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Anisotropic longitudinal optical conductivities of tilted Dirac bands in 1T ′-MoS2
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1T ′-MoS2 exhibits valley-spin-polarized tilted Dirac bands in the presence of external vertical electric field
and undergoes a topological phase transition between the topological insulator and band insulator around the
critical value of the electric field. Within the linear response theory, we theoretically investigate the anisotropic
longitudinal optical conductivities of tilted Dirac bands in both undoped and doped 1T ′-MoS2, including the
effects of the vertical electric field. The influence of the spin-orbit coupling gap, band tilting, and vertical
electric field on the optical conductivities of tilted Dirac bands is revealed. A theoretical scheme for probing the
topological phase transition in 1T ′-MoS2 via exotic behaviors of longitudinal optical conductivities is proposed.
The results for 1T ′-MoS2 are expected to be qualitatively valid for other monolayer tilted gapped Dirac materials,
such as α-SnS2, TaCoTe2, and TaIrTe4, due to the similarity in their band structures.
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I. INTRODUCTION

The discovery of graphene has led to extremely active
research in two-dimensional (2D) Dirac materials [1,2]—
materials characterized by Dirac points and linear and/or
hyperbolic energy dispersions in the momentum space, in
clear contrast to traditional metals and semiconductors [3].
So far, many 2D Dirac materials have been experimentally
synthesized and theoretically studied, including α-(BEDT-
TTF)2I3 [4], silicene [5–9], 8-Pmmn borophene [10–12], and
various monolayer transition metal dichalcogenides (TMDCs)
[13–22]. In Dirac materials, the Dirac dispersion together
with the band gap and/or band tilting can be exploited to
manipulate physical properties. For example, the valley-spin-
polarized band gap tuned by a vertical electric field in silicene
generates a topological phase transition between the topo-
logical insulator phase and the band insulator phase [9]; the
band tilting in 8-Pmmn borophene induces a strong anisotropy
in physical properties [11,12]. These qualitatively influence
important material physics including plasmons [23–29], opti-
cal conductivities [29–34], thermoelectric effects [35], Kondo
effects [36], and RKKY interactions [37–40].

1T ′ TMDCs, the monolayer TMDCs of the T ′ structure
phase, were theoretically predicted to be quantum spin Hall
insulators [15] and have been experimentally synthesized
[16–22]. Excitingly, the quantum spin Hall effect [16–20]
and gate-induced superconductivity [21,22] were recently ob-
served in experiments. Interestingly, 1T ′ TMDCs [15] possess
tilted Dirac bands around Dirac points similar to that in 8-
Pmmn borophene [11,12], and undergo a topological phase
transition [41–43] induced by a vertical electric field such
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as that in silicene [9]. The tilted gapped Dirac dispersions
[15] are shared by other monolayer Dirac materials, such as
α-SnS2 [44], TaCoTe2 [45], and TaIrTe4 [46]. Furthermore,
the band structure of 1T ′ TMDCs [15] differs strongly from
that of its polytypic structure 1H TMDCs [13,14]. These
features make the 1T ′ TMDC a very attractive monolayer
Dirac material and its physical properties are worthy of careful
investigations.

A particularly important physical property of any material
is the optical conductivity whose real part relates to absorption
of photons and provides a powerful approach for extracting
band structures and optical properties. The optical conduc-
tivity of Dirac materials has received intensive research both
theoretically and experimentally, for graphene [47–49], α-
(BEDT-TTF)2I3 [29], silicene [30], 8-Pmmn borophene [31],
1H-MoS2 [50–52], and topological insulators [53–55].

It is the purpose of this work to investigate the optical con-
ductivity of the monolayer Dirac material 1T ′-MoS2 which
is a typical material of 1T ′ TMDCs. This study, apart from
further enriching the important materials physics of Dirac ma-
terials, is focused on providing a fundamental understanding
of at least three outstanding issues. The first is to understand
the influence of the spin-orbit coupling (SOC) gap on optical
conductivities of tilted Dirac bands, by comparing 1T ′-MoS2

(gapped) and 8-Pmmn borophene (gapless). The second is to
establish the difference of optical conductivities originating
from polytypic structures of MoS2, by comparing 1T ′-MoS2

with 1H-MoS2; or originating from band tilting, by com-
paring 1T ′-MoS2 (tilted) with silicene (untilted). The third
is to analyze the probing of the topological phase transition
in 1T ′-MoS2 via longitudinal optical conductivities. To this
end, we theoretically investigate the anisotropic longitudinal
optical conductivities of tilted Dirac bands in both undoped
and doped 1T ′-MoS2 and the influence of a vertical electric
field acting on them.
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FIG. 1. In the presence of SOC gap and vertical electric field, parametrized respectively by �so and α = E/Ec, the energy bands and gaps
are valley-spin-polarized. The upper panels and lower panels stand respectively for κ = − valley and κ = + valley. The red lines and blue
lines denote spin-up (s = +) and spin-down (s = −), respectively. The topological phase transition between the topological insulator phase
(α < 1) and the band insulator phase (α > 1) occurs at the phase termed by the valley-spin-polarized metal (α = 1).

This paper is organized as follows. In Sec. II, we briefly
describe the model Hamiltonian and formalism to calculate
the longitudinal optical conductivity. In Sec. III, we present
our numerical results for the absorptive part of the longitudi-
nal conductivity in the undoped and doped 1T ′-MoS2 when
the vertical electric field is absent and present, respectively.
In addition, we provide a detailed analysis of the essential
physics. Our main results and conclusions are summarized in
Sec. IV. Finally, we give three appendices to provide key steps
of analytical calculation.

II. MODEL AND THEORETICAL FORMALISM

We begin with the low-energy k · p Hamiltonian for
1T ′-MoS2, reported in Ref. [15]. For simplicity, we further
expand it in the vicinity of two independent Dirac points
located at (0, κ�) with κ = ±. The linearized Hamiltonian
around the κ valley reads

Hκ (kx, ky) = h̄kxv1γ1 + h̄ky(v2γ0 − κv−I − κv+γ2)

+�so(κγ0 − iαγ1γ2), (1)

where the wave vector k = (kx, ky), the SOC gap �so =
0.042 eV, and the Fermi velocities v1 = 3.87 × 105 m/s,
v2 = 0.46 × 105 m/s, v− = 2.86 × 105 m/s, and v+ =
7.21 × 105 m/s. In addition, the 4 × 4 unit matrix is given
by I = τ0 ⊗ σ0; the 4 × 4 Dirac matrices are defined as γ0 =
τ1 ⊗ σ1, γ1 = τ2 ⊗ σ0, and γ2 = τ3 ⊗ σ0, in which τ0 and τi

stand for pseudospin space which indicates the conduction
and valence band degrees of freedom while σ0 and σi denote
Pauli matrices acting upon real-spin space. The ratio α is
defined as α = |Ez/Ec|, where Ez is the vertical electric field
and Ec denotes its critical value. Hereafter, we set h̄ = 1 for
simplicity.

