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The nonlinear sigma model is a well-established theoretical tool for studies of transport and thermodynamics
in disordered electronic systems. The conventional sigma model approach for interacting systems does not
account for particle-hole asymmetry. It is therefore not suited for studying quantities that are sensitive to this
effect such as the thermoelectric transport coefficient. Here, we derive a minimal extension of the Keldysh
nonlinear sigma model tailored for two-dimensional interacting systems. We argue that this model can be used
to systematically study the combined effect of interactions and disorder on thermoelectric transport. As a first
step in this direction, we use the model to analyze the structure of the heat density-density correlation function
and calculate interaction corrections to its static part. The calculation of interaction corrections to the dynamical
part of the correlation function and the thermodynamic transport coefficient is left for future work.
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I. INTRODUCTION

The nonlinear sigma model (NLσM) formalism is a field
theoretical approach to the description of diffusive electron
dynamics. The NLσM for interacting disordered electron sys-
tems was introduced by Finkel’stein [1], building upon earlier
work on noninteracting systems [2,3]. The formalism has
since been used for numerous theoretical studies [4–22]. The
Finkel’stein model contains a small number of parameters: the
diffusion, frequency, and interaction constants. These param-
eters characterize the diffusive motion of electrons and are
closely related to transport coefficients and thermodynamic
quantities such as the the conductivity, spin susceptibility
or the specific heat [1,23,24]. At low temperatures, these
quantities acquire logarithmic corrections in two-dimensional
systems [4,6,25–28], which can be computed efficiently by
means of a renormalization group (RG) analysis [1,29–31].

In recent years, it has become clear that unlike for the
electric conductivity, not all logarithmic corrections to the
thermal conductivity are of the RG type. For a thorough anal-
ysis of this problem, the NLσM formalism was generalized to
thermal transport studies in Refs. [17–19]. These studies con-
firmed the results of a diagrammatic RG analysis [30] and also
verified the existence of additional logarithmic corrections
to the thermal conductivity [32–36]. The latter corrections
appear for systems with long-range Coulomb interactions and
arise from electronic energies that are lower than those rele-
vant for the RG corrections. In Ref. [20], the RG results for
thermal transport were be merged with the corrections origi-
nating from low energies. This step was crucial for finding the
thermal conductivity at low temperatures and for analyzing
the resulting violation of the Wiedemann-Franz law. In view
of these developments, it would be desirable to adapt the
NLσM formalism to the analysis of thermoelectric transport
phenomena as well. Thermoelectric transport, unlike electric

and thermal transport, is very sensitive to deviations from
particle-hole symmetry. Indeed, in a perfectly particle-hole
symmetric system, the thermoelectric transport coefficient
vanishes. As a consequence, theoretical studies of this co-
efficient require a higher accuracy compared to electric and
thermal transport, and the conventional NLσM [1,18] is not
suited for this purpose. In order to overcome this limitation,
we introduce here a minimal extension of the conventional
Finkel’stein model. The model is specifically tailored for two-
dimensional systems with quadratic dispersion. We argue that
this model can, for example, be used for a comprehensive
study of logarithmic corrections to the thermoelectric trans-
port coefficient in the two-dimensional disordered electron
gas. The generalized NLσM reflects the particle-hole asym-
metry of the underlying microscopic model by accounting for
energy-dependent deviations of the electron velocity from the
Fermi velocity. Specifically, the nonconstancy of the velocity
manifests itself in the form of a frequency dependence of the
diffusion coefficient that is absent in the conventional NLσM
approach. We find that the generalized model can be obtained
from the conventional Finkel’stein model by replacing the Q̂
field by Q̂ + 1

4i D
′
ε(∇Q̂)2, where D′

ε is the derivative of the
diffusion coefficient with respect to frequency.

We include two types of source fields into the derivation
of the generalized NLσM action: a scalar potential coupling
to the density and a gravitational potential coupling to the
heat density. These source fields can be used for obtaining
heat and charge densities and the heat density-density correla-
tion function from the NLσM. Knowledge of this correlation
function is sufficient for finding the thermoelectric transport
coefficient [31]. For the sake of simplicity, we consider a
model with Fermi-liquid type short-range interactions. The re-
sulting NLσM is a generalization of the model derived for the
calculation of the heat density-heat density correlation func-
tion in Refs. [17,18]. In analogy to these works, we employ

2469-9950/2021/103(12)/125422(14) 125422-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8598-0447
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.125422&domain=pdf&date_stamp=2021-03-22
https://doi.org/10.1103/PhysRevB.103.125422


GEORG SCHWIETE PHYSICAL REVIEW B 103, 125422 (2021)

the Keldysh real-time formalism [13,37–39]. We analyze the
structure of the heat density-density correlation function in the
absence of interaction corrections with the help of the gener-
alized NLσM and make contact with the result obtained from
conventional Boltzmann transport theory [40]. As a first appli-
cation to the calculation of interaction corrections, we study
the static part of the heat density-density correlation function.
Since the generalized NLσM in the presence of source fields
has a rather nontrivial structure, we perform the calculation
in two different ways, thereby testing different terms in the
model. We demonstrate that both routes lead to the same
results. The results are also consistent with the diagrammatic
analysis of Ref. [31]. Unlike the density of states in the clean
case, which is constant, the disorder-averaged density of states
in two-dimensional systems has a weak energy dependence.
In order to explore the implications of this observation we
study how the result for the heat density-density correlation
function in the ladder approximation is modified when this
energy dependence is taken into account. We argue that a
further generalization of the NLσM that includes a noncon-
stant density of states is not required for studies of the leading
interaction corrections in two-dimensional systems.

This paper is structured as follows. In Sec. II, we discuss
the structure of the heat density-density correlation function
in the ladder approximation. We analyze the role of the
frequency dependence of the diffusion coefficient and of
the density of states. In Sec. III, we introduce the general-
ized NLσM with particle-hole asymmetry and source fields,
discuss its symmetry properties, and use this formalism to re-
produce the ladder approximation for the heat density-density
correlation function in the constant density of states approxi-
mation. Section IV is devoted to the calculation of interaction
corrections to the static part of the heat density-density cor-
relation function. In Sec. V, we present the derivation of the
generalized Keldysh NLσM introduced in Sec. III. We first
restrict ourselves to noninteracting systems. This allows us to
stress the key points in a simplified setup. We then generalize
the derivation to include electron-electron interactions as well
as source fields. In Sec. VI, we address the issue of the weak
energy dependence of the disorder-averaged density of states.
We conclude in Sec. VII.

II. THE HEAT DENSITY-DENSITY CORRELATION
FUNCTION

A. General structure

In linear response, the thermoelectric transport coefficient
can be obtained from the heat current-current correlation func-
tion. An alternative route proceeds via the heat density-density
correlation function. Here, we will make use of the second
possibility and develop a formalism that allows us to study to
the retarded heat density-density correlation function

χkn(x1, x2) = −iθ (t1 − t2)〈[k̂(x1), n̂(x2)]〉T , (1)

as well as the closely related density-heat density correla-
tion function χnk (x1, x2) = −iθ (t1 − t2)〈[n̂(x1), k̂(x2)]〉T . In
Eq. (1), k̂ = ĥ − μn̂ is the heat density operator, where μ

is the chemical potential, n̂ is the density operator, x =
(r, t ) comprises spatial coordinates r and time t , and the
angular brackets denote thermal averaging. As usual, the av-

eraging over disorder configurations establishes translational
invariance: 〈χkn(x1, x2)〉dis = χkn(x1 − x2). After a Fourier
transformation, the correlation function is expected to take the
following form in the diffusive limit [31]:

