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Flat bands, strains, and charge distribution in twisted bilayer h-BN
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We study the effect of twisting on bilayer h-BN. The effect of lattice relaxation is included; we look at the
electronic structure, piezoelectric charges, and spontaneous polarization. We show that the electronic structure
without lattice relaxation shows a set of extremely flat in-gap states similar to Landau levels, where the
spacing scales with twist angle. With lattice relaxation we still have flat bands, but now the spectrum becomes
independent of twist angle for sufficiently small angles. We describe in detail the nature of the bands and we
study appropriate continuum models, at the same time explaining the structure of the in-gap states. We find that
even though the spectra for both parallel and antiparallel alignment are very similar, the spontaneous polarization
effects only occur for parallel alignment. We argue that this suggests a large interlayer hopping between boron
and nitrogen.
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I. INTRODUCTION

The field of twisted bilayer materials has literally exploded
in the past few years ever since the discovery of highly
correlated phases in magic-angle twisted bilayer graphene
(MATBG) [1]. The superconducting and insulating phases
seen in such materials as a function of doping suggest that
interactions play a crucial role.

Many other materials have been studied, both theoretically
and experimentally, including transition metal dicalcogenides
(TMDCs) [2,3], multilayer graphene systems such as twisted
double bilayers [4–6], graphene stacks [6–10], and various
forms of graphene twisted relative to hexagonal boron-nitride
(h-BN) [11–14]; see also [15–18]. Twisted h-BN has also been
proposed and studied [19–22], and it is the subject of this
work.

There has been a great deal of recent interest in the electric
properties of twisted-bilayer h-BN [23–26], where sponta-
neous charge polarization has been discovered for what is
called “parallel” alignment, and none for the antiparallel one.
Also, by mounting h-BN on a conducting substrate, we can
look at the effect of an electric field. That leads to the question
of the electronic structure of such materials: it is well known
that flat bands occur in many such systems near the Fermi
level, which drive most of the interacting physics since these
are exquisitely sensitive to even weak residual forces. This
clearly deserves investigation.

In MATBG, such continuum models are usually based
on what is now called the Bistritzer-McDonald (BM) model
[27,28], an inlayer continuum Dirac Hamiltonian with a very
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distinct threefold symmetry of the interlayer coupling. We
have shown previously how we can derive a more detailed
model from a tight-binding approach [29,30], still keeping
much of the simplicity of such a model. Other approaches are
discussed in the literature, for instance in Refs. [31–33].

It is an extremely interesting question whether we can find
flat bands in twisted h-BN, and it is equally interesting to
explore their nature and their continuum model description.
With our toolbox we should be able to answer those questions,
and we shall show that lattice relaxation has a surprising effect
on the spectra, making an important part of it independent of
twist angle.

Some large-twist-angle Density Functional based Tight
Binding (DFTB) calculations for bilayer h-BN systems have
been performed by Zhao et al. [20]. Another work along
similar lines is that by Xian [19]. They do find flat bands,
but the limitations of their computational techniques probably
mean we can only use these results as indicative. The work
by Javvaji et al. [22] takes an approach somewhat similar
to ours, but it starts with a BM model with a gap (based on
a tight-binding model like ours), thus it has some common
elements but there are also clear differences. The main one
is that their continuum model is not correct for small twist
angles, as we shall discuss in detail.

The relaxation of the lattice gives rise to strain, and in
piezoelectric materials this leads to charging in the areas of
large strain. Since h-BN is a piezoelectric material, we could
expect that charges are generated by the lattice relaxation.
That leads to the question of whether this is the dominant
mechanism for charge generation, and whether it is respon-
sible for the charge domains observed in experiment.

The paper addresses these questions in order. We shall first
look at lattice relaxation using an atomistic force model. We
will then investigate the nature of the electronic states and
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especially the in-gap flat bands in twisted h-BN. We shall
look at the nature of these states in both rigid and relaxed
h-BN layers, and discuss continuum models that can be used
to describe this. Finally, we turn our attention to the nature of
the charge domains.

II. TWISTS AND RELAXATIONS

There are two models predominantly used for relaxation:
one is a simple harmonic potential model, often linked to DFT
calculations, as done by, e.g., [34–38]. Such models work
surprisingly well, but they lack some of the atomic detail for
the smaller angles, which seems to lead to the occurrence of
higher harmonics in the lattice deformation [29]. The only
practical way this atomic nature can be reinstated is by using
classical potential models, which is the approach taken here.
Of course, such an approach has it own limitations, since it
relies on a phenomenological potential model, normally fitted
to both the results from microscopic models and experimental
data.