A straightforward algebra leads to the eigenvalues of this
Hamiltonian as

εξ
κs(kx, ky) = −κv−ky + ξZκs(kx, ky), (2)

where

Zκs(kx, ky) =
√

[Aκs(ky)]2 + [B(kx )]2 + [Cκ (ky)]2, (3)

with

Aκs(ky) = v2ky + (κ − αs)�so, (4)

B(kx ) = v1kx, (5)

Cκ (ky) = −κv+ky. (6)

The indices s = ± and ξ = ± denote the spins (up and down)
and bands (conduction and valence), respectively. It is noted
that the dispersions are tilted hyperboloids and asymptotically
tilted cones in the region of large wave vector.

In the absence of vertical electric field (α = 0), the bands
are spin-degenerate. However, in the presence of vertical
electric field (α > 0), the spin-up band and spin-down band
split at one valley, but reverse their spins at the other valley,
which leads to the valley-spin-polarized bands as well as the
valley-spin-polarized gaps. For convenience, we define the
valley-spin-polarized gaps as

�s
κ (α) = Zκs(0, 0) = |κ − αs|�so. (7)

From these definitions, it is easy to find that the energy bands
εξ
κs(kx, ky) and the gaps �s

κ (α) do not change if we substitute
(ky, κ, s) with (−ky,−κ,−s). In addition, the dependencies
of valley-spin-polarized bands and valley-spin-polarized gaps
on the vertical electric field are explicitly shown in Fig. 1.
Interestingly, at the κ = + valley, when the Ez = Ec (or equiv-
alently, α = 1), the spin-up band become gapless and forms
a Dirac point. Around this critical electric field (α = 1), a
topological phase transition occurs from the topological in-
sulator phase (α < 1) to the band insulator phase (α > 1). As
the vertical electric field further increases (α > 1), the gapless
band reopens a gap.
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Compared with other typical monolayer Dirac materials,
1T ′-MoS2 exhibits several attractive features in band struc-
ture. First, the valley-spin-polarized behaviors are similar to
that in silicene [30] except for a band tilting along the ky

direction. Second, the tilted Dirac bands are similar to that of
8-Pmmn borophene [31] except for a finite SOC gap. Further-
more, the band dispersion along the kx direction is upright,
similar to that in silicene [30]. Third, the band structure of
1T ′-MoS2 differs strongly from that of its polytypic struc-
ture 1H-MoS2 [13,14]. These fascinating characteristics make
1T ′-MoS2 a very interesting monolayer Dirac material. In the
following, we will theoretically study the longitudinal optical
conductivity in 1T ′-MoS2.

Within the linear response theory, the longitudinal optical
conductivity σ j j (ω, α) at finite photon frequency ω is given
by

σ j j (ω) =
∑
κ=±

∑
s=±

σκs
j j (ω), (8)

where σκs
j j (ω) denotes the longitudinal optical conductivity at

given valley κ and spin s, whose explicit expression can be

found in Appendix A. It is noted that σκs
j j (ω) does not vanish

only when the bands contributed to the intraband/interband
transitions share the same spin index (see the Appendix A for
details). To put it equivalently, around the κ valley, only when
the photon energy ω is the energy difference between the band
ξ and ξ ′ at given wave vector k and spin index s,

�εξξ ′
κs (k, θk) = εξ ′

κs(kx, ky) − εξ
κs(kx, ky)

= (ξ ′ − ξ )Zκs(k cos θk, k sin θk), (9)

can an intraband/interband optical transition contribute to the
optical conductivity, where k = |k| and θk = arctan(ky/kx ). It
can also be proven that σκs

j j (ω) = σ−κ−s
j j (ω) (see Appendix B

for details) such that we are allowed to focus on either the κ =
+ valley or the κ = − valley. For convenience, we restrict our
analysis to the κ = + valley hereafter.

After some tedious but straightforward algebra, we express
the real part of longitudinal optical conductivity as

Reσκs
j j (ω) = Reσκs

j j(intra)(ω) + Reσκs
j j(inter)(ω), (10)

where the intraband contribution and interband contribution
are given respectively as

Reσκs
j j(intra)(ω) = π

∫ +∞

−∞

dkx

2π

∫ +∞

−∞

dky

2π
�

[
μ − �s

κ (α)
]
Fκ;+,+

j j;s,s (kx, ky)

[
−df [ε+

κs(kx, ky)]

dε+
κs(kx, ky)

]
δ(ω)

+π

∫ +∞

−∞

dkx

2π

∫ +∞

−∞

dky

2π
�

[ − μ − �s
κ (α)

]
Fκ;−,−

j j;s,s (kx, ky)

[
−df [ε−

κs(kx, ky )]

dε−
κs(kx, ky)

]
δ(ω), (11)

Reσκs
j j(inter)(ω) = π

∫ +∞

−∞

dkx

2π

∫ +∞

−∞

dky

2π
Fκ;−,+

j j;s,s (kx, ky)
f [ε−

κs(kx, ky)] − f [ε+
κs(kx, ky )]

ω
δ[ω − 2Zκs(kx, ky)], (12)

with �(x) the Heaviside step function, δ(x) the Dirac δ function, and f (x) = {1 + exp [(x − μ)/kBT ]}−1 the Fermi distribution
function in which μ denotes the chemical potential measured with respect to the Dirac point, kB is the Boltzmann constant, and
T represents the temperature. It is emphasized that the physical behaviors of optical conductivity are sensitive to the types of
doping which are determined by the criteria in terms of chemical potential μ and valley-spin-polarized gaps �s

κ (α) as

n-doped for both s = + and s = −, Max{�−
κ (α),�+

κ (α)} < μ;
n-doped for κs = + but undoped for κs = −, Min{�−

κ (α),�+
κ (α)} < μ < Max{�−

κ (α),�+
κ (α)};

undoped for both s = + and s = −, Max{−�−
κ (α),−�+

κ (α)} < μ < Min{�−
κ (α),�+

κ (α)};
p-doped for κs = + but undoped for κs = −, Min{−�−

κ (α),−�+
κ (α)} < μ < Max{−�−

κ (α),−�+
κ (α)};

p-doped for both s = + and s = −, μ < Min{−�−
κ (α),−�+

κ (α)}.

(13)

Especially, in the absence of electric field (α = 0), the energy
bands are spin-degenerate and the energy gaps �s

κ (0) = �so

are valley- and spin-independent. It is undoped when −�so <

μ < �so by which the valence bands are fully occupied while
conduction bands are empty; it is n-doped when μ > �so

where the conduction bands are partially filled with electrons;
and p-doped when μ < −�so where the valence bands are
partially filled. It is further pointed out that the zero-frequency
part due to the intraband transitions contributes to the Drude
peak, whereas the frequency-dependent part is associated with
the interband transitions between a filled band to an empty
band.

III. NUMERICAL RESULTS

In this section, we show the numerical results for the ab-
sorption peaks of longitudinal conductivities in the undoped

and doped 1T ′-MoS2 when the vertical electric field is absent
and present, respectively. We set T = 1 K throughout the
numerical calculation in this paper.