χkn(q, ω) = Dnq2Dkq2χ st
kn + iLq2ω

(Dnq2 − iω)(Dkq2 − iω)
. (2)

Here, Dn and Dk are the diffusion coefficients for charge
and heat transport. These coefficients also enter the
heat density-heat density correlation function, χkk (q, ω) =
−T cDkq2/(Dkq2 − iω), where c is the specific heat,
and the density-density correlation function χnn(q, ω) =
−∂μnDnq2/(Dnq2 − iω). In Eq. (2), L is the thermoelectric
transport coefficient. This coefficient is related to the Seebeck
coefficient S as S = eL/(σT ), where e is the charge of the
electron and σ is the electric conductivity. The correlation
function is very sensitive to the order of the two limits q → 0
and ω → 0,

χkn(q = 0, ω → 0) = 0, (3)

χkn(q → 0, ω = 0) ≡ χ st
kn = −T ∂T 〈n̂〉T . (4)

Equation (3) reflects the conservation laws of energy and
particle number, while Eq. (4) relates the static part of the
correlation function to a thermodynamic susceptibility. When
k and n are both even under time reversal, χkn and χnk are
closely related, χkn(r, r′, ω) = χnk (r′, r, ω) [41]. As a con-
sequence, the equality χkn(q, ω) = χnk (q, ω) holds in the
diffusive limit.

B. Ladder approximation

For the sake of clarity, we restrict our study to a
model Hamiltonian with short-range interactions, as well as
quadratic dispersion and a white noise disorder potential
(for details, see Sec. V A). Interactions are characterized by
the Fermi liquid parameters Fρ,σ

0 for the singlet and triplet
channels. In this section, we discuss the heat density-density
correlation function χkn in the ladder approximation. In this
approximation, interaction corrections resulting from loop in-
tegrations over small momenta and frequencies of diffusion
modes are neglected. The function χnk can be treated in
analogy. It is useful to present χkn as the sum of static and
dynamical parts as

χkn(q, ω) = χ st
kn + χ

dyn
kn (q, ω), (5)

where the dynamical part is denoted as χ
dyn
kn (q, ω). In the

absence of interaction corrections, the static part of the cor-
relation function is given as

χ st,0
kn = −z0

1T ∂T n0 = −z0
1T c′

0,ε. (6)

In this relation, n0 denotes the density in the absence of
interaction corrections, the frequency-dependent specific heat
c̄0,ε = 2π2T ν̄ε/3 is related to the (disorder-averaged) density
of states ν̄ε, and z0

1 = (1 + Fρ
0 )−1 is the Fermi-liquid renor-

malization of the density vertex. Here and below, we denote
the derivative with respect to the frequency ε by a prime,
f ′
ε = ∂ε fε|ε=0.

125422-2



NONLINEAR SIGMA MODEL WITH PARTICLE-HOLE … PHYSICAL REVIEW B 103, 125422 (2021)

FIG. 1. Ladder diagrams contributing to χ
dyn,0
kn,1 (q, ω). The inter-

action amplitude �0
ρ is related to the Fermi-liquid parameter F ρ

0 as
�0

ρ = F ρ

0 /(1 + F ρ

0 ). The scalar potential ϕ and gravitational potential
η, formally introduced in Sec. V C, are source fields coupling to
the density and heat density, respectively. The ladders of dotted
(impurity) lines represent diffusons.

The two diagrams relevant for the calculation of the dy-
namical part of the correlation function are displayed in Fig. 1
and Fig. 2. The diagram in Fig. 1 has two external vertices,
one vertex symbolizing the heat density coupling to the gravi-
tational potential η, and a second one for the density coupling
to the scalar potential ϕ. In general, the heat density is rep-
resented by two distinct types of vertices in a diagrammatic
representation, one associated with the of the electrons, and
the other one associated with the interaction [18]. Postponing
a more detailed discussion to Sec. V C, the frequency vertex
corresponds to the term ψ̄ (p+)εψ (p−) in the action, where
p± = (p ± q/2, ε ± ω/2). For the calculation of the dynam-
ical part in the ladder approximation, as in Fig. 1, only the
frequency vertex is relevant, since the interaction vertex is
automatically associated with a loop integration over the fre-
quencies and momenta of the diffusion modes. The analytical
expression corresponding to Fig. 1 reads as

χ
dyn,0
kn,1 (q, ω) = −2iπz0

1
D1(q, ω)

D(q, ω)

∫
ε

ε�ε1ε2 ν̄εDε(q, ω). (7)

Here, we use the notation
∫
ε
= ∫

dε
2π

. This equation con-
tains the diffusons D(q, ω) = (Dq2 − iω)−1 and D1(q, ω) =
(Dq2 − iz0

1ω)−1, where D is the diffusion coefficient. These
diffusons appear frequently in the theory of disordered in-
teracting systems [1,4]. For our proposes, it is necessary
to introduce another type of diffuson with a frequency-
dependent diffusion coefficient,

Dε(q, ω) = 1

Dεq2 − iω
, (8)

FIG. 2. Ladder diagrams contributing to χ
dyn,0
kn,2 (q, ω).

where Dε = D + δDε. The dominant ε dependence of δDε in
two dimensions is given by δDε = τε/m, where τ is the scat-
tering time and m the electron mass. The frequency integral in
Eq. (7) originates from the product of retarded and advanced
Green’s functions adjacent to the frequency vertex. The win-
dow function �ε1ε2 = Fε1 − Fε2 , where F = tanh(ε/2T ) and
ε1/2 = ε ± ω/2, restricts the ε integration to a window of
order ω at low temperatures. In the absence of particle-hole
asymmetry, i.e., for a constant density and constant diffusion
coefficient, the ε integral in Eq. (7) vanishes, because the
integrand is odd in ε. After expanding the product νεDε to
first order in ε, we find that χ

dyn,0
kn,1 can be presented in the

form

χ
dyn,0
kn,1 (q, ω) = −T

(
c0,εiω

Dεq2 − iω

)′ Dq2 − iω

DFLq2 − iω
, (9)

where DFL = D/z0
1 and we used the relation

∫
ε
ε2�ε1,ε2 =

πT 2ω/3.
The second contribution to the dynamical part of the corre-

lation function, χ
dyn,0
kn,2 , can be written as

χ
dyn,0
kn,2 (q, ω) = χ st,0

kn Fρ
0 χ

dyn,0
nn (q, ω)

2νz0
1

, (10)

where χ
dyn,0
nn is the dynamical part of the density-density cor-

relation function in the ladder approximation. The structure of
the density-density correlation function is well known. In the
ladder approximation, its dynamical part is given by χ

dyn,0
nn =

−2νz0
1iω/(DFLq2 − iω), where ν is the single-particle density

of states. Figure 2 shows a diagrammatic representation of
χ

dyn,0
kn,2 . In this diagram, the heat density vertex is connected to

the interaction amplitude Fρ
0 by a product of two retarded or

two advanced Green’s functions. This block, which is depicted
as a black triangle, is the origin of the factor χ st,0

kn in Eq. (10).
The contribution to the dynamical part of the correlation func-
tion χ

dyn,0
kn,2 (q, ω) can be combined with the static part to give

χ st,0
kn + χ

dyn,0
kn,2 (q, ω) = −T c′

0,ε

Dq2 − iω

DFLq2 − iω
. (11)

The final result for the correlation function in the ladder
approximation, which accounts for the nonconstant density of
states and nonconstant diffusion coefficient, and comprises the
two contributions to the dynamical part displayed in Eqs. (7)
and (10), as well as the static part shown in Eq. (6), reads as

χ0
kn = −T

(
c0,εDεq2

Dεq2 − iω

)′
Dq2 − iω

DFLq2 − iω
. (12)