A. Potential model

We use a standard approach, as we have discussed in great
detail in, e.g., Ref. [29], where we use a classical atomistic
model as implemented in the LAMMPS code [39]. We use this
to relax the atomic positions to minimize a classical potential
model for the energy. There are many suitable potential mod-
els for a single layer of a two-dimensional (2D) material; the
difficulty is to find a good potential model for the interlayer
interaction of these “van der Waals” layered materials. The
most appropriate potential models for h-BN seem to be the
“interlayer potential” (ILP) from Refs. [40,41]. This model
was designed specifically for layered h-BN, and thus it should
be a good choice for the problem at hand. The potential has
been benchmarked in combination with the Tersoff inlayer
potential [42–44], which is what we shall also adopt in this
work. Of course, one should have a healthy skepticism as to
the quantitative details of such models. Our experience [29] is
that different potential models have a very close qualitative
agreement, even though there are small quantitative differ-
ences (see also below).

B. Alignment

Since we have five potential alignments with complex en-
ergetics (see, e.g., Refs. [45,46] and Fig. 1), we will have
to extend the analysis of our previous work. The main dif-
ference is that if we invert one of the layers, we change the
main alignment, since we swap boron with nitride atoms: this
corresponds to what is called “antiparallel alignment” in the
literature.

C. Results

In Fig. 2 we show the alignments, defined using an exten-
sion of the method in our previous work [29]; see Appendix
B. We use color saturation to show the quality of the dominant
alignment, and a specific color for each type of this dominant
alignment. The twist angle is 0.33◦.

AB

A'B

AB'

BA

AA'

N

B

AA

FIG. 1. The five different alignments, labeled as in Ref. [45],
plus the top-bottom inversion BA. Vertical green lines denote aligned
atoms. All alignments in the left column (AA, AN , and BA) are
parallel; the ones on the right (AA′, AB′, and BA′) are antiparallel.

As we can see in the figure, we find a substantial reorgani-
zation of alignment in both cases, with a very different pattern
for parallel or antiparallel h-BN. Such patterns will induce
an inhomogeneous strain in the h-BN, and since the material
is piezoelectric, will also induce charge (or in other words,

(a) (b)

(c) (d)

FIG. 2. The dominant alignment structures (a), (c) parallel and
(b), (d) antiparallel for a twist angle θ = 0.33◦, L = 43.15 nm. Each
image shows four primitive cells. Images (a) and (b) are rigid, unde-
formed structures; (c) and (d) are the associated relaxed structures.
Each color shows a specific dominant alignment. Left column: blue,
AA alignment (B above B, N above N); purple, AB alignment; red BA
alignment. All three correspond to parallel alignment. Right column:
green, AA′ (B in one layer above N in another); orange/brown, AB′

with aligned N ; yellow, AB′ with aligned B. All three antiparallel.
The darker the color, the stronger the alignment.
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FIG. 3. The induced piezoelectric charge in a single layer after
relaxation of a h-BN bilayer. (a)–(c) Parallel at angles (a) 0.33◦,
(b) 0.67◦, and (c) 1.05◦. (d), (e) Antiparallel at angles (d) 0.33◦, (e)
0.67◦, and (f) 1.05◦. The electron density n (scale on the right) is
given in units of 1012 cm−2. All images are drawn to the same scale.

the change in the inlayer hopping parameters, although small,
will induce a charge). We have evaluated this by adopting
expressions from continuum theory for these systems. The
required strain tensor is the Lagrangian finite-difference one,
E = 1

2 (F T
S FS − I ), where FS is evaluated using the method for

discrete hexagonal lattices from Ref. [47]; we then turn this
into a piezoelectric charge using the method in Ref. [48]. The
derivatives that are required in that last method are replaced
with a finite difference on the h-BN lattice sites.

In Fig. 3 we notice that the charge density concentrates
around the channels where the alignment changes, but also
that it seems to decrease as we decrease the angle; this is
slightly surprising, since the strain concentrates around the
channels, but it seems that the rate of change of strain sat-
urates. This cannot be the whole electronic charge of this
system, since the concentration around these bands is not
what is seen in experiment, where homogeneous charging is
observed across each triangular domain [23–26].

III. ELECTRONIC STRUCTURE

We shall first concentrate our attention on the electronic
hopping in the bilayer system. As discussed before, there are
a few papers that discuss the spectrum of h-BN. The core
motivation for the work here is the paper by Ribeiro and Peres
[45], who were the first to derive a tight-binding model for a
bilayer—the ingredient crucial to our work.

They start from a rather simple DFT calculation of two
infinite bilayers aligned in the five positions shown in Fig. 1.
The weaknesses of their DFT inputs are a substantial mis-
match between the calculated and actual layer distance (the
calculated one in their work is substantially larger than the
accepted value of 3.33 Å), and what seems to be a gross
underestimate of the gap—they find values around 4 eV, and
GW calculations may be closer to 8 eV [49–52]. For some
reason that is unclear to us, rather than fitting a single tight-
binding model to all alignments, they fit a different model to
each alignment.