A. In the absence of vertical electric field

Without applying the vertical electric field (α = 0), the
energy bands of 1T ′-MoS2 are fully gapped and spin-
degenerate such that the total optical conductivity Reσ j j (ω) =
gvgsReσ+s

j j (ω) with gv and gs the degeneracy factors of valley
and spin. As shown in Fig. 2, Reσxx(ω) and Reσyy(ω) exhibit
a strong anisotropy because the dispersion is tilted along the
ky direction but untilted along the kx direction, similar to
that in 8-Pmmn borophene [31] but unlike that in 1H-MoS2

[50–52]. When we set v− = vt , v2 = 0, v1 = vx, v+ = vy, and
�so = 0, our results go back to that in 8-Pmmn borophene
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FIG. 2. Total longitudinal optical conductivities of 1T ′-MoS2 in
the absence of vertical electric field. In (a) and (b), the black lines
represent the optical conductivity in the undoped case in which the
absorption peak is at ω = �so while the red lines stand for the optical
conductivity in the doped case where two spin-degenerate absorption
peaks are at ω = ωs

1 and ω = ωs
2. Panel (c) shows the schematic dia-

gram of interband transition for the κ = + valley, where the colored
arrows and black arrows indicate the boundary of electron transition
for n-doped case and undoped case, respectively. The blue curve (for
doped case) and black line (for undoped case) in the panel (d) show
the lower boundaries of incident photon frequency ω for arbitrary
direction of wave vector θk by using Eq. (9). Note that θk = π/2 and
θk = 3π/2 correspond to ωs

2 and ωs
1, respectively.

[31], and when we set v− = v2 = 0 and v+ = v1 = vF , our
results restore that in silicene [30].

Specifically, for the undoped case (−�so < μ < �so), the
optical conductivity is contributed entirely by the interband
transitions, which can be seen from Fig. 2(c). As a conse-
quence, Reσxx(ω) and Reσyy(ω) share the same peak that
appears at the absorption edge where ω = �so, as shown in
Fig. 2(a) and Fig. 2(b). Hence, from this peak in experimental
measurement the SOC gap �so can be precisely determined.
From Fig. 2(a) and Fig. 2(b), Reσxx(ω) and Reσyy(ω) decay
respectively to different asymptotic background values

Reσxx(asyp) = v1√
v2

2 + v2+
σ0, (14)

Reσyy(asyp) =
√

v2
2 + v2+
v1

σ0, (15)

in the regime of large photon energy, where σ0 = e2/4h̄ (we
restore h̄ for explicitness). It is noted that the different values
originate from the strong anisotropy of Fermi velocities v1 and√

v2
2 + v2+ instead of the tilting parametrized by v−, and that

the asymptotic values result from the asymptotic linearity of
Dirac band in the high-energy regime. These properties can be
well understood by the analytical results of the gapless model
(�so = 0) in Appendix C. In addition, these two asymptotic
values satisfy a universal relation Reσxx(asyp) × Reσyy(asyp) =
σ 2

0 . It is emphasized that this kind of universal relation holds

FIG. 3. Valley-spin-polarized optical conductivities Reσ κs
xx (ω)

and Reσ κs
yy (ω) in the undoped 1T ′-MoS2 when the vertical electric

field is present. The arrows indicate the moving tendency of peaks
as the electric field smoothly increases. The chemical potential is
set to be μ = 0 which corresponds to the undoped case (−�so <

μ < �so) when α = 0. We take the case for the κ = + valley as a
demonstration.

not only for the undoped case presented above but also for
the doped case to be shown below (see Appendix C for more
details and explanations), which has also been reported in
other tilted Dirac systems, such as the tilted gapless Dirac
bands in 8-Pmmn borophene [31].

In the n-doped case (μ > �so), the optical conductivities
Reσxx(ω) and Reσyy(ω) exhibit more interesting physics, as
shown in Fig. 2(a) and Fig. 2(b). First, both Reσxx(ω) and
Reσyy(ω) possess a Drude peak around ω = 0 due to the
intraband transitions. Second, they share two absorption peaks
depending on the chemical potential at ω = ωs

1 and ω = ωs
2

due to the band tilting along the ky direction. Third, the
Pauli blocking prevents the optical transition between valence
band and conduction band entirely when 0 < ω < ωs

1 but
partially when ωs

1 < ω < ωs
2. Fourth, when ω > ωs

2, Reσxx(ω)
and Reσyy(ω) approach respectively to their asymptotic back-
ground values Reσxx(asyp) and Reσyy(asyp), due to the linearity
of Dirac band in the high-energy regime. All these interesting
behaviors can also be directly read out from either Fig. 2(c)
or Fig. 2(d). It is further remarked that for the p-doped case
(μ < −�so), there is no qualitative difference in the behaviors
of longitudinal optical conductivity presented here.

B. In the presence of vertical electric field

When the vertical electric field is applied (α > 0), the
valley-spin-polarized bands and gaps of 1T ′-MoS2 result in
many interesting changes in the longitudinal optical conduc-
tivity. As shown in Figs. 3, 4, and 5, Reσ+s

xx (ω) and Reσ+s
yy (ω)

are generally anisotropic and valley-spin-polarized, which is
strongly different from that in 1H-MoS2 [50–52]. When we
set v− = v2 = 0 and v+ = v1 = vF , our results restore that in
silicene [30].
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FIG. 4. Dependence of total optical conductivities Reσxx and
Reσyy on the vertical electric field in 1T ′-MoS2. The chemical po-
tential is set to be μ = 0.15 eV which corresponds to the n-doped
case (μ > �so) when α = 0.

For −�so < μ < �so which corresponds to the undoped
case when α = 0, the vertical electric field splits the
spin-degenerate absorption edge ω = �s

+(0) = �so into two
spin-polarized absorption edges ω = �+

+(α) and ω = �−
+(α)

as shown in Fig. 3, where the dependence of valley-spin-
polarized gaps �s

κ (α) = |κ − αs|�so on the electric field was
previously shown in Fig. 1. In the region of topological insula-
tor phase (0 � α < 1), two spin-polarized peaks ω = �+

+(α)
and ω = �−

+(α) for the κ = + valley move oppositely as
the electric field smoothly changes, which can be seen in
Fig. 3(a) and Fig. 3(c). However, in the region of band in-
sulator phase (α > 1), two spin-polarized peaks ω = �+

+(α)
and ω = �−

+(α) separated by 2�so shift in concert toward
the higher frequency as shown in Fig. 3(b) and Fig. 3(d).
Interestingly, at the critical electric field (α = 1), the gapped
band remains the larger absorption edge at ω = �+

+(1) while
the gapless band vanishes as the smaller absorption edge at
ω = �−

+(1) = 0. Moreover, when 0 < ω < �+
+(1), the value

of the step represented by the black line is half of the asymp-
totic value, indicating that only the gapless band contributes to
the optical transition, whereas when ω > �+

+(1), the gapped
band also contributes to the optical transition such that the
optical conductivity approaches the asymptotic values in the
large-ω regime. The total optical conductivity is obtained by

summing over valley index κ and spin index s, leading to a
superposition of four valley-spin-polarized optical conductiv-
ities Reσκs

j j . The exotic behaviors of absorption edges can be
used to probe the topological phase transition induced by the
vertical electric field, which has also been reported in other
similar systems, such as the untilted gapped Dirac bands in
silicene [30].