We see that Eq. (12) is consistent with the general form
of χkn introduced in Eq. (2), after identifying Dn = DFL and
Dk = D, and also with Ref. [31]. The relations for Dn and
Dk are also consistent with the known results for the density-
density and heat density-heat density correlation functions.
By comparison with Eq. (2), one obtains the thermoelectric
transport coefficient as L = T (c0,εDε )′, in agreement with the
Boltzmann result [40].
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C. The role of ν̄′
ε for the calculation of L

The thermoelectric transport coefficient obtained in the
previous section can be written as the sum of two terms, L =
T c0D(ν̄ ′

ε/ν + D′
ε/D). The two potential sources of particle-

hole asymmetry in our model are the ε-dependences of ν̄ε

and Dε. We see that unlike the electric and thermal con-
ductivities, the thermoelectric transport coefficient vanishes
when particle-hole asymmetry is neglected. An important
observation is that in two dimensions D′

ε/D is larger by a
factor εF τ compared to ν̄ ′

ε/ν (for details, see Sec. VI). This
is why we may take the density of states as constant when
calculating the dominant contribution to the thermoelectric
transport coefficient. We demonstrated this explicitly for the
ladder approximation. The argument also carries over to the
calculation of interaction corrections. The calculation of in-
teraction corrections is typically organized according to the
number of loop integrations over slow momenta. Each loop
integration generates an additional power of the dimensionless
resistance, which serves as a small parameter in the theory.
At each given order, corrections proportional to D′

ε are larger
than those proportional to ν̄ ′

ε. The main outcome of this dis-
cussion is that in two dimensions the leading contributions to
the thermoelectric transport coefficient can be calculated by
neglecting the ε-dependence of ν̄ε. This is the reason why
we will restrict ourselves to the constant density of states
approximation when deriving the NLσM for the calculation
of L below.

Before proceeding with the NLσM approach, we would
like to comment on a subtle point concerning the diffusion
coefficient. Besides the ε-dependence originating from δDε =
ετ/m, there is an additional dependence originating from the
ε-dependence of the scattering rate τ . Indeed, in the model
under consideration a nonconstant density of states νε also
goes hand in hand with a nonconstant scattering rate τε. As we
will discuss in Sec. VI, the self-consistent Born approximation
for the disorder induced self-energy results in the relation
τεν̄ε = const. This is why the diffusion coefficient acquires
an additional frequency dependence through the scattering
time. However, this dependence is much weaker than the one
originating from the explicit ε-dependence of δDε.

III. THE GENERALIZED NLσM

The calculation of quantities that are strongly affected
by particle-hole asymmetry requires a generalization of the
conventional NLσM formalism. Indeed, in the Finkel’stein
model the density of states and the diffusion coefficient are
frequency-independent constants. We will now introduce a
generalized NLσM that incorporates a frequency-dependent
diffusion coefficient. Motivated by the analysis of the heat
density-density correlation function in Sec. II, according to
which the frequency-dependence of the density of states re-
sults in subleading corrections to the thermoelectric transport
coefficient in two dimensions, the density of states in the
generalized model is treated as a constant. The NLσM intro-
duced below also contains gravitational and scalar potentials
in order to prepare the calculation of the heat density-density
correlation function. The derivation of the generalized model
will be presented separately in Sec. V. As a first consistency

check, we will use the model to reproduce the result for χ0
kn

stated in Eq. (12) for the case of a constant density of states.

A. The NLσM action

The action of the generalized NLσM can be written as

S0
δQ = S0,ηϕ + Sint,η + Sη + Sϕ. (13)

The first term on the right-hand side is a generalization of the
Keldysh NLσM for noninteracting systems and reads as

S0,ηϕ = iπν

4
Tr

[
D(∇X̂ )2 + 4iε̂η

ϕFL
δX̂

]
. (14)

Here, X̂ is related to the Q̂-field used in the conventional sigma
model approach as

X̂ = Q̂ + 1

4i
D′

ε(∇Q̂)2. (15)

The field Q̂(r) is a matrix in Keldysh space, which also carries
two spin and two frequency indices, and fulfills the constraint
Q̂2 = 1. It is understood that the form of the action S0,ηϕ dis-
played in Eq. (14) is accurate up to linear order in D′

ε only. The
trace operation Tr in Eq. (14) accounts for all these degrees of
freedom and also includes an integration over the coordinates
r. The generalized frequency operator ε̂η

ϕFL
includes source

fields and is defined as

ε̂η
ϕFL

= 1

2
{ε̂ − ϕ̂FL, λ̂}. (16)

In this relation, the Fermi liquid renormalization of the density
vertex is encoded in ϕ̂FL = ϕ̂/(1 + Fρ

0 ), and λ̂ = (1 + η̂)−1

contains the gravitational potential η̂. The frequency operator
ε̂ acts as (ε̂Q̂)ε1ε2 = ε1Q̂ε1ε2 . The matrix structure of the source
fields in Keldysh space is defined as follows: ϕ̂l = �k=1,2ϕ

l
k γ̂k

(and, correspondingly, for λ̂ and η̂), where γ̂1 = σ̂0 and γ̂2 =
σ̂1 are Pauli matrices in Keldysh space. In addition, ϕ̂ is also
a matrix in frequency space, according to (ϕ̂r )εε′ = ϕ̂r,ε−ε′ ,
and the same applies to λ̂ and η̂. The matrix Q̂ takes the
form Q̂ = Û σ̂3

ˆ̄U , where Û ˆ̄U = 1 and σ̂3 is the third Pauli
matrix in Keldysh space. The second term in Eq. (14) contains
δX̂ = Q̂ − σ̂3 in the form of δX̂ = ûδX̂ û. Here, the matrix û
contains information about the occupation of states,

ûε =
(

1 Fε

0 −1

)
, ûε = û−1

ε . (17)

In order to make contact with the conventional model, it is
useful to write the action S0,η,ϕ displayed in Eq. (15) in terms
of the matrix field Q̂ as S0,η,ϕ = S(1)

0,η,ϕ + S(2)
0,η,ϕ , where

S(1)
0,ηϕ = iπν

4
Tr

[
D̂ε̂

η
ϕFL

(∇Q̂)2 + 4iε̂η
ϕFL

δQ̂
]
,

S(2)
0,η,ϕ = − πν

8
DD′

εTr[∇2Q̂(∇Q̂)2]. (18)

It is instructive to first discuss the form of S0,η,ϕ in the ab-
sence of the source fields ϕ and η (for ε̂η

ϕFL
→ ε̂). Then,

the action differs from the conventional Keldysh NLσM for
noninteracting system by (1) the ε̂ dependence of the diffusion
coefficient, D̂ε̂ = D + τ

m ε̂, and (2) the presence of the higher
order gradient term. We already saw in Sec. II that the fre-
quency dependence of the diffusion coefficient is crucial for
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the calculation of the thermoelectric transport coefficient. The
importance of the higher gradient term in S0 does not reveal
itself in the ladder approximation for the heat density-density
correlation function. This term gives rise to (generalized)
Hikami-box diagrams, however, and is therefore expected to
become important for the calculation of interaction correc-
tions to the dynamical part of the correlation function.