AA'

A'B

AB'

FIG. 4. Left column: spectra for the naive tight-binding model
for three different alignments as labeled. We use � = 4.5 eV, t =
2.33 eV, and find tBB = 0.5 eV, tNN = 0.1 eV, and tNB = 0.2 eV fit
the spectra in Ref. [45]. The decay is parametrized by x = 0.25. We
also show in the right column the results of the tight-binding model
including the complete longer-ranged interlayer hopping.

Since the idea to fit a tight-binding model seems reason-
able, we use a single more complete version of such a model
and see what physics we can describe: We shall make use
of an exponential parametrization of the interlayer hopping
parameters, and we will ignore the nearest-neighbor inlayer
one. Thus our interlayer hopping parameters will be assumed
to take the simple, and potentially still too naive, form

tXY (r) = tXY exp[−α(r − d )]. (1)

We shall use d = 3.33 Å and α = 4.4 Å−1 [53].
With these additional hopping parameters, if we truncate

the interlayer coupling to atoms placed directly above each
other and their nearest neighbors, we find Hamiltonian ma-
trices that are a slight generalization of those in Ref. [45];
see (A1) for detailed expressions. These depend on the gap
� and the inlayer hopping t . Unlike in Ref. [45], we assume
that these parameters are the same for all alignments. We then
fit the tight-binding model, in a truncated form that can be
evaluated analytically, to the spectra in Ref. [45]. The results
are shown on the left in Fig. 4; in that figure, we also show on
the right that the full numerical tight-binding calculation does
not differ substantially from the analytical model.

With the parameters as shown in Fig. 4, we get a reason-
able representation of the spectra and gap as compared to
DFT. Since we are describing a system with smaller d and
a larger gap than in Ref. [45], we find that we get similar
band structures with this larger gap if we use the param-
eters � = 8 eV, t = 2.33 eV, and the hopping parameters
increase by almost 50%, tBB = 0.7 eV, tNN = 0.15 eV, and
tNB = 0.3 eV—these are obtained by a rough fit to the dis-
persion of DFT calculations for aligned h-BN (we shall argue
below that the experimental data suggest that tNB may well
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(a) (b)

FIG. 5. Relaxation for θ = 1.05◦: (a) parallel and (b) antiparallel
alignment. See the caption of Fig. 2 for details of the color coding.
Each image shows four primitive cells.

be larger). We ignore next-nearest-neighbor inlayer couplings;
as shown in Ref. [54], their effect is small, and inclusion of
next-nearest-neighbor hoppings would require us to determine
two additional parameters for the calculations.

We can now use these parameters to try and find the spectra
of twisted h-BN layers. For computational efficiency, we shall
initially study an angle of 1.05◦—full tight-binding models
are rather expensive for smaller angles, but we shall investi-
gate an alternative approach in a later section.

Detailed comparison

We start with a detailed tight-binding calculation for a
twist angle of 1.05◦, and a cell spacing (also called the moiré
wavelength Ls) of 13.6 nm. The alignment for the two relaxed
structures considered here is shown in Fig. 5. We have cal-
culated the spectra for both relaxed and unrelaxed structures
of this nature; see Fig. 6. We note that the spectra for the
unrelaxed structures are identical, but the Hamiltonians are
completely different, and thus we need to identify a mecha-
nism that gives rise to this. The spectra for these two cases
seem similar to Landau levels, which is also reflected in the
increasing degeneracy: 2 for the states deepest inside the gap,
then 4, 6, 8, . . . as the energy increases. As we shall show
below, their origin is very different from the related argument
made for twisted bilayer graphene in Ref. [55].

For the relaxed positions, we see rather different spectra.
In all cases, the spectra are extremely flat: the bandwidth of
each state is only a fraction of an meV until we reach the
quasicontinuum at the gap energy.

(c)

(a) (b)

(d)

FIG. 6. Tight-binding spectra for θ = 1.05◦. (a) Unrelaxed and
(c) relaxed lattice corresponding to (a) in Fig. 5. (b) Unrelaxed and
(d) relaxed lattice corresponding to (b) in Fig. 5.

(a) (b) (c)

(d) (e) (f)

FIG. 7. Tight-binding spectra for (a), (d) θ = 1.05◦, (b), (e) θ =
0.67◦, and (c), (f) θ = 0.33◦. This is for the relaxed lattice (c) in
Fig. 2. (a), (b), (c) no relaxation; (d), (e), (f) relaxed lattice. The sharp
cutoff at the top and bottom of the spectrum for the smallest angles
is an artifact of our numerical approach due to the calculation of a
finite number of eigenvalues.

