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Photonic Chern insulators from two-dimensional atomic lattices interacting
with a single surface plasmon polariton
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We study the polaritonic band structure of two-dimensional atomic lattices coupled to a single excitation of
a surface plasmon polariton mode. We show the possibility of realizing topological gaps with different Chern
numbers by having resonant atomic transitions to excited states with different angular momentum. We employ a
computational method based on the recently proposed Dirichlet-to-Neumann map technique, which accurately
models non-Markovian dynamics, as well as interactions involving higher-order electric and magnetic multipole
transitions. We design topologically robust edge states which are used to achieve unidirectional emission and
nonreciprocal transmission of single photons. We also point out the challenges in realizing bands with higher

Chern numbers in such systems.
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I. INTRODUCTION

Study of the periodic lattice of atoms interacting with a
nanophotonic environment has gained increasing interest in
recent years with the advance in related quantum technologies
[1-11]. Such a periodic system has been shown to exhibit
several interesting phenomena arising from coherent collec-
tive oscillations, such as sub- and super-radiance, near perfect
reflection of radiation, forbidden energy gaps [6—12], etc. A
one-dimensional (1D) lattice of atoms can act as a waveg-
uide for single photons, and a quantum emitter placed near
the atomic lattice can emit selectively into the guided modes
[1]. Similarly, a two-dimensional (2D) atomic lattice supports
surface-confined Bloch modes in the single-excitation regime
[5,6]. In recent works we illustrated the design of atom-based
mirrors, cavities, and isolated flat bands for manipulating
single photons in 2D surface plasmon polariton (SPP) mode
[10,13]. There have also been a few recent theoretical works
proposing the design of 2D atomic lattices having polaritonic
bands with nontrivial topology allowing for topologically ro-
bust edge states [3—5]. All these results point to the exciting
possibility of realizing fully atom-based optical interfaces.

However, most of these works simplify the atom-photon
interaction Hamiltonian by tracing out the photon degrees of
freedom and applying the Markov approximation [5,6]. This
approximation is not valid when the electromagnetic environ-
ment has narrow bandwidth features and is highly dispersive.
The Markov approximation is also violated when the length
of a spontaneously emitted photon becomes comparable to or
smaller than the atom spacing, which might occur for stronger
atom-photon coupling, resulting in faster decay rates. Another
almost universal approximation in these models is the electric
dipole approximation based on the assumption that the photon
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wavelength is much longer than the atomic size [14,15]. This
approximation may not hold for surface plasmon polaritons
with wavelengths far smaller than the free-space wavelengths.

In this work we study the interaction of a 2D atomic lat-
tice with a SPP mode focusing on the emergent topological
properties in the single-excitation regime using a recently pro-
posed model which does not suffer from the limitations of the
aforementioned Markov and dipole approximations [10]. A
strongly confined SPP mode provides a significantly enhanced
atom-photon interaction strength, especially near the surface
plasmon frequency where the photonic density of states di-
verges [16]. The SPP mode is highly dispersive and has a very
sharp cutoff near the surface plasmon frequency. Also, near
the surface plasmon frequency the plasmon wavelength can
become comparable to the atomic size, more so for the case
of Rydberg atoms in highly excited states, or large quantum
dots. Thus both the Markov and dipole approximations are
not valid when the atomic transition frequency lies close to
the surface plasmon frequency, signifying the usefulness of
our general model. We further extend this previously proposed
model to compute topological properties of the compound
system. We compute the polaritonic band dispersion and the
associated Chern number for an infinite atomic lattice and
also show the existence of topologically robust unidirectional
edge states at the interface between two lattices with different
Chern numbers. Using these edge states, we show the possibil-
ity of achieving nonreciprocal transmission and unidirectional
emission from single-photon sources.

The rest of the paper is organized as follows. In Sec. II
we describe the atom-SPP system and provide an overview
of the Dirichlet-to-Neumann (DtN) map-based band structure
computational method. In Sec. III we design and investigate
three different atomic lattices which have topological gaps
with Chern numbers 0, 1, and 2, respectively. Subsequently,
using the atomic lattices with Chern numbers 0 and 1, we
realize topologically robust unidirectional edge states. Finally,
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FIG. 1. (a) A square lattice of atoms (red cylinders) with pe-
riodicity D placed at a distance i from the surface supporting a
SPP mode (shown in green). (b) Reciprocal lattice discretized in a
uniform N x N grid for Chern number computation.

after a brief discussion of the challenges involved in realizing
bands with higher Chern numbers, we conclude in Sec. IV.