For μ > �so which corresponds to the n-doped case when
α = 0, the total optical conductivities exhibit many richer
features after the vertical electric field is applied. It can be
found from Fig. 4(a) that for different vertical electric fields
Reσxx(ω) share the same asymptotic values in the regime of
large photon energy and that the absorption peaks change
with the electric field, which also holds for Reσyy(ω) as
shown in Fig. 4(b). Specifically, we show two characteristic
cases as a demonstration in Fig. 5. From the upper panels
of Fig. 5, when α = 2, the Fermi level cuts both spin-up
and spin-down conduction bands, which indicates that both
spin-polarized energy bands are n-doped according to the
criteria in (13). Therefore two spin-degenerate peaks ω =
ωs

1 and ω = ωs
2 split further into four spin-polarized peaks

ω = ω+
1 , ω = ω−

1 , ω = ω+
2 , and ω = ω−

2 . However, from the
lower frame of Fig. 5, when α = 3.5, the Fermi level cuts
the spin-up conduction band but lies in the gap of spin-down
bands, which indicates that one kind of spin-polarized en-
ergy band is n-doped but the other kind of spin-polarized
energy band is undoped according to the criteria in (13). As
a consequence, ω = ωs

1 split further into two spin-polarized
peaks ω = ω+

1 and ω = ω−
1 , but ω = �−

+(3.5) does not split
and hence contributes only to one peak. These lead to an
interesting dependence of total optical conductivities on the
magnitude of the vertical electric field. Therefore, one can se-
lect some specific frequencies of absorbed photons by tuning
the vertical electric field. And all of these behaviors can also
be directly read out from Figs. 5(c), 5(d), 5(g), and 5(h). It
is further remarked that for μ < −�so which corresponds to
the p-doped case when α = 0, the behaviors of longitudinal
optical conductivities do not differ qualitatively from those
presented here.

FIG. 5. Valley-spin-polarized longitudinal conductivities Reσ κs
xx (ω) and Reσ κs

yy (ω) in 1T ′-MoS2 for two specific values of vertical electric
field. The chemical potential is set to be μ = 0.15 eV which corresponds to the n-doped case (μ > �so) when α = 0. We take the case for the
κ = + valley as a demonstration.
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IV. SUMMARY AND CONCLUSIONS

In this work, we have theoretically studied the anisotropic
longitudinal optical conductivities of tilted Dirac bands in
both undoped and doped 1T ′-MoS2, including effects of an
external vertical electric field. In the absence of vertical elec-
tric field, the tilted Dirac bands are spin-degenerate. For the
undoped 1T ′-MoS2, the longitudinal conductivities are con-
tributed entirely by the interband transitions and share the
same peak at the absorption edge, from which the SOC gap
can be directly extracted from experimental measurements.
The longitudinal optical conductivities decay respectively to
different asymptotic background values originated from the
anisotropy and the asymptotic linearity of Dirac band. For the
doped 1T ′-MoS2, two longitudinal conductivities possess a
Drude peak around ω = 0 due to the intraband transitions and
share two absorption peaks depending on the chemical poten-
tial at ω = ωs

1 and ω = ωs
2 due to the band tilting along the ky

direction. The Pauli-blocking prevents the optical transition
between the valence band and conduction band entirely when
0 < ω < ωs

1 but partially when ωs
1 < ω < ωs

2. When ω > ωs
2,

two longitudinal conductivities approach respectively to their
asymptotic background values due to the linearity of Dirac
band in the high-energy regime. In general, for both undoped
and doped 1T ′-MoS2, the asymptotic background values al-
ways satisfy a universal relation Reσxx(asyp) × Reσyy(asyp) =
σ 2

0 with σ0 = e2/4h̄.
In the presence of vertical electric field, the tilted Dirac

bands in 1T ′-MoS2 are valley-spin-polarized due to the in-
terplay between SOC gap and electric field, and hence a
topological phase transition occurs between the topological
insulator phase and the band insulator phase with a valley-
spin-polarized metal state at a critical value in between. For
the undoped 1T ′-MoS2, when the vertical electric field in-
creases smoothly, the interband absorption edge splits into
two absorption edges marked by two peaks of longitudinal
optical conductivities. These two peaks move oppositely in
frequency in the region of the topological insulator phase
and shift in concert to a higher frequency in the region
of the band insulator phase. The exotic moving of optical
conductivity due to the vertical electric field can be taken

as a fingerprint of topological phase transition in the un-
doped 1T ′-MoS2. For the doped 1T ′-MoS2, the absorption
peaks of longitudinal optical conductivity change with re-
spect to the competition among the SOC gap, electric field,
and chemical potential. By manipulating the vertical elec-
tric field, one can select the specific frequencies of absorbed
photons.

In conclusion, the influence of SOC gap, band tilting, and
external vertical electric field on the anisotropic longitudi-
nal optical conductivities of tilted Dirac bands in 1T ′-MoS2

was revealed. A theoretical scheme for probing the topolog-
ical phase transition in 1T ′-MoS2 via exotic behaviors of
longitudinal optical conductivities was proposed. This work
provided critical insights into understanding the tilted Dirac
bands of 1T ′ TMDCs in general, and their contributions to
optical properties of 1T ′-MoS2 in particular. The results for
1T ′-MoS2 are expected to be qualitatively valid for other
monolayer tilted gapped Dirac materials, such as α-SnS2,
TaCoTe2, and TaIrTe4, due to the similarity in their band
structures.
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APPENDIX A: EXPLICIT EXPRESSION OF THE
LONGITUDINAL OPTICAL CONDUCTIVITY

Within the linear response theory, the longitudinal optical
conductivity at the κ valley can be expressed as

σκ
j j (ω) = i

ω

1

βT

∑
�m

∫ +∞

−∞

dkx

2π

∫ +∞

−∞

dky

2π
Tr

[
Ĵκ

j Gκ (kx, ky, i�m)Ĵκ
j Gκ (kx, ky, i�m + ω + iη)

]
, (A1)

where βT = 1/kBT , j = x, y refer to spatial coordinates, η denotes a positive infinitesimal. The charge current operators read

Ĵκ
x = e

∂Hκ (kx, ky)

∂kx
= ev1γ1, (A2)

Ĵκ
y = e

∂Hκ (kx, ky)

∂ky
= e(v2γ0 − κv−I − κv+γ2), (A3)

and the Matsubara Green’s function takes the form

Gκ (kx, ky, i�m) = [i�m + μ − Hκ (kx, ky)]−1 = 1

4

∑
s,ξ=±

Pξ
κs(kx, ky)

i�m + μ − ε
ξ
κs(kx, ky)

, (A4)
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where μ is the chemical potential, and