There are some very intriguing features in the spectra as
we change twist angle: As can be seen in Fig. 7, when there
is no relaxation we see an equally spaced set of levels that
also show a typical two-dimensional harmonic-oscillator de-
generacy (which is doubled due the valley degeneracy), where
the spacing decreases with an increasing moiré wavelength
(supercell size). On relaxation a few flat bands remain, with
the same 2-4-6- . . . degeneracy, but the most surprising result
is that the in-gap states now appear to be independent of twist
angle: their energies are so similar that we had to check twice
that we had actually used the right images.

We conclude that we will have to find an explanation
for two different phenomena: the occurrence for in-gap flat
bands (flat to within a fraction of an meV), which show a
harmonic oscillator type spacing for lattices that do not relax
at the interface, with the spacing decreasing as the twist angle
decreases, and the occurrence of twist-angle independent flat
bands if we relax the lattice at sufficiently small angles. Both
of these should be described by a type of continuum model.
The first case should be described by a generalized BM model
discussed in the next section, and the second by an alternative
approach, probably in real space.

IV. CONTINUUM PROJECTION

To understand the flatness of the bands, we first plot some
wave functions from a tight-binding calculation, Fig. 8, and
we see that these indeed look like 2D harmonic-oscillator
states shifted by a value proportional to the momentum. To
get an analytical handle on this, we turn to a continuum pro-
jection, using a “generalized Bistritzer-MacDonald model”
[27,28]. We follow the approach set out in [29]. This estab-
lished technology is known to generate continuum models
that completely reproduce the full tight-binding calculations
near the Fermi energy for graphene; we just need to check the
equivalent result for h-BN.

As we notice in Fig. 9, for undeformed lattices the projec-
tions of parallel and antiparallel layers are identical. We have
seen that the Hamiltonians are rather different, but the results
here are no surprise due to the similarity of the tight-binding
spectra calculated earlier. Upon relaxation, we see that higher
harmonics, corresponding to a larger superlattice momentum
transfer, start playing a role.
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(a)

(b)

(c)

FIG. 8. The absolute value of the four components of the real-
space wave function multiplied with the phase exp[i(k − K i ) · r] for
(a) k = K1, (b) k = K2, and (c) k = K1/5 + K2/3. The four columns
are layer 1 N (A) sites, layer 1 B sites, and the same for layer 2. The
hue of the coloring shows the phase of the wave function. Thus the
first column is real and positive, while the third column is real and
negative. The B site wave functions show an (almost) uniform phase
change of 2π as a function of the polar angle around the origin. Space
axis units in Å.

We have investigated the source of the flat bands using this
model—we shall concentrate here on the larger spacing at the
positive side of the gap, but a similar analysis applies at the
other end. For the case of the flat bands, we have the classic
Bistritzer-MacDonald model with an extra gap added to the
inlayer Hamiltonian,

H =
(

h(K1, θ/2) U (r)
U †(r) h(K2,−θ/2)

)
, (2)

h(k, θ ) = hl(−i∇ − k, θ ) · σ + �

2
σ3. (3)

Unlike for the case of graphene, we find little benefit using
the full inlayer tight-binding dispersion for hl rather than the
simpler linear expansion hl(k) = h̄vF(−i∇ − k).

In its simplest form, the matrix U takes the form

(
uAA(r) uAB(r)
u†

AB(r) uBB(r)

)
, (4)

where

uAA(r) = u0BBg(r), (5)

uBB(r) = u0NN g(r), (6)

uAB(r) = u0BN g′(r), (7)

with

g(r) = (1 + e−iG1·r + eiG2·r), (8)

g′(r) = (1 + e−i2π/3e−iG1·r + ei2π/3eiG2·r), (9)

where G1 and G2 are the reciprocal unit vectors of the super-
lattice.

(a) (b)
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FIG. 9. Projection of the interaction onto a continuum model as
described in [29]. Each hexagon is one interaction matrix element
for a given momentum transfer. Zero momentum transfer is denoted
by the pink dot, and the three dominant matrix elements for the
unrelaxed lattice are exactly those for the BM model. In each panel,
the left top figure shows the AA projection, and the right top one the
AB case. The lower row shows the BA (left) and BB case (right), re-
spectively. Unlike in graphene, the AA and BB cases are not identical.
The (a)–(d) labels are as in Fig. 6. All couplings are given in units of
eV. Each panel represents the Fourier decomposition of the matrix in
Eq. (4) at k = M.

A. In-gap states

We first look numerically at which parameters are most
relevant; we find that the energies are largely insensitive to
the value of u0BN and u0NN , and the wave functions are domi-
nantly located on the boron sites (there is a small component
on the N sites); they look very much like two (discrete)
Gaussians centered on the momentum k − K i; the signs of the
Gaussians are opposite for the two layers. Unlike for the case
of TBG [54], we find that in this case the effect of replacing
hl by its linear expansion is small, and we will thus work with
the latter.