II. MATHEMATICAL FORMULATION
A. SPP and atom model

A periodic atomic lattice coupled to a SPP mode is shown
schematically in Fig. 1. In this work we consider a square
lattice, but the formalism is general and applicable to any
lattice type. The infinite 2D surface supporting the SPP mode
is taken to be the z = 0 plane (shown in green). The atoms in
the lattice (represented by red cylinders) are indexed by (u, v)
and are placed at coordinates (r,, #), where r,, = (uD, vD)
is the in-plane coordinate, D is the lattice period, and 4 is the
atom-surface distance. We assume that the atoms are sepa-
rated from the surface by vacuum, and the SPP mode is ideal
without propagation losses. As we will see later, a few lattice
periods are enough to exhibit the topological phenomena,
such as unidirectional edge states arising from the periodic
structure. Thus the lossless SPP model is a good approxima-
tion as long as the SPP propagation length is larger than a
few lattice periods. In the Coulomb gauge, the SPP vector
potential operator A(r, z) in the upper-half space (z > 0) is
given by [17-20]

h .k .
A d2k - k — = —kz kT
2= ./f 27\ 2Lk€0wk< K )e o

A(r,2)
+H.c., ey

where ay, al are the bosonic annihilation and creation opera-
tors for the SPP mode satisfying the commutation [a, a;i,] =
8%2(k — k'), & is the reduced Planck’s constant, €, is the
vacuum permittivity, k = k% — a)k2 /c2 is the spatial decay
rate of the mode along z, Ly is the characteristic modal
dimension given by Ly = (k> + k?)/«* and is derived by nor-
malization consideration, and H.c. stands for the Hermitian
conjugate. wy is the SPP mode (angular) frequency for the
in-plane wave vector k = (ky, k,) and could be well approx-
imated for frequency close to the surface plasmon frequency
wsp by

[1+€ k2 B
Wk = E ck ~ ﬁ(l — @) = (,()X[, — ﬁ’ (2)

where € is the real dielectric constant of the metal given by the
Drude model, w, is its plasma frequency, k), is the free-space
wave-vector magnitude at frequency w,(=ck,), and c is the
speed of light in vacuum [21-23].

For simplicity, we model the atom as an infinite potential
well confining the electron in a cylinder of radius a and height
L, as shown in Fig. 1. In this paper we interchangeably use
atoms and quantum dots to refer to this quantum system with
discrete energy levels. The electron wave function for state
(I, m, n) in the cylindrical quantum dot is given by

) [2 . l(z—h) 1
mn(T, = — Sin
I,m, < L L ﬁaJerl(jmna)

X I G /@)™ O (1, 2), 3)

where [ is a positive integer, J,, is the Bessel function of the
first kind of order m, j,,, is its nth zero, O(r, z) is a scalar func-
tion which is unity inside the cylinder (r <a,h <z <h+ L)
and zero outside [24], and 6 is the azimuthal angle. Note that
the state (/, m, n) is an eigenstate of the z angular momentum
operator (L,) with eigenvalue m#. In the presence of a static
magnetic field Byz, the degeneracy between the +m and —m
states is broken (Zeeman splitting) and the energy eigen-
value is given by Ej ., = I°h*/(8m,L?) + 1?2, | 2m.a®) +
upmBy, where m, is the electron rest mass and up is the
Bohr magneton. Since later we will adopt a minimal coupling
Hamiltonian to describe the atom-photon interaction and ig-
nore the spin-flip processes, the electron-spin contribution in
the Zeeman splitting here is inconsequential, as it does not
affect the energy difference between the states with identical
spin. We choose the quantum dot dimensions, such that the
transition energy between the ground state |g) = (1,0, 1) and
excited states |£) = (2, &|myg], 1) lies close to the surface
plasmon energy /iw, for a particular mq. We approximate the
atom as a three- (two-) level system for mgy # 0 (my = 0) and
retain only the eigenstates resonant with the surface plasmon
energy. As we will see later, in the presence of a large mag-
netic field (a few Tesla), even the three-level atom essentially
acts as a two-level system in the frequency range of interest,
and the topological properties of the periodic atomic lattice
depend only on the resonant my state.
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B. Minimal coupling Hamiltonian