Pξ
κs(kx, ky) =

[
τ0 + ξ

−sAκs(ky)τ1 + B(kx )τ2 + Cκ (ky)τ3

Zκs(kx, ky)

]
⊗ (σ0 − sσ1), (A5)

εξ
κs(kx, ky ) = −κv−ky + ξZκs(kx, ky), (A6)

with

Aκs(ky) = v2ky + (κ − αs)�so, (A7)

B(kx ) = v1kx, (A8)

Cκ (ky) = −κv+ky, (A9)

Zκs(kx, ky ) =
√

[Aκs(ky)]2 + [B(kx )]2 + [Cκ (ky)]2. (A10)

After summing over Matsubara frequency �m, we express the longitudinal optical conductivity at the κ valley as

σκ
j j (ω) = i

ω

∫ +∞

−∞

dkx

2π

∫ +∞

−∞

dky

2π

∑
s,s′=±

∑
ξ,ξ ′=±

Fκ;ξ,ξ ′
j j;s,s′ (kx, ky)Mκ;ξ,ξ ′

s,s′ (kx, ky, ω), (A11)

where

Fκ;ξ,ξ ′
j j;s,s′ (kx, ky) = Tr

[
Ĵκ

j Pξ
κs(kx, ky)Ĵκ

j P
ξ ′
κs′ (kx, ky)

]
16

(A12)

and

Mκ;ξ,ξ ′
s,s′ (kx, ky, ω) = f

[
εξ
κs(kx, ky)

] − f
[
ε

ξ ′
κs′ (kx, ky)

]
ω + ε

ξ
κs(kx, ky) − ε

ξ ′
κs′ (kx, ky) + iη

, (A13)

with f (x) = 1/{1 + exp[(x − μ)/(kBT )]} denoting the Fermi distribution function.
Specifically, the explicit expressions of Fκ;ξ,ξ ′

j j;s,s′ (kx, ky) are given as

Fκ;ξ,ξ ′
xx;s,s′ (kx, ky) = Tr

[
Ĵκ

x Pξ
κs(kx, ky )Ĵκ

x P
ξ ′
κs′ (kx, ky)

]
16

= e2v2
1

2
δss′

{
1 − ξξ ′ [Aκs(ky)]2 − [B(kx )]2 + [Cκ (ky)]2

[Zκs(kx, ky)]2

}
(A14)

and

Fκ;ξ,ξ ′
yy;s,s′ (kx, ky) = Tr

[
Ĵκ

y Pξ
κs(kx, ky)Ĵκ

y P
ξ ′
κs′ (kx, ky)

]
16

= e2

2
δss′

{(
v2

2 + v2
− + v2

+
) − ξξ ′κv2v+

4Aκs(ky)Cκ (ky)

[Zκs(kx, ky)]2 + 2(ξ + ξ ′)v−
v+Cκ (ky) − κv2Aκs(ky)

Zκs(kx, ky)

+ ξξ ′
(
v2

2 + v2
− − v2

+
)
[Aκs(ky)]2 − (

v2
2 − v2

− + v2
+
)
[B(kx )]2 − (

v2
2 − v2

− − v2
+
)
[Cκ (ky)]2

[Zκs(kx, ky)]2

}
. (A15)

It is noted that δss′ in Eqs. (A14) and (A15) implies that both Fκ;ξ,ξ ′
xx;s,s′ (kx, ky) and Fκ;ξ,ξ ′

yy;s,s′ (kx, ky) vanish when s′ �= s, which indicates
that the bands contributed to the intraband/interband transitions must share the same spin index.

Therefore, the longitudinal optical conductivity at the κ valley can be expressed as

σκ
j j (ω) =

∑
s=±

σκs
j j (ω), (A16)

where

σκs
j j (ω) = i

ω

∫ +∞

−∞

dkx

2π

∫ +∞

−∞

dky

2π

∑
ξ,ξ ′=±

Fκ;ξ,ξ ′
j j;s,s (kx, ky)Mκ;ξ,ξ ′

s,s (kx, ky, ω) (A17)

denotes the valley-spin-polarized complex longitudinal conductivity at finite photon frequency ω.
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APPENDIX B: RELATION BETWEEN THE VALLEY-SPIN-POLARIZED LONGITUDINAL CONDUCTIVITIES
WITH OPPOSITE VALLEY AND SPIN

From the definitions in Eq. (A6) and Eqs. (A7)–(A10), we have the following relations:

A−κ−s(−ky) = −Aκs(ky), (B1)

B(kx ) = B(kx ), (B2)

C−κ (−ky) = Cκ (ky), (B3)

Z−κ−s(kx,−ky ) = Zκs(kx, ky), (B4)

ε
ξ
−κ−s(kx,−ky ) = εξ

κs(kx, ky). (B5)

Substituting these relations into Eqs. (A13)–(A15), we consequently get

M−κ;ξξ ′
−s,−s (kx,−ky, ω) = Mκ;ξξ ′

s,s (kx, ky, ω), (B6)

F−κ;ξξ ′
xx;−s,−s(kx,−ky ) = Fκ;ξξ ′

xx;s,s(kx, ky), (B7)

F−κ;ξξ ′
yy;−s,−s(kx,−ky ) = Fκ;ξξ ′

yy;s,s(kx, ky). (B8)

After substituting these relations into Eq. (A17), we obtain the relation

σ−κ−s
j j (ω) = i

ω

∫ +∞

−∞

dkx

2π

∫ +∞

−∞

dky

2π

∑
ξ,ξ ′=±

F−κ;ξξ ′
j j;−s,−s(kx,−ky )M−κ;ξξ ′

−s,−s (kx,−ky, ω) = σκs
j j (ω). (B9)

APPENDIX C: ANALYTICAL RESULTS IN THE GAPLESS MODEL AND ASYMPTOTIC BACKGROUND VALUES

The asymptotic values of longitudinal optical conductivities denote the values contributed completely by the interband
transition in the high-energy regime where the energy of incident photon ω is asymptotically infinite, which is equivalent to
that the energy of electron εξ

κs(kx, ky ) is asymptotically infinite from the definition ω = εξ ′
κs(kx, ky) − εξ

κs(kx, ky ). In this regime,
the influence of the band gap can be neglected such that the gapped model Hamiltonian reduces to its gapless counterpart whose
eigenvalues are given as

εξ
κs(kx, ky) = −κvt ky + ξ

√
v2

x k2
x + v2

y k2
y , (C1)

where vx = v1, vy =
√

v2
2 + v2+, and vt = v−. It is noted that they are the same as the energy bands of 8-Pmmn borophene. In

the gapless model, the real part of the longitudinal optical conductivity is given by

Reσ j j (ω) =
∑
κ=±

Reσκ
j j (ω) =

∑
κ=±

∑
s=±

Reσκs
j j (ω). (C2)

To make the following calculation more general, instead of focusing on the asymptotic background values at ω → ∞, we
proceed with the longitudinal optical conductivity for arbitrary positive ω, which is contributed completely by the interband
transition. The real part of the interband longitudinal optical conductivity for valley κ and spin s reads