The result we see brings to mind the analysis of Ref. [55],
even though that work is for a different problem, and seems
to ignore the mismatch between the two Dirac points, which
is crucial for a cancellation of the gauge fields; see below. We
look at the Hamiltonian in coordinate space, where the inlayer
potential is expanded about the two K-points, following the
standard BM continuum model [28], with the addition of a
gap; see also [22]. To simplify the analysis, we define the wave
function with a momentum translation to the relevant K point
by writing

ψk(r) = (eiK1·rψB1k(r), eiK1·rψN1k(r),

× eiK2·rψB2k(r), eiK2·rψN2k(r)) . (10)
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We also permute rows and columns, so that the positive gap appears in the upper left-hand block,

H =

⎛
⎜⎜⎜⎝

�/2 u0BBg(r)eiδK·r vF p− u0BN g′(r)eiδK·r

u0BBe−iδK·rg(r)∗ �/2 u0BN g′(r)e−iδK·r vF p−
vF p+ u0BN eiδK·rg′(r)∗ −�/2 ubbg(r)eiδK·r

u0BN e−iδK·rg′(r)∗ vF p+ ubbe−iδK·rg(r)∗ −�/2

⎞
⎟⎟⎟⎠, (11)

where δK is the difference in momenta between the two K points, δK = K1 − K2. We use the notation p to denote the momentum
operator, with p± = p1 ± ip2. We assume we are looking at an in-gap eigenvalue just below the top of the gap, E = �/2 − ε,
with ε � �. We solve for the lower two components to eliminate the B wave functions, and find to first order in 1/� [strictly
speaking, we expand in terms of all five of the small scales vF 〈p〉/�, ui/�, and ε/�]

H0 =
(

�/2 0
0 �/2

)
(12)

and

H1 = 1

�

(
−u2

0BN |g′(r)|2 + v2
F p2 eiδK·r[�u0BBg(r) − 2u0BNvF Re (p+g′(r))]

e−iδK·r[�u0BBg(r)∗ − 2u0BNvF Re (p+g′(r))] −u2
0BN |g′(r)|2 + v2

F p2

)
. (13)

Intriguingly enough, we see that the kinetic energy actually
only appears at first order. So where does the harmonic-
oscillator potential we hope to see appear? To see that, we
must reexpress our results in the basis where the Hamiltonian
H0 is diagonal. We suffer from the problem that the basis now
depends on r, and thus the kinetic energy acts nontrivially on
this.

Let us ignore the terms proportional to u0BN —numerically
we see that these are unimportant relative to the lowest-order
potential due the fact that u0BN � � and u0BN < �. We di-
agonalize the Hamiltonian to first nonvanishing order, which
gives two contributions: the diagonalized matrix

H ′
1 =

(
v2

F /� p2 − u0BB|g(r)| 0

0 v2
F /� p2 + u0BB|g(r)|

)
,

(14)
and a second term due to the fact that the momentum operator
in H1 acts nontrivially on the transformation matrix T that
brings the Hamiltonian to diagonal form,

T = 1√
2

(
ei[δK·r+φg(r)] 1

−ei[δK·r+φg(r)] −1

)
, (15)

with

eφg(r) =
√

g(r)/
√

g(r)∗. (16)

The derivative in the Hamiltonian acts on the phase factor in
T as

∇ei[δK·r+φg(r)] = (δK − G1e−iG1·r + G2eiG2·r) ei[δK·r+φg(r)].

Since δK = G1 − G2, this quantity vanishes for small r, and
thus we can safely ignore the resulting vector potential near
the origin, where all the wave functions are located.

If we now look at the top entry of the Hamiltonian, which
describes the in-gap modes, we find an effective Hamiltonian,

Heff = v2
F

�
p2 − u0BB|g(r)|. (17)

If we now expand |g(r)|, we find that we can express this in
terms of the moiré wavelength Ls as

|g(r)| = 3 − 4[π2(x2 + y2)]

3L2
s

. (18)

Thus all together, we have a harmonic oscillator

Heff = −3u0BB + v2
F

�
p2 + 4π2u0BB

3L2
s

r2. (19)

Thus the spacing of the levels is

h̄ω =
√

4
h̄2v2

F

�

4π2u0BB

3L2
s

= 4π h̄vF

Ls

√
u0BB

3�
, (20)

with the full energy of the nth state (with degeneracy 2n)

En = −3u0BB + (n + 1)h̄ω. (21)

This agrees well with the data in Fig. 10; a small renormal-
ization (a 3% increase) of u0BB, probably due to neglected
higher-order effects, gives results indistinguishable from the
linear fit.