‘We use the standard minimal coupling Hamiltonian for atom-photon interaction as given by [25]

H = / / Pk Tenalax+ 3 Eofl fan + Es fhFrw + E- o fo)

Hgpp

Halom(u,v)

+3 / / PRV (0l £ frw + Vool £ o + Hee), @)

where E, and E. are the ground and excited-state energies,
and fg, f;uv, ftuvs fLw are the respective fermionic anni-
hilation and creation operators for the electron in the atom
(u, v). Vi,p(K) is the atom-photon coupling strength for the
SPP wave vector k given by

e
_(:I:uv|Ak . puvlguv>v (5)

e

V:;:kuv k)= -

where e is the electron charge, and p,,, = —ihV,, is the canon-
ical momentum operator for the electron in the atom (i, v)
[25,26]. We compute V., (k) without making the electric
dipole approximation, and thus it includes contributions from
electric and magnetic multipoles of all possible orders. Also,
we do not make the usual Markov approximation and fully
take into account the frequency dependence of atom-photon
coupling strength. In the above Hamiltonian, we have ignored
the terms related to intrinsic spin angular momentum and
the A term. We have also made the usual rotating wave ap-
proximation in the interaction Hamiltonian [14,15,26]. These
approximations are justified in the weak-coupling regime
(small V), which is the case here as we have a single photon
interacting with a low-density atomic lattice such that the
period is significantly larger than the size of the atoms [25].
In the two-level limit obtained by ignoring the off-resonant

= hws, f / d*rc’ (r)e(r) + hp / / d’r / / 't

Hint(u,v)

(

excited state (|+) or |—), depending upon the direction of ap-
plied static magnetic field), the Hamiltonian in Eq. (4) can be
shown to be similar to the Hamiltonian considered in [27] for
a coupled exciton-photon system confined to two dimensions.
But as shown later, opening up a complete band gap is rela-
tively straightforward with the atomic lattice as opposed to the
exciton-based system. From Egs. (1), (3), and (5), Vi, (k) can
be seen to be of the form g.i,, (k)e™ % [k = (k, f) in polar
coordinates] and thus has a winding number my, i.e., when 6
is changed by 27 radians by moving along a circle of radius
k, Vi (k, 6k) goes mg times around the origin of the complex
plane. This, as we will see later, leads to a nontrivial topology
depending on the value of myg. Note that since the atoms
do not directly (electronically) interact with each other, the
topological properties of the bands of the atomic lattice can
be attributed to be arising solely from the atom-SPP coupling.

To compute the eigenstates of the Hamiltonian in Eq. (4),
we transform it into spatial representation by defining spatial
bosonic creation and annihilation operators by [25]

1 )
_7_[ // d2k ezk-rak : // d2k e—zk rali(’

and using the SPP dispersion approximation of Eq. (2). The
Hamiltonian then becomes

c(r) = cfry=

| T(I‘)C(I‘ )+ ZHatom(u v)

u,v

3 [ 0@ O o+ Vo OFf - + e, )

u,v

where Vi,,(r) is the Fourier transform of the coupling
strength Vi, (K):

Vi (r) = % / / Pk TV (K). ®)

Vi (r) has the same winding in real space as V., (k) does
in k space. Since all the atoms are identical, from Eqs. (1)
and (3), Vi (k) = e~ *Twy (k). Thus we have Vi, (r) =
Viw(r — 1y, ), which is the periodic condition. We now solve
for the Bloch eigenstates of the Hamiltonian in Eq. (7) in the

(

single-excitation regime, which is of the form

) = ( f / d*r ¢pg(r)c’(r)

+ Z e+uvfiuyfguv + euvf.‘-uvfguv> |gs g, ceey O)v
u,v (9)

where q is the Bloch wave vector, and |g, g, ..., 0) is the
state with all the atoms in the ground state and zero photon
in the SPP mode. Equation (9) represents a complete basis for
the system [12,28]. From the eigenvalue equation H|y/q) =
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E|yq), we obtain the following equations for the photon field
¢q(r) and the excited-state amplitudes e4.,,:

