2e±i(kL+α2πφ0 )

〉
ε

= 1. (15)

Here, we used the condition T � � and neglected exponen-
tially small terms ∝ exp(−T/2�). Using these formulas, the
straightforward algebraic calculation yields

T = tanh λ

(
1 − sin2 θ sinh2 λ cosh(2λ)

cosh2(2λ) − cos2 θ cos2(2πφ)

)
,

Ts = − sin2 θ sinh2 λ cosh(2λ)

cosh2(2λ) − cos2 θ cos2(2πφ)
, (16)

P = − tanh λ sin2 θ

1 + cos2 θ
(

tanh2 λ − cos2(2πφ)
cosh2 λ cosh(2λ)

) .

This is the main result of the current paper. We emphasize
that these expressions are valid for an arbitrary tunneling
amplitude of the contacts, arbitrary strength of the magnetic
impurity, and for any magnetic flux. The spin polarization
value dramatically increases in the case of strong impurity
(see Fig. 3).

We see that the transmission coefficient has minima at φ =
n/2, and maxima at φ = 1/4 + n/2 with integer n. Instead of
T (φ) it is convenient to introduce the following normalized
function,

τ (φ) = T (φ) − T (0)

T (1/4) − T (0)

= cosh2(2λ) sin2(2πφ)

cosh2(2λ) − cos2 θ cos2(2πφ)
. (17)

which is plotted in Fig. 4 for four different values of the mag-
netic impurity strength θ . The sharp antiresonance structure of
T (φ) transforms into an oscillation shape with an increase of
θ . Simultaneously, the depth of the conductance antiresonance
decreases such that T (φ) → const for θ → π/2. This case
corresponds to the ideal reflection of electrons on the impurity.

A Fourier spectrum of conductance oscillations is a con-
venient representation for the analysis of experimental data

FIG. 4. Sharp antiresonance in the normalized conductance
τ (φ), Eq. (17), for different values of the magnetic impurity strength.

[40,41]. Remarkably, the Fourier coefficients of the transmis-
sion coefficient, T (n) = ∫

dφ T (φ)ei4πφn, obey the universal
relation

T (n)

T (n+1)
= −1 + 2κ (κ −

√
κ2 − 1), (18)

where κ = cosh(2λ)/ cos θ .
An interesting relation between the transmission coeffi-

cients Tα can be noticed both in the exact quantum result (16)
and in its classical counterpart (23). While the values of Tα

depend on the strength of the magnetic impurity and the flux,
one observes that the property

T↑ + e2λT↓ = e2λ − 1 (19)

involves only the transparency of the contact, t = e−λ. It is
tempting to regard this property as a general one, but further
inspection reveals that it holds only for the impurity in the
“upper” shoulder of the ring in Fig. 1, while for the impurity
in the lower part of the ring we should interchange T↑ ↔ T↓ in
the above formula. For impurities in both shoulders of the AB
ring the above relation is also violated, which can be checked
rather easily for classical trajectories, using the formulas from
Ref. [34]. Physically, Eq. (19) can be interpreted as a conse-
quence of the continuity equation in the presence of leakage
into the leads [42].

Let us now analyze the limiting cases.

A. Open interferometer

For the open interferometer, λ → ∞, Eqs. (16) read

T = 1 + cos2 θ

2
,

(20)

P = − sin2 θ

2 − sin2 θ
.

Two possible transmission channels have a trivial contribution
to T : A spin-down channel conducts electrons without loss,
whereas electrons scatter on the magnetic impurity in the spin-
up channel with a forwarding scattering amplitude cos θ (see
Fig. 1). For the full reflection case, we have θ = π/2, T =
1/2, and outgoing electrons are fully polarized, P = −1. This
is a classical result which is insensitive to dephasing.
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B. Almost closed interferometer

For the almost closed interferometer, λ → 0, the interfer-
ence contributions play an important role:

T = λ − λ3 sin2 θ

1 + 4λ2 − cos2 θ cos2(2πφ)
,

P = − λ sin2 θ

1 + λ2(4 − sin2 θ ) − cos2 θ cos2(2πφ)
. (21)

We see that sharp antiresonance appears at the half-integer
and integer values of the flux φ by contrast to conventional
interferometers, where only half-integer resonance exists [31].
The difference is related to the absence of backscattering by
nonmagnetic contacts in the case of helical edge states [33].