FIG. 10. The in-gap spectrum for Ls = 13.6 (blue points), 21.5
(orange points), and 43.1 nm (green points) from Figs. 7(a)–7(c) vs
harmonic-oscillator quantum number n. Solid lines show a linear fit;
dashed lines show the result from Eq. (21).
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FIG. 11. Comparison of continuum projections for (a), (d) θ = 1.05◦; (b), (e) θ = 0.67◦, and (c), (f) θ = 0.33◦. (a), (b), (c) hexagonal
lattice; (d), (e), (f) relaxed lattice. Whereas the reciprocal space interlayer coupling does not depend on twist angle for the rigid lattice,
relaxation gives a very long range in the AA and BB couplings. In each panel, the left top figure shows the AA projection, and the right top one
shows the AB case. The lower row show the BA (left) and BB projection (right), respectively. All couplings are given in units of eV.

B. Relaxation

We have already seen in Figs. 7(d)–7(f) that for the relaxed
lattices the in-gap spectra are roughly independent of twist
angle. Since the Wannier functions corresponding to these
bands are still like Gaussians, the real-space continuum model
describing these states must be essentially the same.

Let us take a more detailed look at the continuum model
projection as a function of twist angle. As we can see in
Fig. 11, the results from the projection are indeed very dif-
ferent in the AA and BB channel after relaxation, and they are
strongly dependent on twist angle. The reason is that while the
physical size of the AA aligned regions is constant, indepen-
dent of twist angle, and thus we would expect the real-space
potential to be independent of angle, the reciprocal-lattice
spacing reduces substantially as we change the angle, and
thus many more Fourier components of smaller magnitude
are needed to describe this potential. The AB regions grow,
leading to almost constant coupling terms.

The model that seems to describe this behavior is a slightly
extended version of the real-space model derived in the pre-
vious section: a confined potential well, where the well is
centered on the region of AA alignment, with a sharp cutoff
at the edges. This is very difficult to describe in momentum
space, but the real-space wave functions all look very similar,
independent of twist angle. We have not pursued such a model
here, since we know we can do very accurate tight-binding
and continuum model calculations at an an angle of, say,

1.05◦. We can either turn that into a real-space Hamiltonian
as above, which will then have spatially localized solutions,
or we can solve the problem in k space for such a large twist
angle. The (real-space) solutions for the in-gap flat bands
are no longer dependent on twist angle, and we have thus
solved the problem for these states for all smaller twist angles.
It is thus absolutely incorrect to apply the lowest-harmonic
Bistritzer-MacDonald model to such situations: if there is
relaxation of the atomic lattice, this will fail drastically at
small angles. The behavior is more like states localized at the
AA impurity.

V. CHARGE DENSITY

Since experimental data [23–26] suggest twisted h-BN is
electrically charged, it would be interesting to try to under-
stand the charge density in detail. It appears that the only
way to get reliable results is to sum over all occupied states,
since converged results are only found when summing over all
eigenvectors.

As can be seen in Fig. 12, for the triangular relaxation the
charge density indeed has the triangular pattern observed in
experiment. This charge density is largely carried by the B
atoms, due to the difference in hopping parameters. There is
no charge density for the antiparallel twisted case, and there is
a three orders of magnitude smaller charge density when we
relax the antiparallel crystal.
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FIG. 12. Twist-induced charge density at neutrality in the top
layer for θ = 1.05◦. (a) Unstrained layer as in (a) in Fig. 5. (b) Re-
laxed layer as in (c) in Fig. 5. We clearly note the enhanced triangular
symmetry. The units used are the same as in Fig. 3.

The uncertainty and sensitivity to parameters of the charge
density need quantification, and we have performed a more
detailed analysis; see Fig. 13. There is some sensitivity to the
range parameter α in (1): The charge density falls with an
increase of the range parameter. We conclude that the experi-
mental results suggest a relatively short-range hopping, maybe
driven by many-body screening as in Ref. [29]. However,
the dominant parameter is the hopping tNB: increasing that
from 0.3 to 0.5 eV increases the maximum in the electron
density to 2 × 1012 cm−2. This value of the hopping is still
quite reasonable, and may well help us to put constraints on
microscopic calculations of such parameters.

For the case with the highest electron density, the charge
density is about σ = ±2 × 1012 × 104 × 1.6 × 10−19 =
±3 × 10−3 C/m2. If we take the vacuum value εr = 1
between the h-BN layers [56,57], we find, assuming
the triangular domains are large enough to apply an
infinite-parallel-plate approximation,

V = σ

εrε0
d = 3 × 10−3 × 3.33 × 10−10

8.85 × 10−12
= 110 mV. (22)

VI. EFFECT OF CHARGE ON ELECTRONIC SPECTRUM

Of course such a charge density can impact the electronic
spectrum of the in-gap states, especially since the Wannier
states are localized at the point where the positive charge
density meets the negative one. Clearly, in this case we need

to look at both the ionic and the piezoelectric charges, since
they are both of similar magnitude near the AA/AA′ points.
The total charge-carrier density does not exceed the value
of n0 = 2 × 1016 cm2. Define a dimensionless carrier density
n̄(x) = n(x)/n0. Expressing all distances in angstroms, we
find that the Coulomb force due to the charge in the two layers
is

V (x) = α

εr
n0 h̄c

∫
n̄(y)

(
1

|x − y| − 1

|x − y + dez|
)

d2y

= (3 meV/Å)
∫ (

1

|x − y| − 1

|x − y + dez|
)

d2y.