Agq(r) + K q(r)

k> " o
=% D (et AViwn(X) + e AV (1)), (10)

B — Qa)esu = / / Prvi, O, (D)

Here we have substituted E = fiw + ), | E,. A =0d%/0x% +
82/dy? is the 2D Laplacian operator, Q4 = (Ex — E,)/li are
the atomic transition frequencies corresponding to |£) states,
and w and k are the SPP frequency and wave-vector magni-
tude, respectively, related by the dispersion relation in Eq. (2).
Note that the SPP wave-vector magnitude & is different from
the Bloch wave-vector magnitude g. Since the atom-field in-
teraction is local, V1,,(r) = 0 for |[r — r,,| > D/2. Thus one
can solve Egs. (10) and (11) inside a unit cell, say the one
containing the atom (0, 0), to get a complete and orthogonal
basis set of photon field modes ¢, (r):

Gk (r) = Ju(kr)e™ + b, HD (kr)e™, —0o < m < 0.
(12)
In Eq. (12), H" is the Hankel function of the first kind of
order m, and b,, is the corresponding scattering coefficient for
an incident wave of the form J,,(kr)e™?. The field mode with
index m has an angular momentum m# along z. As expected
from the conservation of angular momentum and also follow-
ing from Egs. (10) and (11), the scattering coefficients b,
are only nonzero for m = +my. We compute these unknown
scattering coefficients using appropriate boundary conditions
as done in the previous work [25]. Now we employ the DtN-
map-based technique to determine the expansion coefficients
¢ of the Bloch eigenmode field ¢q(r) in the computed local
basis set [Eq. (13)]:

oo

Pq(®) = Y Cuprm(r). (13)

m=—00

This computational procedure is exactly the same as in [10]
and is briefly outlined here. A DtN map is a linear operator
which maps the field values at the unit-cell boundary to its
normal derivative [29-31]. Using the DtN map and applying
the Bloch theorem for the field [Eq. (14a)], one formulates
a linear eigenvalue problem, solving which yields the Bloch
wave vector ( and the Bloch eigenmode coefficients c,,. The
Bloch condition for excited-state amplitudes [Eq. (14b)] di-
rectly follows from Egs. (11) and (14a), and thus it suffices to
enforce the Bloch condition on the field only:

Bq(r + 1) = €T (1),

iq-Tuy

(14a)
(14b)

€rypy = € €400

Note that the DtN-map-based technique is different from
the usual band structure computation where the eigenvalue
problem is formulated for a given Bloch vector and yields
w? as the eigenvalue. Here the DtN map is computed for a
given SPP frequency w (or SPP wave vector k), and solving
the eigenvalue problem gives the Bloch wave vector q and the
corresponding eigenmode. To compute the Berry curvature
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FIG. 2. (a) Band structure of a square lattice of atoms (my = 0)
with period D = 56nm placed at a distance # = 10nm from the
surface and (b) Berry flux associated with the lowest band.

and Chern number (C) associated with a band, we first use
the DtN-map-based procedure to obtain the Bloch eigenmode
field [¢q(r)] at a discrete set of points in the first Brillouin
zone [Fig. 1(b)] and then use the standard four-point formula
for extracting the Berry-Pancharatnam-Zak phase [32,33]:

1
C= o Zlm log[(u;, jlui, j+1) (Wi, j1 Wizt j1)
0
X AUyt luion ) (i jlug )], (15)

where u; ;(r) is the periodic part of the photon field defined
by ¢q,;(r) = €' u; ;(r).

III. RESULTS

We now use the DtN-map-based formalism described in
the previous section to explore several atomic lattices with
different topological properties and show some important
applications related to nonreciprocal photon transport and uni-
directional emission from a single-photon source.