The interaction term in the action takes the form

Sint,η = −π2ν

8

∫
r,εi

{
tr[γ̂i(λ̂δX̂ )ε1ε2 ]γ̂ i j

2 �0
ρ tr[γ̂ jδX̂ ε3ε4

]

+ tr[γ̂iσ(λ̂δX̂ )ε1ε2 ]γ̂ i j
2 �0

σ tr[γ̂ jσδX̂ ε3ε4
]
}
δε1−ε2,ε4−ε3 ,

(19)

where we abbreviated δε,ε′ = 2πδ(ε − ε′). The amplitudes
�0

ρ/σ are related to the Fermi liquid amplitudes as follows:
�0

ρ = Fρ
0 /(1 + Fρ

0 ) and �0
σ = F σ

0 /(1 + F σ
0 ). The presence of

λ̂ in the action (19) reflects the fact that the heat density
includes a contribution from the interaction itself. An anal-
ogous term was found in the context of the NLσM approach
to the calculation of the heat density-heat density correlation
function in Refs. [17,18], albeit with the matrix Q̂ instead
of X̂ .

As far as the last two contributions to S0
δQ in Eq. (13)

are concerned, they describe the coupling of the quantum
component of the potentials, ϕ2 and η2, to the noninteracting
density n0 and heat density k0, respectively,

Sη = −2k0

∫
x
η2(x), Sϕ = −2n0

∫
x
ϕ2(x). (20)

The gravitational potentials η1 and η2 [42,43] in combina-
tion with the scalar potentials ϕ1 and ϕ2 allow us to formulate
a linear response theory for the thermoelectric transport. The
correlation functions χkn in the diffusive limit can be obtained
from the Keldysh partition function Z = ∫

DQ exp(iS0
δQ) as

χkn(x1, x2) = i

2

δ2Z
δη2(x1)δϕ1(x2)

∣∣∣∣
�η=�ϕ=0

, (21)

while χnk can be found by switching the roles of η and ϕ. One
can also calculate the heat density as

〈k̂〉T = 〈kcl (x)〉 = i

2

δZ
δη2(x)

∣∣∣∣
�η=�ϕ=0

, (22)

and the charge density by differentiating with respect to ϕ2. In
these equations, we wrote �η = (η1, η2)T and �ϕ = (ϕ1, ϕ2)T .

Equations (14) and (19) are the main results of this paper.
We see that particle-hole asymmetry can be incorporated into
the conventional NLσM through the replacement Q̂ → X̂ . It
is worth noting that effective potential ϕ̂FL couples to the field
δX̂ in the action. Therefore, δX̂ describes density fluctuations.

B. Particle-hole asymmetry

In the absence of sources and for a constant diffusion coef-
ficient, Eq. (13) reduces to the conventional Keldysh NLσM
action SF [Q̂] for interacting systems in the unitary symmetry
class. This action is invariant under a certain transformation
of the Q̂ matrices. Indeed, SF [Q̂] = SF [Q̂′] holds for

Q̂′
ε1ε2

= −σ2σ̂1Q̂t
−ε1,−ε2

σ̂1σ2, (23)

where σ̂1 is a Pauli matrix in Keldysh space, σ2 acts in spin
space, and the transposition in Q̂t operates on Keldysh space,
on spin indices, and on frequencies (a similar transformation
was used in Ref. [44]). The saddle point matrix σ̂3 and the
matrix û are also invariant under this transformation, σ̂ ′

3 = σ̂3,
û′ = û.

To understand this observation it is instructive to study
the effect of the transformation (23) on the electronic
Green’s function, which is connected to Q̂ via the saddle
point equation. When applying this transformation to Ĝ0 =
diag(GR

0 , GA
0 ), where GR

0 and GA
0 are retarded and advanced

Green’s functions and to the equilibrium Keldysh Green’s
function Ĝ = ûĜ0û, the “particle” Hamiltonian k̂ = ĥ0 − μ

transforms into the “hole” Hamiltonian k̂′ = −(iσ2)k̂T (iσ2)−1

by a combination of a sign change and a time-reversal oper-
ation [45]. The invariance of the conventional NLσM action
under the particle-hole transformation (23) is a consequence
of the approximations used during the derivation, for which
the velocity and the density of states are treated as constant.
The approximation of a constant velocity has been avoided for
the derivation of the generalized model, and this is why (13)
incorporates particle-hole asymmetry.

The generalized NLσM action can be broken down to
individual pieces that are either even, Si[Q̂′] = Si[Q̂], or odd,
Si[Q̂′] = −Si[Q̂], under the transformation (23). As already
noted, the conventional NLσM action SF , which is obtained
from S0

δQ by setting η = ϕ = D′
ε = 0, is even under transfor-

mation (23). The source terms for D′
ε = 0 transform as

Tr[{ε̂ − ϕ̂FL, λ̂}δQ̂′] = Tr[{ε̂ + ϕ̂FL, λ̂}δQ̂], (24)

and Sint,η[Q̂′] = Sint,η[Q̂]. Since the generalized NLσM is ob-
tained from the conventional one by the replacement Q̂ →
X̂ = Q̂ + 1

4i D
′
ε(∇Q̂)2, each term in the conventional model

has a partner containing D′
ε. One can see that the terms with

D′
ε acquire an additional minus sign under the transformation

Q̂ → Q̂′.
These observations have important consequences for the

calculation of correlation functions. The heat density-heat
density and the density-density correlation function are ob-
tained as second derivatives of the Keldysh partition function
with respect to the source fields η and ϕ, respectively. There-
fore, the sign change in Eq. (24) is not relevant and the in-
clusion of particle-hole asymmetry is not required for the
calculation of these correlation functions. By contrast, the
calculation of the heat density-density correlation function
χkn requires derivatives with respect to both ϕ and η [com-
pare Eq. (21)]. Due to the sign change in the source term
in Eq. (24), a nonvanishing result for χkn can be obtained
only by including terms with D′

ε 	= 0, i.e., with particle-hole
asymmetry.

The symmetry considerations presented above are a valu-
able guide for the derivation of the generalized NLσM. They
allow us to distinguish terms that share the symmetry of the
conventional NLσM from those terms that change the sym-
metry and therefore need to be included into the generalized
model.
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C. χ0
kn from the generalized NLσM

We will now discuss how the correlation function χkn in
the ladder approximation can be obtained from the general-
ized NLσM. In the absence of interaction corrections, the
static part of the correlation function vanishes and only the
dynamical part needs to be considered. This is an immediate
consequence of the constant-density approximation used for
the derivation of the NLσM. Interaction corrections arising
from momentum and frequency integrations over diffusion
modes are neglected in the ladder approximation. The lad-
der can be obtained by treating fluctuations near the saddle
point Q̂ = σ̂3 in the NLσM in the Gaussian approximation.
In order to derive the Gaussian action, one needs to choose a
parametrization for the matrix Û . In this paper, we will work
with the exponential parametrization, for which Û = e−P̂/2

with the additional constraint {P̂, σ̂3} = 0. Details concerning
the parametrization and the contraction rules for averages with
respect to the Gaussian action are presented in Appendix A.

The calculation is simplified by the fact that vertices orig-
inating from the interaction part Sint,η or the gradient term
in S0,ηϕ do not contribute in the ladder approximation. Only
the source fields contained in the second term of the action
S0,ηϕ in Eq. (18) and a first-order expansion of δQ̂ in P̂ are
relevant for the vertices. Using the contraction rule (A5) stated
in Appendix A, one obtains

χ̃
dyn,0
kn,1 (q, ω) = −2iπνz0

1
D1(q, ω)

D(q, ω)

∫
ε

ε�12Dε(q, ω). (25)

The diagrammatic representation is shown in Fig. 1. By
comparison with Eq. (7), we see immediately that χ̃

dyn,0
kn,1 is

obtained from χ
dyn,0
kn,1 in the constant density of states approxi-

mation, as expected. The contribution χ
dyn,0
kn,2 of Eq. (10) has no

analog here because it is proportional to ν ′
ε. [In Sec. VI below,

we will explain how this term can included into the general-
ized NLσM.] Since the static part of the correlation function
also vanishes in the constant density of states approximation,
Eq. (25) represents the only nonvanishing contribution to χ̃0

kn.
After performing the integration, the result can be written in
the form

χ̃0
kn(q, ω) = −T c0∂ε

[
Dεq2

Dεq2 − iω

]
Dq2 − iω

DFLq2 − iω
. (26)

This result can also be obtained from the more general
Eq. (12) in the limit c0,ε → c0 = 2π2νT/3, i.e., for a constant
density of states. By comparing the result χ̃0

kn(q, ω) to the
general form of the correlation function stated in Eq. (2),
we find L = T c0D′ [and, obviously, χ st,0

kn = 0]. The resulting
Seebeck coefficient is eS = π2T/3εF , in agreement with the
Boltzmann result for two-dimensional systems. Interestingly,
in the absence of interaction corrections, the result is indepen-
dent of the interactions.