(23)

Using a model for large charge domains, where just six do-
mains meet at a point, we find that the integral above is at
most 2 Å. Since the potential has positive and negative contri-
butions, we estimate the maximum effect of the perturbation
of the charge as a function of momentum to be much less than
1 meV. This clearly does not modify the isolated bands by a
significant amount.

VII. CONCLUSIONS

We conclude that twisted h-BN has in-gap flat bands,
which are extremely flat. If the crystal were not to relax, these
would be a set of equally spaced levels, similar to Landau
levels, and we have clearly identified their origin and loca-
tion. As we relax the lattice, we lose some of these levels,
even though they remain extremely flat (to numerical accu-
racy, about 10−2 meV). For large twist angles, these can be
described as a continuum model with a gap, in the Bistritzer-
MacDonald mold [22]. For smaller twist angles this is not
the correct description, since the in-gap spectrum becomes
independent of twist angle, showing these are a set of states
all localized near the AA′ aligned point, which is a region
that becomes independent of twist angle as that decreases.
A continuum description of these states can then be trivially
extracted for the larger twist angles, where a BM model cap-
tures these states. In the end, the width of these states will be
determined by the induced charge density, which may lead to
a bandwidth of about 1 meV.

(a) (b) (d)(c)

(e) (f) (h)(g)

FIG. 13. Twist-induced charge density at neutrality in the top layer for θ = 1.05◦ for a relaxed layer for change to the basic parameter
choice tBB = 0.7, tNB = 0.3, tNN = 0.15, � = 8 eV, and α = 4.4 Å−1. (a) Basic parameters, (b) tBB = 0.5 eV, (c) α = 2.2 Å−1, (d) α = 6.6 Å−1,
(e) � = 6 eV, (f) tNB = 0.5 eV, (g) tNB = 0.15 eV, and (h) tBB = 1.0 eV. The electron density N (scale on the right) is given in units of
1012 cm−2.
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Without lattice relaxation, parallel and antiparallel align-
ments have identical in-gap spectra. Since, as discussed in the
body of the paper, these lattices relax in a very different way,
the spectra are also very different, but both have flat bands,
caused by the same mechanism of a fixed size island of AA or
AA′ alignment where these states live.

One of the surprising features of this work is that the
parallel case has a permanent dipole polarization, which dom-
inates the piezoelectric charge that is caused by the strain to
relaxation. This agrees with the observations in Refs. [23–26],
and it has been described with different theoretical methods in
those works.
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APPENDIX A: TIGHT-BINDING MODEL EXPRESSIONS

With these additional hoppings, if we truncate the inter-
layer coupling to atoms placed directly above each other and
their nearest neighbors, we find Hamiltonians that are a slight
generalization of those in Ref. [45] [see (A1)],

hAA =

⎛
⎜⎜⎜⎜⎜⎝

−�
2 tg(k) tNN tNBxg(k)

tg(k)∗ �
2 tNBxg(k)∗ tBB

tNN tNBxg(k) −�
2 tg(k)

tNBxg(k)∗ tBB tg(k)∗ �
2

⎞
⎟⎟⎟⎟⎟⎠ ,

hAA′ =

⎛
⎜⎜⎜⎜⎜⎝

−�
2 tg(k) tNB tNN xg(k)

tg(k)∗ �
2 tBBxg(k)∗ tNB

tNB tBBxg(k) �
2 tg(k)

tNN xg(k)∗ tNB tg(k)∗ −�
2

⎞
⎟⎟⎟⎟⎟⎠ ,

hAB′ =

⎛
⎜⎜⎜⎜⎜⎝

−�
2 tg(k) tNN tNBxg(k)

tg(k)∗ �
2 tNBxg(k)∗ 0

tNN tNBxg(k) −�
2 tg(k)

tNBxg(k)∗ 0 tg(k)∗ �
2

⎞
⎟⎟⎟⎟⎟⎠ ,

hA′B =

⎛
⎜⎜⎜⎜⎝

�
2 tg(k) tBB tNBxg(k)

tg(k)∗ −�
2 tNBxg(k)∗ 0

tBB tNBxg(k) �
2 tg(k)

tNBxg(k)∗ 0 tg(k)∗ −�
2

⎞
⎟⎟⎟⎟⎠ .