A. Topologically trivial lattice (my = 0)

We start by considering a square lattice of two-level atoms
(mp = 0) comprised of quantum dots of radius ¢ = 4 nm and
height L = 1.47 nm placed at a distance of # = 10 nm from a
surface supporting a SPP mode. We set the surface plasmon
energy /iws, = 0.5226¢eV such that it is resonant with the
atomic transition energy /2 = E o1 — Ej 0.1. The lattice pe-
riod is set to D = 56 nm, which sets the Brillouin zone bound-
ary at (/D = 21.2w,,/c), where wy,/c is the free-space
wave-vector magnitude at the surface plasmon frequency. The
SPP wave in the infrared spectrum, with wavelength reduction
by a factor of 21.2 over free-space wavelength and low prop-
agation loss, can be realized with conventional noble metals
as well as novel 2D materials such as graphene and hexagonal
boron nitride (hBN) [23,34-37]. As we will see later, the SPP
propagation length only needs to be several lattice periods
to observe the effects emergent from the periodic structure.
Figure 2(a) shows the band structure of the lattice along the
boundary of the irreducible Brillouin zone. The lowest band is
isolated by a finite band gap which arises due to the scattering
of the m = 0 field mode [Eq. (12)]. The band gap is cen-
tered around the resonant scattering frequency, and its width
depends on the scattering linewidth of the atom [10]. Atom-
SPP interaction also leads to a nonzero Lamb shift, which is
the difference between the resonant scattering frequency and
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FIG. 3. (a) Band structure of a square lattice of atoms (my = 1)
with period D = 56nm placed at a distance &z = 10nm from the
surface and (b) Berry flux associated with the lowest band.

the atomic transition frequency €2 when the atom is isolated
[25,38,39]. Figure 2(b) plots the Berry flux for the lowest
band, which can be seen to be trivially zero throughout the first
Brillouin zone. As a consequence, the Chern number is also 0.
In Sec. III C we use this lattice to design unidirectional edge
states, and the lattice parameters chosen here were optimized
in order to get a large topological gap.

B. Chern insulator (my = 1)

Now we consider a square lattice of three-level atoms
(my = 1) with the same lattice period and surface plasmon
frequency as the previous (mo = 0) lattice. We choose dif-
ferent quantum dot parameters @ = 4nm, L = 1.5nm, such
that the surface plasmon energy is now resonant with the
atomic transition energy Q2+ = E» 41,1 — E10,1. We apply an
external magnetic field of —4.5T Z to split the |[+) and |—)
states by an amount (Q2_ — Q) = 10’3ww. All these param-
eters were optimally chosen to obtain a large topological gap,
which we discuss now. The resulting band structure is plotted
in Fig. 3(a). Similar to the (my = 0) lattice, the lowest band
here is isolated from other bands by a finite band gap. The
band gap is almost an order of magnitude smaller than the
previous lattice because of the narrower linewidth associated
with the scattering of the m = 1 field mode as compared to
the m = 0 mode of the previous case. Here the scattering of
the m = —1 field mode which occurs via transition to the |—)
state is far detuned from the band gap and does not affect the
lowest band. The scattering linewidth in general decreases for
higher m values, as the interaction with higher m field modes
involves higher-order electric and magnetic multipole transi-
tions. As discussed earlier, our model correctly accounts for
contributions from electric and magnetic multipole transitions
of all orders.

Figure 3(b) shows the Berry flux for the lowest band, com-
puted by discretizing the first Brillouin zone into a 80 x 80
grid. The Berry flux is concentrated in a thin ring near the
Brillouin zone boundary around the resonant frequency for the
m =1 field mode scattering. The Chern number turns out to
be —1. Switching the direction of the external magnetic field
does not change the band dispersion [Fig. 3(a)] and just flips
the sign of the Berry flux and the Chern number.

C. Unidirectional edge states

From the bulk-edge correspondence, we know that the
number of unidirectional edge modes at an interface equals the

@ x10~* ) ©)
5.2
10.5
-5.4
10.4
&
3 .56
= 0.3
k.
| -5.8
3 0.2
-6
0.1
-6.2
0

—-n/D 0 7/ T

FIG. 4. (a) Band structure of a 2D lattice of atoms (my = 1) with
period D = 56 nm along x and ten periods along y. Field amplitude
plots |¢,(r)| corresponding to the (b) top and (c) bottom edge modes,
at SPP wave vector k = 20.94k,,.