IV. INTERACTION CORRECTIONS TO THE STATIC PART
OF THE CORRELATION FUNCTION

As a further application of the NLσM formalism, we cal-
culate interaction corrections to the static part of the heat
density-density correlation function, χ st

kn. The structure of the
NLσM action (13) in the presence of source fields is quite

intricate. This is why we calculate the interaction corrections
to the static part in two different ways, which will provide a
valuable test of the structure of the model. First, in Sec. IV A,
we make use of the relation of the static part to certain thermo-
dynamic susceptibilities. The starting point for this approach
is the relation

χ st
kn =T

V
∂T ∂μ�, (27)

where � is the grand canonical potential. The second deriva-
tive on the right-hand side may be interpreted in two ways,

T

V
∂T ∂μ� = − T ∂T 〈n̂〉T = −∂μ〈k̂〉T − 〈n̂〉T . (28)

The thermal averages 〈k̂〉T and 〈n̂〉T can be calculated straight-
forwardly in our formalism, as explained in Sec. III A. As a
by-product, we will verify that the Maxwell relation stated
on the right-hand side of Eq. (28) is reproduced. This first
approach relies on terms of first order in the source fields;
see Eq. (22). As an alternative route to the calculation of the
correlation function, we will study the limit χ st

kn = χkn(q →
0, ω = 0) directly in Sec. IV B. This approach makes use of
terms that are of second order in the source fields; see Eq. (21).

A. Calculation of interaction corrections
to the thermodynamic susceptibilities

We will first make use of the relation χ st
kn = −T ∂T 〈n̂〉T for

the calculation of the static part of the correlation function.
The diffusion mode contribution to the density ndm can be
obtained with the help of the NLσM action (13). After per-
forming the differentiation with respect to ϕ2, one obtains the
expression

ndm(x) = −πνz0
1

2
tr
[
γ̂2δX̂tt (r)

]
. (29)

Here, and in the following, averaging with respect to the
NLσM action in the absence of sources is implied. For the
perturbative calculation of the diffusion mode contribution,
δX̂ in Eq. (37) should be expanded to second order in the
generators P̂. We split the resulting terms into two parts,
ndm = ndm

1 + ndm
2 , where

ndm
1 = −πνz0

1

4
tr
[
γ̂2σ̂3P̂2

tt

]
, (30)

ndm
2 = −πνiz0

1

8
D′tr

[
γ̂2(∇P̂)2

tt

]
. (31)

These expressions can be averaged with the help of Eqs. (A5)
and (A6). Figure 3 provides a diagrammatic representation of
the resulting contributions. The following identities are useful
for the calculation:

1 − Fε+ ω
2
Fε− ω

2
= Bω(Fε+ ω

2
− Fε− ω

2
), (32)

∫
ε

(Fε+ ω
2

− Fε− ω
2

) = ω

π
, (33)

and 1 − F2
ε = 2TF ′

ε, where Bω = coth ω
2T is the bosonic

equilibrium distribution function. The calculation shows that
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FIG. 3. The diffusion mode contribution to the heat density and
the charge density. Rectangles symbolize the scattering amplitudes;
rescattering is either in the singlet channel with amplitudes �ρ or in
the triplet channel with amplitudes �σ . Ladders of dotted lines stand
for the bare diffusons D or Dε . The terms kdm

ε,1 and kdm
ε,2 are symbolized

by the same diagram labeled as kdm
ε .

only ndm
2 gives a contribution, which leads us to

ndm = z0
1

2

∫
q,ω

ωBωD′
εq2D

(
�0

ρD1 + 3�0
σD2

)
. (34)

The relation D−1
1,2 − D−1 = iω�ρ,σ was used in obtaining this

result. Making use of the identity T ∂TBω = −ω∂ωBω, we
further obtain

−T ∂T ndm = z0
1

2

∫
q,ω

ω2∂ωBωD′
εq2D

(
�0

ρD1 + 3�0
σD2

)
. (35)

The factor ∂ωBω in Eq. (43) constrains the frequency ω to be
of the order of T . This allows us to neglect all frequencies
in the diffusion propagators D, D1, and D2 in the expression
for −T ∂T ndm. The remaining logarithmic in integral in q
then acquires the coefficient �0

ρ + 3�0
σ . Using the integral∫

ω
ω2∂ωBω = −2πT 2/3, and the expression for the specific

heat c0 = 2π2νT/3, we find

χ st,dm
kn = −T ∂T ndm = T z0

1c0δzD′/D. (36)

Here, δz is the known result for the correction to the frequency
renormalization z at first order in the small parameter ρ ≡
[(2π )2νD]−1, namely, δz = − 1

2ρ(�0
ρ + 3�0

σ ) log 1/T τ . Not-
ing that ∂μρ = −z0

1ρD′
ε/D, the result may also be written

as χ st,dm
kn = −T c0∂μz = −T ∂μc, where c is the specific heat

including interaction corrections and the μ dependence of the
density of states has been neglected in the last equality.

We proceed by confirming the Maxwell relation stated in
Eq. (28) in the context of the NLσM approach. This requires
the knowledge of the diffusion mode contribution to the heat
density kdm. We perform the differentiation of the Keldysh

partition function with respect to η2 to obtain

kdm(x) = −πνi

4
tr[γ̂2(∂t − ∂t ′ )t ′=tδX̂tt ′ (r)]

− π2ν

16

2∑
i=1

3∑
l=0

tr[γ̂iσ
lδX̂tt (r)]tr[γ̂iσ

lδX̂tt (r)]

×diag
(
�0

ρ, �
0
σ , �0

σ , �0
σ

)
ll
. (37)

As for the calculation of the density, δX̂ in Eq. (37) needs to be
expanded to second order in P̂. For the sake of the discussion,
we distinguish three contributions,

kdm
ε,1 = −πνi

8
tr
[
γ̂2(∂t − ∂t ′ )t ′=t σ̂3P̂2

tt ′ (r)
]
, (38)

kdm
ε,2 = πνD′

16
tr
[
γ̂2(∂t − ∂t ′ )t ′=t (∇P̂)2

tt ′ (r)
]
, (39)

kdm
� = −π2ν

16

2∑
i=1

3∑
k=0

tr
[
γ̂iσk σ̂3P̂tt (r)

]
tr

[
γ̂iσk σ̂3P̂tt (r)

]

×diag
(
�0

ρ, �
0
σ , �0

σ , �0
σ

)
kk

. (40)

An illustration of these contributions is shown in Fig. 3. Upon
averaging with the Gaussian action, we obtain the leading
contributions as

kdm
ε,1 = −1

2

∫
q,ω

ωBω[D − D1 + 3(D − D2)], (41)

kdm
� = −1

2

∫
q,ω

ωBω

(
�0

ρD1 + 3�0
σD2

)
, (42)

whereas kdm
ε,2 = 0. After adding these two terms one obtains

the total collective mode contribution to the heat density
as [18]

kdm = kdm
ε,1 + kdm

�

= 1

2

∫
q,ω

ωBω

[
z0

1D1 − D + 3
(
z0

2D2 − D
)]

. (43)

This expression coincides with previously obtained results
[18,35].