Reσκs
j j(inter)(ω) = π

∫ +∞

−∞

dkx

2π

∫ +∞

−∞

dky

2π

∑
s′=±

Fκ;−,+
j j;ss′ (kx, ky)

f [ε−
κs(kx, ky)] − f [ε+

κs′ (kx, ky)]

ω
δ
[
ω − 2

√
v2

x k2
x + v2

y k2
y

]
, (C3)

where Fκ;−,+
xx;ss′ (kx, ky) and Fκ;−,+

yy;ss′ (kx, ky) are given as

Fκ;−,+
xx;ss′ (kx, ky) = 4σ0

v2
x v

2
y k2

y

v2
x k2

x + v2
y k2

y

δss′ , (C4)

Fκ;−,+
yy;ss′ (kx, ky) = 4σ0

v2
y v

2
x k2

x

v2
x k2

x + v2
y k2

y

δss′ . (C5)

After introducing k̃x = vxkx, k̃y = vyky, k̃ = |k̃| =
√

k̃2
x + k̃2

y , φ = arctan(k̃y/k̃x ), and 0 � β = vt/vy < 1, one obtains

Reσκs
j j(inter)(ω) =

∫
dk̃xdk̃y

4πvxvy

∑
s′=±

F̃κ;−,+
j j;ss′ (k̃x, k̃y)

f [ε̃−
κs(k̃x, k̃y)] − f [ε̃+

κs′ (k̃x, k̃y)]

ω
δ[ω − 2k̃], (C6)
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where

F̃κ;−,+
xx;ss′ (k̃x, k̃y) = Fκ;−,+

xx;ss′ (kx, ky) = 4σ0
v2

x k̃2
y

k̃2
δss′ , (C7)

F̃κ;−,+
yy;ss′ (k̃x, k̃y) = Fκ;−,+

yy;ss′ (kx, ky) = 4σ0
v2

y k̃2
x

k̃2
δss′ , (C8)

ε̃±
κs(k̃x, k̃y) = ε±

κ (kx, ky) = −κβ k̃y ± k̃ = (−κβ sin φ ± 1)k̃. (C9)

Summing over s′ and transforming to the polar coordinate, we have

Reσκs
xx(inter)(ω) = σ0

vx

vy

∫ +∞

0
k̃dk̃

∫ 2π

0

sin2 φdφ

π

f [ε̃−
κs(k̃ cos φ, k̃ sin φ)] − f [ε̃+

κs(k̃ cos φ, k̃ sin φ)]

ω
δ[ω − 2k̃] (C10)

and

Reσκs
yy(inter)(ω) = σ0

vy

vx

∫ +∞

0
k̃dk̃

∫ 2π

0

cos2 φdφ

π

f [ε̃−
κs(k̃ cos φ, k̃ sin φ)] − f [ε̃+

κs(k̃ cos φ, k̃ sin φ)]

ω
δ[ω − 2k̃]. (C11)

Integrating over k̃ leads us to

Reσκs
xx(inter)(ω) = σ0

4

vx

vy

∫ 2π

0

sin2 φdφ

π

{
f
[
(−κβ sin φ − 1)

ω

2

]
− f

[
(−κβ sin φ + 1)

ω

2

]}

= σ0

4

vx

vy

∫ π

0

sin2 φdφ

π

{
f
[
(−κβ sin φ − 1)

ω

2

]
− f

[
(−κβ sin φ + 1)

ω

2

]

+ f
[
(κβ sin φ − 1)

ω

2

]
− f

[
(κβ sin φ + 1)

ω

2

]}
(C12)

and hence

Reσxx(inter)(ω) = gs
[
Reσ+

xx(inter)(ω) + Reσ−
xx(inter)(ω)

]

= σ0
vx

vy

∫ π

0

sin2 φdφ

π

{
f
[
(−β sin φ − 1)

ω

2

]
+ f

[
(β sin φ − 1)

ω

2

]

− f
[
(−β sin φ + 1)

ω

2

]
− f

[
(β sin φ + 1)

ω

2

]}
, (C13)

where gs = 2 is the degeneracy factor of spin.
Parallel procedures give rise to

Reσyy(inter)(ω) = gs
[
Reσ+

yy(inter)(ω) + Reσ−
yy(inter)(ω)

]

= σ0
vy

vx

∫ π

0

cos2 φdφ

π

{
f
[
(−β sin φ − 1)

ω

2

]
+ f

[
(β sin φ − 1)

ω

2

]

− f
[
(−β sin φ + 1)

ω

2

]
− f

[
(β sin φ + 1)

ω

2

]}
. (C14)

In order to obtain the analytical expressions, we perform the integrations over φ at zero temperature where the Fermi
distribution function f (x) can be replaced by �[μ − x]. At zero temperature, we have

Reσxx(inter)(ω) = σ0
vx

vy
�β (ω), (C15)

where

�β (ω) = �(ω)
∫ π

0

sin2 φdφ

π

{
�

[
μ + (β sin φ + 1)

ω

2

]
+ �

[
μ − (β sin φ − 1)

ω

2

]

−�
[
μ + (β sin φ − 1)

ω

2

]
− �

[
μ − (β sin φ + 1)

ω

2

]}
. (C16)

When β = 0, we have

�0(ω) = �(ω)
∫ π

0

2 sin2 φ

π
dφ

[
�

(
μ + ω

2

)
− �

(
μ − ω

2

)]
=

{
0, 0 < ω < 2|μ|,
1, ω � 2|μ|. (C17)
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When 0 < β < 1, we have

�β (ω) = �(β )�(1 − β )�(ω)
∫ π

2

0

2 sin2 φ cos φdφ

π cos φ

{
�

[
μ + (β sin φ + 1)

ω

2

]
+ �

[
μ − (β sin φ − 1)

ω

2

]

−�
[
μ + (β sin φ − 1)

ω

2

]
− �

[
μ − (β sin φ + 1)

ω

2

]}

= �(β )�(1 − β )�(ω)
∫ 1

0

2x2dx

π
√

1 − x2

{
�

[
μ + (βx + 1)

ω

2

]
+ �

[
μ − (βx − 1)

ω

2

]

−�
[
μ + (βx − 1)

ω

2

]
− �

[
μ − (βx + 1)

ω

2

]}

=

⎧⎪⎪⎨
⎪⎪⎩

0, 0 < ω <
2|μ|
1+β

,

1
2 − χ

√
1−χ2−arcsin χ

π
,

2|μ|
1+β

� ω <
2|μ|
1−β

,

1, ω � 2|μ|
1−β

,

(C18)

where χ = ω−2|μ|
βω

. Therefore the analytical expressions of Reσxx(inter)(ω) at zero temperature can be written in the untilted case
(β = 0) as

Reσxx(inter)(ω) =
{

0, 0 < ω < 2|μ|,
σ0

vx
vy

, ω � 2|μ|, (C19)

and in the tilted case (0 < β < 1) as

Reσxx(inter)(ω) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 < ω <
2|μ|
1+β

,

σ0
vx
vy

[
1
2 − χ

√
1−χ2−arcsin χ

π

]
,

2|μ|
1+β

� ω <
2|μ|
1−β

,

σ0
vx
vy

, ω � 2|μ|
1−β

,

(C20)

where χ = ω−2|μ|
βω

.
Similarly, the analytical expressions of Reσyy(inter)(ω) at zero temperature can be written in the untilted case (β = 0) as

Reσyy(inter)(ω) =
{

0, 0 < ω < 2|μ|,
σ0

vy

vx
, ω � 2|μ|, (C21)

and in the tilted case (0 < β < 1) as

Reσyy(inter)(ω) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 < ω <
2|μ|
1+β

,

σ0
vy

vx

[
1
2 + χ

√
1−χ2+arcsin χ

π

]
,

2|μ|
1+β

� ω <
2|μ|
1−β

,

σ0
vy

vx
, ω � 2|μ|

1−β
,

(C22)

where χ = ω−2|μ|
βω

.