difference of the bulk topological invariants (Chern number)
across the interface [40,41]. Thus we expect that the my = 1
lattice with Chern number +1, when terminated by a topo-
logically trivial mirror (Chern number = 0), can support a
unidirectional edge mode in the topological bulk band gap.
To show this, we consider a 2D atomic lattice with infinite
periodic structure along the x direction and ten lattice periods
along the y direction. We assume zero boundary condition
at the lattice termination edges (y = +5D) and use the DN
technique to compute the band dispersion and the Bloch
eigenmodes. The band dispersion is plotted in Fig. 4(a). As
compared to the bulk band structure [Fig. 3(a)], there are two
additional bands inside the bulk band gap which are plotted
in red. The two bands correspond to the top and bottom
edge modes and have group velocity with opposite signs. The
left (right) band corresponds to the top (bottom) edge mode
and propagates along +x (—x) direction. Figures 4(b) and
4(c) show the field amplitude plots (|¢,(r)|) inside a unit
cell for the top and bottom edge modes, respectively, at SPP
wave-vector magnitude k = 20.94k,,, marked by a circle and
a diamond on the band dispersion plot in Fig. 4(a). These
unidirectional edge modes persist even for a smaller lattice
size. This is illustrated in Fig. 5, which shows the top and
bottom edge states at the same SPP frequency but in a smaller
lattice with only three lattice periods along y.

One can harness these topologically robust edge states
to achieve unidirectional emission as well as nonreciprocal
transmission of a single photon for frequencies inside the
topological gap. To this end we consider an interface be-
tween the topologically distinct my = 0 and my = 1 lattices,
described in the previous sections. As shown in Fig. 6, we con-
sider a finite structure with 20 x 10 unit cells of my = 0 lattice
placed aty > 0 and 20 x 10 unit cells of my = 1 lattice placed
at y < 0. The atomic positions in the two lattices are marked
by red and white points, respectively. By design, the band gap
of the my = 1 lattice with Chern number —1 falls within the
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FIG. 5. Field amplitude plots |¢,(r)| corresponding to the (a) top
and (b) bottom edge modes of a 2D lattice of atoms (my = 1) with
period D = 56 nm along x and three periods along y at SPP wave
vector k = 20.94k;,,.

band gap of the topologically trivial my = 0 lattice and thus
the interface supports a single right-propagating edge mode.
Since the DtN technique is no longer applicable for a finite lat-
tice, we compute the field profile using the multiple scattering
formalism proposed in our previous work [13], which is quite
general and works for an arbitrary number of atoms /unit cells.
It involves first computing the scattering from an isolated
atom/unit cell and then expressing the scattered field from the
finite lattice in terms of the scattered field modes from each
unit cell. Figure 6 shows the field plot (¢ (r) = (g, Olc(r)|v)),
where the edge mode is excited by a point source placed at
the origin (marked by star) and oscillating at frequency cor-
responding to the SPP wave-vector magnitude k = 20.94k),.
We plot the dimensionless normalized quantity ~/A Re(¢(r)),
where A arises from a box normalization and represents the
area of the surface supporting the SPP mode. It clearly shows
that the oscillating point source emits a photon into the edge
mode. While any physical single-photon source has nonzero
emission linewidth, the unidirectionality is maintained as long

x/A

FIG. 6. Field plot Re(¢(r)) for single-photon emission from a
point source placed at the origin at the interface between 20 x 10
unit cells of my = 0 lattice (y > 0) and 20 x 10 unit cells of my = 1
lattice (y < 0). The emitted photon has a frequency corresponding to
the SPP wave-vector magnitude 20.94k,),.

@ Re(¢(r)) ®)

FIG. 7. Field plots Re(¢(r))andIm(¢(r)) for a SPP plane
wave with wave vectors (a), (b) k = 20.94k,,X and (c), (d) k =
—20.94k,,X, incident upon a finite structure with 20 x 10 unit cells
of my = 0 lattice (y > 0) and 20 x 10 unit cells of my = 1 lattice
¥y <0).

as the emission frequency spectrum falls within the topologi-
cal gap.