With the results for ndm and kdm at hand, it is convenient
to write the Maxwell relation for the diffusion mode contribu-
tions in the form

(1 − T ∂T )ndm = −∂μkdm. (44)

We first study the left-hand side of this equation based on
Eq. (34). After using the relation T ∂TBω = −ω∂ωBω, a partial
integration in ω can be performed to find

(1 − T ∂T )ndm

= − z0
1

2

∫
q,ω

D′q2ωBω(1 + ω∂ω )
[
D

(
�0

ρD1 + 3�0
σD2

)]
.

(45)

We next turn to the right-hand side of Eq. (44). The dif-
ferentiation of kdm, Eq. (43), with respect to μ can easily
be performed with the help of the relation ∂μD = z0

1∂εDε

[31]. By comparing the result to (45), one establishes the
relation (44).
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FIG. 4. Diagrams contributing to χ st,ε
kn .

Let us briefly comment on a technical aspect of the cal-
culation. For the sake of convenience, physical quantities in
this paper are expressed through derivatives with respect to
the quantum component of the source fields. Equation (22)
is a typical example. In this way, the Keldysh component
of the Green’s function is generated, and, as a conse-
quence, the distribution functions F and B enter the integrals
[13]. Strictly speaking, the lesser component of the Green’s
function G< = (GK − GR + GA)/2 and, correspondingly, the
Fermi distribution nF = (1 − F )/2 and Planck distribution
nP = (B − 1)/2, should be used instead. When calculating
thermodynamic quantities it is sometimes useful to remember
the distinction when interpreting the results. For example,
upon symmetrization in ω and replacing B → 2nP, Eq. (43)
reads as

kdm =
∫

q,ω>0
ωnP(ω)Dq2

× [
z1D1D̄1 − DD̄ + 3

(
z0

2D2D̄2 − DD̄
)]

, (46)

where D̄ is the advanced diffuson, and Eq. (45) should be
understood in a similar way.

B. Calculation of interaction corrections to the static
part of the correlation function

We now present a direct calculation of the static part
of the correlation function χ st

kn. According to Eq. (21), χ st
kn

can be obtained by differentiating the heat density kϕ1 (x) =
(i/2)δZ/δϕ2(x) with respect to the classical component of
the scalar potential ϕ1: χ st

kn = ∂kdm
ϕ1

/∂ϕ1, where ϕ1 may be
taken as constant. Therefore, kϕ1 (x) needs to be found in
the presence of ϕ1. One obtains kdm

ϕ1
= kdm

ϕ1,ε
+ kdm

ϕ1,�
+ kdm

ϕ1,n,
where

kdm
ϕ1,ε

(x) = − πνi

4
tr[γ̂2(∂t − ∂t ′ )t ′=tδX̂tt ′ (r)], (47)

kdm
ϕ1,�

(x) = − π2ν

16

2∑
i=1

3∑
l=0

tr[γ̂iσ
lδX̂tt (r)]tr[γ̂iσ

lδX̂tt (r)]

× diag(�ρ, �σ , �σ , �σ )ll , (48)

kdm
ϕ1,n(x) =πνz0

1

2
tr[ϕ1γ̂2δX̂tt (r)]. (49)

We label the contributions to χ st
kn as χ st,ε

kn , χ st,�
kn , and χ st,n

kn

and display the corresponding diagrams in Figs. 4, 5, and
6, respectively. The term kdm

ϕ1,n depends on the potential ϕ1

explicitly. Therefore, averaging can be performed with the ϕ1-
independent part of the action. By comparison with Eq. (29) it
is immediately clear that χ st,n

kn = −ndm. The other two terms,

FIG. 5. Diagrams contributing to χ st,�
kn .

kdm
ϕ1,ε

and kdm
ϕ1,�

, have an implicit ϕ1-dependence due to the
averaging with respect to the ϕ1-dependent action. We need
to expand the expressions for kdm

ϕ1,ε
and kdm

ϕ1,�
and the action

up to second order in the generators P̂. In order to calculate
the contributions arising from the differentiation ∂ϕ1 , it is
instructive to note that for ϕ2 = 0, as relevant here, and due to
the relation tr[δQ̂] = 0, the potential ϕ1 enters the action only
in the combination ϕ1tr[(∇P̂)2]. Another useful observation is
that at second order in the generators P̂ the interaction part of
the action becomes independent of the diffusion coefficient,
and so does the expression for kdm

ϕ,� before averaging. We can
therefore perform the averages for kdm

ϕ,ε and kdm
ϕ,� in Eq. (47) and

Eq. (48) with the help of the action taken at ϕ1 = 0, if we trade
the differentiation with respect to ϕ1 for a differentiation with
respect to (minus) the chemical potential μ. The chemical
potential, in turn, enters the action only through the diffusion
coefficient. This argument allows us to immediately obtain the
relation χ st,ε

kn + χ st,�
kn = −∂μkdm. As a consequence, the total

diffusion mode contribution to the static part of the correlation
function reads as

χ st,dm
kn ≡ χ st,ε

kn + χ st,�
kn + χ st,n

kn = −∂μkdm − ndm

= −T ∂T ndm, (50)

where the last equality was already established in Sec. IV A.
We therefore conclude that both routes to the calculation the
interaction corrections of χ st

kn presented above give the same
result, χ st,dm

kn = −T ∂μc, where c is the specific heat. This
result is in agreement with Ref. [31], where a thermodynamic
approach was used.

V. DERIVATION OF THE GENERALIZED NLσM

In this section, we present the derivation of the the gener-
alized NLσM discussed in Sec. III. In Sec. V A, we introduce
the electronic action that serves as a starting point for the
derivation. Then, for the sake of clarity, we first focus on
the NLσM for the noninteracting case in Sec. V B before
including interactions and source fields in Sec. V C.

FIG. 6. Diagrams contributing to χ st,n
kn .
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A. Model

Starting point for our considerations is action

Sk[ψ†, ψ] =
∫
C

dt
∫

r
(ψ†i∂tψ − k[ψ†, ψ]). (51)

This action is defined on the Keldysh time contour C [13,37–
39], which consists of a forward (+) and a backward branch
(−). In Eq. (51), the heat density is defined as k = h − μn,
where h, μ, and n are the Hamiltonian density, chemical
potential, and particle density, respectively. Further, ψ =
(ψ↑, ψ↓), ψ† = (ψ∗

↑, ψ∗
↓ ) are Grassmann fields with spin up

and spin down components.
The Hamiltonian density h consists of two parts, h = h0 +

hint , where

h0(x) = 1

2m
∇ψ†

x ∇ψx + ψ†
x udis(r)ψx, (52)

hint (x) = 1

4
n(x)(F ρ

0 /ν)n(x) + s(x)(F σ
0 /ν)s(x). (53)

The disorder potential is chosen as delta-correlated white
noise characterized by 〈udis(r)udis(r′)〉 = 1

2πντ
δ(r − r′) and

〈udis(r)〉 = 0. The angular brackets symbolize averaging over
different realizations of the disorder potential. We will assume
that disorder is weak in the sense that εF τ  1, where εF is
the Fermi energy. In Eq. (53), we introduced the following ex-
pressions for the number and spin densities: n(x) = ψ†

x σ0ψx,
and s(x) = 1

2ψ†
x σψx. The Pauli matrices σ l for l ∈ {0, 1, 2, 3}

act in spin space (↑,↓). For the sake of simplicity, we re-
strict ourselves to a short-range interaction model. Long-range
Coulomb interactions can be included into the formalism
straightforwardly following Ref. [19].