It is noted that two boundaries 2|μ|
1+β

and 2|μ|
1−β

correspond to the position of peaks of optical conductivities and are determined
only by the tilt parameter β = vt/vy and the absolute value of chemical potential |μ|, indicating the tilt dependence and particle-
hole symmetry in the gapless model. In this sense, we analytically evaluate the real part of longitudinal optical conductivities
which agree exactly with the numerical results of 8-Pmmn borophene [31] after setting v− = vt , v2 = 0, v1 = vx, and v+ = vy.
Furthermore, in the untilted limit β → 0, these two boundaries merge into one boundary 2|μ|, giving rise to the result for the
untilted case (β = 0).

When ω >
2|μ|
1−β

is satisfied, the real part of longitudinal optical conductivities becomes constant, namely,

Reσxx(asyp) = vx

vy
σ0 = v1√

v2
2 + v2+

σ0, (C23)

Reσyy(asyp) = vy

vx
σ0 =

√
v2

2 + v2+
v1

σ0, (C24)

which are nothing but the asymptotic background values. It is noted that they are related only to the ratio between vx and vy,
irrelevant with the tilt parameter β = vt/vy. In addition, they satisfy a universal relation

Reσxx(asyp) × Reσyy(asyp) = vx

vy
σ0 × vy

vx
σ0 = σ 2

0 . (C25)
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It is remarked that Eqs. (C23)–(C25) hold for arbitrary chemical potential such that the n-doped (μ > 0), p-doped (μ < 0),
and undoped (μ = 0) cases share the same asymptotic background values. Furthermore, from the Fermi distribution function
f [εξ

κ (kx, ky)] = 1/(1 + exp{[εξ
κ (kx, ky) − μ]/(kBT )}), when εξ

κ (kx, ky) is much greater than chemical potential μ and temperature
kBT , we are allowed to set T = 0, which indicates that finite temperature does not affect the asymptotic background values. The
result that asymptotic background values of longitudinal optical conductivity are not affected by finite temperature was also
found by Carbotte in the numerical calculation of type-I and type-II Weyl semimetals [56]. In summary, both the asymptotic
values in Eqs. (C23) and (C24) and the universal relation in Eq. (C25) hold for arbitrary band gap, arbitrary chemical potential,
and arbitrary temperature since physically the band gap, chemical potential, and temperature are relatively small compared to
the energy in the asymptotic regime.

As a further comparison, we adopt the notations ε1 = 2μ

1+β
and ε2 = 2μ

1−β
[31] and can express the ratio β = vt/vy as μ( 1

ε1
−

1
ε2

) or ε2−ε1
ε2+ε1

. Note that the relation β = μ( 1
ε1

− 1
ε2

) is nothing but the result given in Ref. [31].
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Phys. Rev. Lett. 102, 236804 (2009).

[7] C.-C. Liu, H. Jiang, and Y. Yao, Phys. Rev. B 84, 195430
(2011).

[8] C.-C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802
(2011).

[9] M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012).
[10] A. J. Mannix, X.-F. Zhou, B. Kiraly, J. D. Wood, D. Alducin,

B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest,
M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and
N. P. Guisinger, Science 350, 1513 (2015).

[11] A. Lopez-Bezanilla and P. B. Littlewood, Phys. Rev. B 93,
241405(R) (2016).

[12] A. D. Zabolotskiy and Yu. E. Lozovik, Phys. Rev. B 94, 165403
(2016).

[13] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev.
Lett. 105, 136805 (2010).

[14] D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.
Lett. 108, 196802 (2012).

[15] X. Qian, J. Liu, L. Fu, and J. Li, Science 346, 1344 (2014).
[16] F. Zheng, C. Cai, S. Ge, X. Zhang, X. Liu, H. Lu, Y. Zhang,

J. Qiu, T. Taniguchi, K. Watanabe, S. Jia, J. Qi, J.-H. Chen, D.
Sun, and J. Feng, Adv. Mater. 28, 4845 (2016).

[17] Z. Fei, T. Palomaki, S. Wu, W. Zhao, X. Cai, B. Sun, P.
Nguyen, J. Finney, X. Xu, and D. H. Cobden, Nat. Phys. 13, 677
(2017).

[18] L. Peng, Y. Yuan, G. Li, X. Yang, J.-J. Xian1, C.-J. Yi, Y.-G.
Shi, and Y.-S. Fu, Nat. Commun. 8, 659 (2017).

[19] S. Tang, C. Zhang, D. Wong, Z. Pedramrazi, H.-Z. Tsai, C.
Jia, B. Moritz, M. Claassen, H. Ryu, S. Kahn, J. Jiang, H.
Yan, M. Hashimoto, D. Lu, R. G. Moore, C.-C. Hwang, C.
Hwang, Z. Hussain, Y. Chen, M. M. Ugeda, Z. Liu, X. Xie,
T. P. Devereaux, M. F. Crommie, S.-K. Mo, and Z.-X. Shen,
Nat. Phys. 13, 683 (2017).

[20] S. Wu, V. Fatemi, Quinn D. Gibson, K. Watanabe, T. Taniguchi,
Robert J. Cava, and Pablo Jarillo-Herrero, Science 359, 76
(2018).

[21] V. Fatemi, S. Wu, Y. Cao, L. Bretheau, Quinn D. Gibson, K.
Watanabe, T. Taniguchi, Robert J. Cava, and P. Jarillo-Herrero,
Science 362, 926 (2018).

[22] E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement, C. Olsen,
S. Luescher, X. Xu, Joshua A. Folk, and David H. Cobden,
Science 362, 922 (2018).

[23] H.-R. Chang, J. Zhou, H. Zhang, and Y. Yao, Phys. Rev. B 89,
201411(R) (2014).

[24] C. J. Tabert and E. J. Nicol, Phys. Rev. B 89, 195410 (2014).
[25] A. Iurov, G. Gumbs, D. Huang, and G. Balakrishnan, Phys. Rev.