Using this unidirectional edge state, one can also real-
ize nonreciprocal photon transmission as shown in Fig. 7.
Figures 7(a) and 7(b) plot the real and imaginary components
of the total field profile when a single photon in SPP plane-
wave mode is incident from the left at the same frequency
as the previous case (K, = 20.94k,,X). The incident photon
field is given by ¢ (r) = e®T/\/A, and we again plot the
dimensionless normalized field v/A¢(r). The incident photon
couples to the edge mode at the interface and gets transmitted.
Due to the absence of bulk modes at this frequency in both top
and bottom lattices, there is no transmission through the lattice
away from the interface. Figures 7(c) and 7(d) plot the real
and imaginary components of the total field when the photon
is incident from the right, in the —x direction at the same fre-
quency. Due to the unidirectional nature of the edge mode, in
this case there is no transmission through the interface. Also,
the incident plane wave can be seen to gain different phases
upon reflection from the top and bottom lattices. This happens
because the atoms in the top lattice (y > 0) scatter the m = 0
field modes whereas the atoms in the bottom lattice (y < 0)
scatter the m = 1 field modes [Eq. (12)]. The scattered field
is given by the Hankel function of order 0 and 1, respectively,
which have a 7 /2 phase difference in the far field.
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FIG. 8. (a) Band structure of a square lattice of atoms (my = 2)
with period D = 36 nm placed at a distance 7 = 5nm from the sur-
face and (b) Berry flux associated with the lowest band.

D. Larger Chern number (my = 2)

It is possible to achieve higher Chern numbers by having
atomic transitions to excited states with higher-angular-
momentum quantum number my. In the general case, one can
obtain a Chern number of £m depending upon the direction
of the applied external magnetic field. Here we illustrate this
for the case of a square lattice of three-level atoms with my =
2, i.e., excited states |£) = (2, 2, 1), and point out some of
the challenges associated with realizing topological gaps with
higher Chern numbers. For comparison, the surface plasmon
frequency (w;, = 0.52 eV/h) and the external static magnetic
field (—4.5T 2z) are kept similar to the previous case of a
mo = 1 lattice. As discussed earlier, the linewidth associated
with the scattering of the m = 2 field mode is much smaller
than that for the m = 1 mode. To enhance this linewidth
and obtain a reasonable topological gap, we place the atoms
closer to the surface (A = 5nm) and choose the quantum dot
parameters (@ = 6nm, L = 1.5nm) such that the scattering
resonance frequency lies closer to the surface plasmon fre-
quency. For these parameters, the scattering resonance occurs
at frequency corresponding to the SPP wave-vector magnitude
k ~ 32.9k,,. Note that this surface plasmon wave vector is
much larger than that required for the previous atomic lattices
and thus puts more stringent constraints on the system, since
the SPP propagation loss typically increases at higher wave-

vector magnitudes. Furthermore, opening a complete band
gap requires the first Brillouin zone edge (7 /D) to be larger
than the resonant SPP wave vector 32.9k,,. This requires
a smaller lattice period, and here we choose D = 36 nm [~
7 /(32.9k,,)]. Even with these optimized parameters, the scat-
tering linewidth and the band gap are more than an order of
magnitude smaller than that for the my = 1 lattice. The band
structure is plotted in Fig. 8(a). The lowest band is isolated by
a much smaller band gap. Similar to the case of the my = 1
lattice, transition to the |—) excited state is highly detuned
due to the Zeeman splitting, and the width of the band gap
only depends on the linewidth associated with the scattering
of the m = 2 field mode, which involves transition to the |+)
excited state. Figure 8(b) plots the Berry flux associated with
the lowest energy band and is qualitatively similar to the case
of the my = 1 lattice. The Berry flux is concentrated in a thin
ring near the Brillouin zone boundary around the resonant
frequency for the m = 2 field mode scattering. The Chern
number is —2 in this case.
IV. CONCLUSION

We have studied various 2D atomic lattices interact-
ing with a single photon in the surface plasmon polariton
mode and showed the possibility of realizing bands with
different topologies. We also demonstrated unidirectional
single-photon emission and single-photon transmission via
topologically robust edge states at the interface between two
lattices with different Chern numbers. Finally, we pointed
out how one could realize topological gaps with arbitrary
Chern number by manipulating the internal degree of freedom
(angular momentum quantum number m;) of the atoms and
also discussed some of the challenges, namely, smaller lattice
periods and interaction with shorter-wavelength plasmons, in
designing systems with higher Chern numbers.
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