B. NLσM for noninteracting systems

Following standard steps in the derivation of the Keldysh
NLσM, (1) disorder average, (2) Hubbard-Stratonovich trans-
formation of the resulting four-fermion term with the matrix
field Q̂ = ûQ̂û, (3) saddle point approximation Q̂ → σ̂3, and

(4) inclusion of fluctuations Q̂ = Û σ̂3
ˆ̄U with Û ˆ̄U = 1, as

described in Appendix B, the electronic part of the action can
be presented in the form

S[ ��†, ��] =
∫

��†
(
Ĝ−1 + ˆ̄U

[
Ĝ−1

0 , Û
]) ��. (54)

In this equation, we introduced the inverse of the disorder-
averaged Green’s function, Ĝ−1 = Ĝ−1

0 + i
2τ

σ̂3, where Ĝ0 =
diag(GR

0 , GA
0 ) is a diagonal matrix in Keldysh space, and GR

0
and GA

0 are the noninteracting retarded and advanced Green’s

functions. The combination ˆ̄U [Ĝ−1
0 , Û ] contains slow gradi-

ents of the fields Û and Û , as well as small differences of
their frequency arguments. In order to make those explicit, we
introduce the fields

V̂ i = ˆ̄U∇ iÛ , Ê = ˆ̄U [ε̂, Û ]. (55)

Using this notation, we can write the action as

S[ ��†, ��]

=
∫

��†

(
Ĝ−1 + Ê + 1

2m
[V̂ i−→∇ i − ←−∇ iV̂ i + V̂ iV̂ i]

)
��.

(56)

A summation in the vector index i is implied.
The derivation of the NLσM proceeds via an expansion in

the slow fields Ê and V̂ i. The conventional model is obtained
by truncating the expansion at the first order in Ê and at the
second order in V̂ i. The resulting sigma model action takes
the form S = πνi

4 Tr[D(∇Q̂)2 + 4iε̂Q̂], where D = v2
F τ/d is

the diffusion coefficient in d dimensions defined with the help
of the Fermi velocity vF . From now on we will restrict the
discussion to the two-dimensional case d = 2.

The expansion in the slow fields requires the evaluation
of certain momentum integrals over products of fermionic
Green’s functions. This integration is simplified by the fact
that due to the presence of the slow modes Û and ˆ̄U all the
fermionic frequencies lie within a small energy shell of order
1/τ around the Fermi surface. In the conventional derivation,
it is therefore sufficient to neglect the frequency arguments
of the Green’s functions entirely. Indeed, a perturbative ex-
pansion in those frequencies gives rise to terms that are small
in the parameter ω/εF , where ω is a typical frequency. For
our purposes, however, it is crucial to account for such terms,
since they encode the particle-hole asymmetry that will render
the observables of interest finite. In order to illustrate this
point, it is instructive to inspect the term arising at second
order in the expansion in V̂ i,

δSV2 = −iπν

∫
ε1,ε2,r

Dεtr
[
V̂ i⊥

ε2,ε1
V̂ i⊥

ε1,ε2

]
. (57)

In this formula, we used the notation Â⊥ = 1
2 [Â, σ̂3]σ̂3, where

Â is a matrix in Keldysh space, and we wrote Dε = D + τ
m ε

with ε = (ε1 + ε2)/2. The second term in the expression for
the diffusion coefficient Dε is smaller than the leading term by
a factor of ε/εF . The gradient term in the conventional sigma
model action is obtained by neglecting the ε-dependence of
the diffusion coefficient and using the identity tr[V̂ i⊥V̂ i⊥] =
− 1

4 tr[(∇Q̂)2].
The result (57) is not satisfactory, since it does not allow us

to write the action in terms of the field Q̂. This shortcoming
can be corrected by including additional terms in the slow
mode expansion which give contributions of the same order.
Relevant contributions are either linear in both Ê and V̂ i, in
which case an additional expansion in coordinates is required,
or of second order in V̂ i and first order in Ê . These terms are
illustrated in Fig. 7. The part of the action in Eq. (57) that
accounts for the frequency-dependent part of the diffusion
coefficient is proportional to tr[ε̂V̂⊥,iV̂⊥,i]. After including
the contributions shown in Fig. 7, this term is replaced by
tr[(ε̂ + Ê )V̂⊥,iV̂⊥,i] = − 1

4 tr[ε̂(∇Q̂)2]. After adding the lead-
ing contribution to the gradient term in the NLσM, which is
proportional to D [cf. Eq. (57)] and the term obtained from the
linear expansion in Ê , we arrive at the action

S1[Q̂] = iπν

4
Tr[D̂ε̂(∇Q̂)2 + 4iε̂Q̂] (58)
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FIG. 7. Diagrammatic representation of the slow mode expan-
sion resulting in the generalized NLσM in Eq. (58). The diagrams
illustrate traces in Keldysh space. An integration over fast momenta p
is implied. Slow mode matrices are symbolized by dark squares; the
symbol ⊥ labels matrices that are off-diagonal in Keldysh space, ‖ la-
bels diagonal matrices. The matrix Green’s function Ĝ0 = (GR

0 , GA
0 )

contains retarded and advanced Green’s functions on its diagonal, so
that all traces contain at least one retarded and one advanced Green’s
function. The momentum vertex in (c) arises due to the expansion of
E in coordinates.

with D̂ε̂ = D + τ
m ε̂. The inclusion of the ε-dependent part

of the diffusion coefficient encodes the deviations of the
single-particle energy from the Fermi energy (and the ve-
locity from the Fermi velocity) in the NLσM language. In
order to complete the derivation of the generalized NLσM for
noninteracting systems, we also need to include a term with
four gradients into the action. Such a term is obtained from
the expansion in the slow modes V̂ i up to fourth order. The
calculation is similar to the expansion in V̂ i and E described
above (for details see Appendix C). The resulting term in the
action takes the form

S2[Q̂] = −πν

8
DD′

εTr[∇2Q̂(∇Q̂)2]. (59)

This term must be treated on the same footing as the contri-
bution proportional to D′

ε in Eq. (58). Indeed, the latter term
is smaller by a factor of D′

εq2 compared to the frequency term
in the conventional NLσM (where q is a typical momentum
characterizing the diffusion process). Likewise, S2 is smaller
by a the same factor D′

εq2 compared to the gradient term in
the conventional model.

By combining the two contributions displayed in Eqs. (58)
and (59), we obtain the generalized NLσM for noninteracting
systems as S[Q̂] = S1[Q̂] + S2[Q̂]. The generalized model can
conveniently be formulated with the help of the matrix X̂
introduced in Eq. (15),

S[Q̂] = iπν

4
Tr[D(∇X̂ )2 + 4iε̂X̂ ]. (60)

This NLσM action is the main result of this section. The
model is accurate up to leading order in the particle-hole
asymmetry terms. The inclusion of the particle-hole asymme-
try amounts to the replacement Q̂ → X̂ in the conventional
NLσM.

In fact, this innocent-looking extension of the sigma model
action has profound consequences. Equipped with the relevant
source fields, the model allows for the calculation of quanti-
ties such as the thermoelectric transport coefficient that are
beyond the reach of the conventional NLσM. In this work, we
study a model in the unitary symmetry class. An extension of
the derivation to, for example, the orthogonal or symplectic
symmetry classes is beyond the scope of this work.