C. Weak magnetic impurity

For the previously studied case [33,34] of weak scattering
on the magnetic impurity, θ → 0, we obtain

T = tanh λ

(
1 − 2θ2 cosh(2λ) sinh2 λ

cosh(4λ) − cos(4πφ)

)
,

(22)

P = −θ2

2

sinh(4λ)

cosh(4λ) − cos(4πφ)
.

IV. QUANTUM FLUX-INDEPENDENT PROCESSES

Let us now discuss one interesting aspect of our central
result (16), namely, the possible recovery of the classical con-
tribution upon averaging over the magnetic flux. Previously
we have shown [33,34] that the classical result was correctly
reproduced by such averaging when keeping the terms of
order θ2. The exact expressions for the classical result were
found there as

Tcl = tanh λ

(
1 − 1

2

tanh2 λ tan2 θ

1 + tan2 θ coth(2λ)

)
,

Ts,cl = −1

2

tanh2 λ tan2 θ

1 + tan2 θ coth(2λ)
. (23)

Now we perform the averaging over the magnetic flux of our
quantum result (16) and obtain

〈T 〉φ = tanh λ

(
1 −

√
2 sin2 θ sinh2 λ√

cosh(4λ) − cos(2θ )

)
,

(24)

〈Ts〉φ = −
√

2 sin2 θ sinh2 λ√
cosh(4λ) − cos(2θ )

.

Clearly these expressions are different and subtracting the
purely classical result from the quantum one, averaged over
the magnetic flux, we get the nonzero result. It implies the ex-
istence of quantum flux-independent processes. They appear
first in the order θ4:

Tcl − 〈T 〉φ = − t8

(1 + t2)4 θ4 + O(θ6). (25)

The coefficient t8 before θ4 means that the electron is passing
the contacts at least four times. The simplest examples of such
processes are shown in Fig. 5: Fig. 5(a) for spin up ∼t8 +
O(t10) and Fig. 5(b) for spin down ∼t12 + O(t12).

(a) (b)

FIG. 5. Simplest quantum processes which are not sensitive to
magnetic flux. The black dots denote backscattering events with the
amplitude sin θ (up to a phase factor). Forward scattering events by
the magnetic impurity with the amplitude cos θ are shown by open
circles.

V. CONCLUSIONS

We have studied high-temperature transport through the
helical Aharonov-Bohm interferometer tunnel-coupled to
metallic leads. We focused on the effect induced by a strong
magnetic impurity placed in one arm of the interferometer and
demonstrated that the tunneling conductance and the spin po-
larization of the outgoing electrons show sharp antiresonance
at the integer and half-integer values of the dimensionless flux
φ. We calculated the spin-dependent transmission coefficients
Tα for arbitrary values of the tunneling coupling and the mag-
netic impurity strength. We generalize previously obtained re-
sults, describing transport near the resonant values of φ, to the
arbitrary value of the magnetic flux. We also discussed special
quantum effects which do not show up for a weak impurity.

We found optimal conditions for spin filtering. Specifically,
we demonstrated that spin polarization of the outgoing elec-
trons reaches 100% in the limit of a strong magnetic impurity
and an open interferometer. The conductance of the setup
equals in this case e2/h. In this limit all quantum effects are
suppressed and the transmission through the interferometer
has a purely classical nature, i.e., is robust to dephasing.

To conclude, a helical AB interferometer with a strong
magnetic impurity allows us to create a large spin polarization.
Remarkably, such a polarization can be reached even for φ =
0, i.e., without a magnetic field. The scattering strength can
be controlled by an in-plane magnetic field or by an external
ferromagnetic tip, providing additional ways to manipulate
the spin polarization.

These features add up to the remarkable properties of
topological materials, making them even more attractive for
spintronics, magnetic field detection, quantum networking,
and quantum computing.
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