B 96, 245403 (2017).
[26] K. Sadhukhan and A. Agarwal, Phys. Rev. B 96, 035410 (2017).
[27] Z. Jalali-Mola and S. A. Jafari, Phys. Rev. B 98, 195415 (2018).
[28] T. Nishine, A. Kobayashi, and Y. Suzumura, J. Phys. Soc. Jpn.

80, 114713 (2011).
[29] T. Nishine, A. Kobayashi, and Y. Suzumura, J. Phys. Soc. Jpn.

79, 114715 (2010).
[30] L. Stille, C. J. Tabert, and E. J. Nicol, Phys. Rev. B 86, 195405

(2012).
[31] S. Verma, A. Mawrie, and T. K. Ghosh, Phys. Rev. B 96, 155418

(2017).
[32] A. Iurov, G. Gumbs, and D. Huang, Phys. Rev. B 98, 075414

(2018).
[33] S. A. Herrera and G. G. Naumis, Phys. Rev. B 100, 195420

(2019).
[34] A. Iurov, L. Zhemchuzhna, D. Dahal, G. Gumbs, and D. Huang,

Phys. Rev. B 101, 035129 (2020).
[35] P. Kapri, B. Dey, and T. K. Ghosh, Phys. Rev. B 102, 045417

(2020).
[36] J.-H. Sun, L.-J. Wang, X.-T. Hu, L. Li, and D.-H. Xu, Phys. Rev.

B 97, 035130 (2018).
[37] X. Xiao, Y. Liu, and W. Wen, J. Phys.: Condens. Matter 26,

266001 (2014).
[38] H.-J. Duan, C. Wang, S.-H. Zheng, R.-Q. Wang, D.-R. Pan, and

M. Yang, Sci. Rep. 8, 6185 (2018).
[39] G. C. Paul, S. K. Firoz Islam, and A. Saha, Phys. Rev. B 99,

155418 (2019).
[40] S.-H. Zhang, D.-F. Shao, and W. Yang, J. Magn. Magn. Mater.

491, 165631 (2019).
[41] J. Li and K. Chang, Appl. Phys. Lett. 95, 222110 (2009).
[42] M. S. Miao, Q. Yan, C. G. Van de Walle, W. K. Lou, L. L. Li,

and K. Chang, Phys. Rev. Lett. 109, 186803 (2012).

125425-11

https://doi.org/10.1126/science.1102896
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1143/JPSJ.75.054705
https://doi.org/10.1103/PhysRevB.76.075131
https://doi.org/10.1103/PhysRevLett.102.236804
https://doi.org/10.1103/PhysRevB.84.195430
https://doi.org/10.1103/PhysRevLett.107.076802
https://doi.org/10.1103/PhysRevLett.109.055502
https://doi.org/10.1126/science.aad1080
https://doi.org/10.1103/PhysRevB.93.241405
https://doi.org/10.1103/PhysRevB.94.165403
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1126/science.1256815
https://doi.org/10.1002/adma.201600100
https://doi.org/10.1038/nphys4091
https://doi.org/10.1038/s41467-017-00745-8
https://doi.org/10.1038/nphys4174
https://doi.org/10.1126/science.aan6003
https://doi.org/10.1126/science.aar4642
https://doi.org/10.1126/science.aar4426
https://doi.org/10.1103/PhysRevB.89.201411
https://doi.org/10.1103/PhysRevB.89.195410
https://doi.org/10.1103/PhysRevB.96.245403
https://doi.org/10.1103/PhysRevB.96.035410
https://doi.org/10.1103/PhysRevB.98.195415
https://doi.org/10.1143/JPSJ.80.114713
https://doi.org/10.1143/JPSJ.79.114715
https://doi.org/10.1103/PhysRevB.86.195405
https://doi.org/10.1103/PhysRevB.96.155418
https://doi.org/10.1103/PhysRevB.98.075414
https://doi.org/10.1103/PhysRevB.100.195420
https://doi.org/10.1103/PhysRevB.101.035129
https://doi.org/10.1103/PhysRevB.102.045417
https://doi.org/10.1103/PhysRevB.97.035130
https://doi.org/10.1088/0953-8984/26/26/266001
https://doi.org/10.1038/s41598-018-24567-w
https://doi.org/10.1103/PhysRevB.99.155418
https://doi.org/10.1016/j.jmmm.2019.165631
https://doi.org/10.1063/1.3268475
https://doi.org/10.1103/PhysRevLett.109.186803


TAN, YAN, ZHAO, GUO, AND CHANG PHYSICAL REVIEW B 103, 125425 (2021)

[43] D. Zhang, W. Lou, M. Miao, S.-C. Zhang, and K. Chang, Phys.
Rev. Lett. 111, 156402 (2013).

[44] Y. Ma, L. Kou, X. Li, Y. Dai, and T. Heine, NPG Asia Mater. 8,
e264 (2016).

[45] S. Li, Y. Liu, Z.-M. Yu, Y. Jiao, S. Guan, X.-L. Sheng, Y. Yao,
and S. A. Yang, Phys. Rev. B 100, 205102 (2019).

[46] P.-J. Guo, X.-Q. Lu, W. Ji, K. Liu, and Z.-Y. Lu, Phys. Rev. B
102, 041109(R) (2020).

[47] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and
T. F. Heinz, Phys. Rev. Lett. 101, 196405 (2008).

[48] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Phys. Rev. B
75, 165407 (2007).

[49] T. Stauber, N. M. R. Peres, and A. K. Geim, Phys. Rev. B 78,
085432 (2008).

[50] Z. Li and J. P. Carbotte, Phys. Rev. B 86, 205425 (2012).
[51] A. Carvalho, R. M. Ribeiro, and A. H. Castro Neto, Phys. Rev.

B 88, 115205 (2013).
[52] H. Rostami and R. Asgari, Phys. Rev. B 89, 115413 (2014).
[53] P. DiPietro, F. M. Vitucci, D. Nicoletti, L. Baldassarre, P. Cal-

vani, R. Cava, Y. S. Hor, U. Schade, and S. Lupi, Phys. Rev. B
86, 045439 (2012).

[54] Z. Li and J. P. Carbotte, Phys. Rev. B 87, 155416 (2013).
[55] X. Xiao and W. Wen, Phys. Rev. B 88, 045442 (2013).
[56] J. P. Carbotte, Phys. Rev. B 94, 165111 (2016).

125425-12

https://doi.org/10.1103/PhysRevLett.111.156402
https://doi.org/10.1038/am.2016.51
https://doi.org/10.1103/PhysRevB.100.205102
https://doi.org/10.1103/PhysRevB.102.041109
https://doi.org/10.1103/PhysRevLett.101.196405
https://doi.org/10.1103/PhysRevB.75.165407
https://doi.org/10.1103/PhysRevB.78.085432
https://doi.org/10.1103/PhysRevB.86.205425
https://doi.org/10.1103/PhysRevB.88.115205
https://doi.org/10.1103/PhysRevB.89.115413
https://doi.org/10.1103/PhysRevB.86.045439
https://doi.org/10.1103/PhysRevB.87.155416
https://doi.org/10.1103/PhysRevB.88.045442
https://doi.org/10.1103/PhysRevB.94.165111