(A1)

Here � is the gap, and t is the inlayer hopping; g(k) =
ei(

√
3ky
2 − kx

2 ) + ei( kx
2 +

√
3ky
2 ) + 1 is the standard sum of three phase

factors usually found in these calculations. x is the suppression
factor for hopping to a next-to-nearest neighbor. Unlike in

(a) (b) (c)

3x1

2

34

3x1

2

34

2
1 3

45

6 c
c

c

FIG. 14. Graphical representation of the terms used in Eqs. (B1)
and (B2) for the atoms labeled “c.” The first term is for AA-type
alignment, the last two define two situations in AB alignment. The
dotted circles are the inverted positions of the upper-layer nearest-
neighbor atoms relative to the central one.

Ref. [45], we assume that these parameters are the same for
all alignments.

APPENDIX B: DEFINITION OF ALIGNMENT MEASURE

To compare the size of the AA and AB aligned domains, we
construct a measure of alignment, made of a measure for AA
and AB alignment. We first define a measure of AA alignment
by the function (l labels the layer, l̄ denotes the opposite layer,
〈rlirl̄ j〉 denotes the atom j closest to atom i but in the opposite

layer, δ
(k)
li denotes the three vectors connecting atom i to its

nearest neighbors in the same layer, and rlikσ = rli + σδ
(k)
li )

wAA(rli )

= 1

a2
δ〈rlirl̄ j〉

[
3(rl,i− rl̄, j )

2+
∑

k

(rl,i,k,+− rl̄, j,k,+)2

]
.

(B1)

In a similar way, we define the quality of any AB alignment as
the following function:

wAB(rli ) = 1

a2
min

(
δ〈li l̄ j〉3

(
rli − rl̄ j

)2

+
∑

k

(rlik+ − rl̄ jk−)2,
∑
kσ

(rlikσ − rl̄ jδ〈rlikσ ,rl̄ j〉)
2

)
.

(B2)

The factors of 3 in front of the central terms ensure that
we use six atoms in every expression; they also weigh the
central atom more heavily, which has proven to be an effective
approach. The value of a we shall use is the h-BN nearest-
neighbor spacing.

We then use

w = max(wAA,wAB,wBA,wAA′ ,wAB′ ,wA′B) (B3)

as a measure of alignment, and we choose the color according
to the dominant choice. Note that w is extremal for perfect
alignment. See Fig. 14 for a graphical explanation of each of
the terms.

125427-9



NIELS R. WALET AND FRANCISCO GUINEA PHYSICAL REVIEW B 103, 125427 (2021)

[1] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[2] F. Wu, T. Lovorn, E. Tutuc, and A. H. MacDonald, Hub-
bard Model Physics in Transition Metal Dichalcogenide Moiré
Bands, Phys. Rev. Lett. 121, 026402 (2018).

[3] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H.
MacDonald, Topological Insulators in Twisted Transition Metal
Dichalcogenide Homobilayers, Phys. Rev. Lett. 122, 086402
(2019).

[4] N. R. Chebrolu, B. L. Chittari, and J. Jung, Flat bands in twisted
double bilayer graphene, Phys. Rev. B 99, 235417 (2019).

[5] M. Koshino, Band structure and topological properties of
twisted double bilayer graphene, Phys. Rev. B 99, 235406
(2019).

[6] P. A. Pantaleon, T. Cea, R. Brown, N. R. Walet, and F. Guinea,
Narrow bands and electrostatic interactions in graphene stacks,
arXiv:2003.05050.

[7] T. Cea, N. R. Walet, and F. Guinea, Twists and the electronic
structure of graphitic materials, Nano Lett. 19, 8683 (2019).

[8] F. Wu, R.-X. Zhang, and S. Das Sarma, Three-dimensional
topological twistronics, Phys. Rev. Research 2, 022010(R)
(2020).

[9] C. Mora, N. Regnault, and B. A. Bernevig, Flatbands and Per-
fect Metal in Trilayer Moiré Graphene, Phys. Rev. Lett. 123,
026402 (2019).

[10] Z. Zhu, S. Carr, D. Massatt, M. Luskin, and E. Kaxiras, Twisted
Trilayer Graphene: A Precisely Tunable Platform for Correlated
Electrons, Phys. Rev. Lett. 125, 116404 (2020).

[11] P. Moon and M. Koshino, Electronic properties of
graphene/hexagonal-boron-nitride moiré superlattice, Phys.
Rev. B 90, 155406 (2014).

[12] P. San-Jose, A. Gutiérrez-Rubio, M. Sturla, and F. Guinea,
Spontaneous strains and gap in graphene on boron nitride, Phys.
Rev. B 90, 075428 (2014).

[13] J. Jung, E. Laksono, A. M. DaSilva, A. H. MacDonald, M.
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