A comment is in order here. The expansion that lead to
Eq. (58) also generates terms that are small in the parame-
ter ωτ compared to the leading term in Eq. (57), but larger
by a factor εF τ compared to the ε-dependent correction in
this equation. Such terms give a contribution of the form
δS ∼ ντTr[ε̂Q̂D(∇Q̂)2] to the action. This is merely a higher
order contribution to the gradient expansion of (56) which
does not introduce particle-hole asymmetry. Indeed, one can
interpret it as a small correction to the tr[εQ̂]-term which
shares its symmetries with respect to the frequency structure.
The formal symmetry argument presented in Sec. III B leads
to the same conclusion. Indeed, Tr[ε̂Q̂D(∇Q̂)2] is even under
the transformation defined in Eq. (23). In a similar vein, the
expansion up to fourth order in slow gradients also produces
a term that is larger than S2 by a factor of εF τ . However, this
term contains an even number of Q̂ matrices, is even under
the transformation (23), and may therefore be neglected since
it does not introduce particle-hole asymmetry into the model.

C. NLσM with interactions and source fields

We now discuss how the derivation of the NLσM presented
in Sec. V B needs to be modified in order to accommodate in-
teractions and source fields. In order to describe interactions,
we add the interaction part hint of Eq. (53) to the Hamiltonian
density and study h = h0 + hint. We further include the source
terms

Sη = −2
∫

x[η2(x)kcl (x) + η1(x)kq(x)], (61)

Sϕ = −2
∫

x[ϕ2(x)ncl (x) + ϕ1(x)nq(x)]. (62)
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In order to be able to calculate χkn and χnk in the Keldysh
NLσM approach, we first define the classical (cl) and
quantum components (q) of the heat density and den-
sity symmetrized over the two branches of the Keldysh
contour, kcl/q = 1

2 (k+ ± k−), and ncl/q = 1
2 (n+ ± n−), respec-

tively [13]. Using these definitions, the retarded correlation
functions can be obtained as χkn(x1, x2) = −2i〈kcl (x1)nq(x2)〉
and χnk (x1, x2) = −2i〈ncl (x1)kq(x2)〉. The angular brackets
symbolize averaging is with respect to the action.

The interaction terms in the action resulting from hint can
be decoupled with the help of bosonic Hubbard-Stratonovich
fields ϑ l

+ and ϑ l
− on forward and backward paths of the

Keldysh contour. Then, after performing the Keldysh rotation
[Eq. (B1) in Appendix B], the action can be presented in the
following form:

S[ ��†, ��, �θ, η̂]

=
∫

x

��†
[
i∂t − [udis − μ](1 + η̂) + θ̂ lσ l − ϕ̂

] ��

−
∫

x

1

2m
∇ ��†(1 + η̂)∇ �� +

∫
x

�θT γ̂2

1 + η̂
f −1�θ. (63)

Here, we introduced so-called classical (cl) and quantum (q)
components of the fields θ l

cl/q = (ϑ l
+ ± ϑ l

−)/2 [13], where
l = 0 stands for the singlet channel, and l ∈ {1, 2, 3} for three
triplet-channel components. The fields θ l

cl/q are sometimes

grouped into an eight-component vector �θ with components
θ l

1 = θ l
cl and θ l

2 = θ l
q. The interaction potentials for the sin-

glet and triplet channels are contained in the matrix f =
diag(Fρ

0 , F σ
0 , F σ

0 , F σ
0 )/2ν.

The next steps in the derivation of the NLσM are the
disorder average, and the decoupling with the matrix field Q̂.
The form of the action in Eq. (63) is inconvenient for this
purpose, because the gravitational potential enters the disorder
term. In order to avoid this complication, we introduce the
following transformation of the fermionic fields: �� →

√
λ̂ ��

and ��† → ��†
√

λ̂, where λ̂ = 1/(1 + η̂) [18,36]. Then, the
action can be written as

S[ ��†, ��, �θ, �η] = 1

2

∫
x

��†(iλ̂
−→
∂ t − i

←−
∂ t λ̂) ��

−
∫

x

��†(Okin + udis − μ − λ̂θ̂ lσ l + λ̂ϕ̂) ��

+
∫

x

�θT (γ̂2λ̂) f −1�θ + SJ . (64)

Here, the kinetic energy operator Okin = −∇2/2m was in-
troduced. The term SJ accounts for the Jacobian of the
transformation of the fermionic fields. It is will not play any
role in our considerations, and we drop it from now on. For a
further discussion of this term we refer to Ref. [18].

After these preparations, the generalization of the deriva-
tion presented in the previous section does not pose a problem.
In view of the transformation (B5), the source fields and the
Hubbard-Stratonovich fields θ̂ are dressed with matrices û
as θ̂ ε1ε2

= ûε1 θ̂ (ε1 − ε2)ûε2 . Then, the gradient expansion in
the presence of interactions and source fields requires the

following replacement:

E → E ′ = E + ˆ̄U
[
�̂

l
σ l − 1

2 {η̂, ε̂ + �̂
l
σ l}]Û , (65)

where ��0 = �θ0 − �ϕ and �� = �θ. The result of this procedure
can be written as

S0
δQ = πνi

4
Tr

[
D̂ε̂

η
�

(∇Q̂)2 + 4iε̂η

�δQ̂
] +

∫
x

�θT γ̂2λ̂ f −1�θ

+ 2ν

∫
x

��T γ̂2λ̂ �� − 2k0

∫
x
η2(x) − 2n0

∫
x
ϕ2(x). (66)

In this equation, we used the notation ε̂
η

� = 1
2 {ε̂ + �̂lσ l , λ̂}.

We consistently kept terms up to first order in η̂ and in ϕ̂.
The terms in the second line describe contributions originating
from the electronic degrees of freedom without participation
of the diffusion modes. They arise from diagrammatic blocks
containing only retarded or only advanced Green’s functions.
In the derivation of S0

δQ in Eq. (66) terms containing the
derivative of the disorder-averaged density of states, ν̄ ′

ε, have
consistently been neglected. As a consequence, the action
does not contain a purely electronic contribution that is linear
in both �η and ��. We will discuss the impact of such a term on
the correlation function in Sec. VI.

It is often convenient to present the NLσM in a
form where the Hubbard-Stratonovich fields �θ are inte-
grated out. The relevant contraction rules (in the ab-
sence of η̂) are 〈θ0

i,r,ωθ0
j,r′,−ω′ 〉 = i

2ν
(�0

ρ/2)γ i j
2 δr−r′2πδω−ω′

for the charge degrees of freedom, and 〈θα
i,r,ωθ

β

j,r′,−ω′ 〉 =
i

2ν
(�0

σ /2)γ i j
2 δr−r′2πδω−ω′δαβ for the spin degrees of freedom.

The integration in �θ leads to the sigma model action in
Eq. (13).

VI. ON THE ROLE OF A NONCONSTANT
DENSITY OF STATES

In this section, we discuss the role of the nonconstant
disorder-averaged density of states in two dimensions. To this
end it is instructive to revisit the saddle point equation for the
matrix Q̂,

Q̂0 = i

πν

(
Ĝ−1

0 + i

2τ
Q̂0

)−1

. (67)

With the ansatz Q0 = (τ/τε )σ3, where τε is real, one obtains
the following condition for τε:

1 = 1

2πντ

∫
p
|GR

• (p, ε)|2, (68)

where GR
• (p, ε) = {[GR

0 ]−1(p, ε) + i/(2τε )}−1. It is instruc-
tive to establish a connection between the right-hand side of
Eq. (68) and the disorder-averaged density of states calculated
with the help of GR

• ,

ν̄ε = − 1

π

∫
p

ImGR
• (p, ε) = 1

2πτε

∫
p
|GR

• (p, ε)|2. (69)

By comparison, one finds the relation ντ = ν̄ετε. We see that
even in two dimensions, when the density of states ν of the
clean system is constant, τε acquires an ε-dependence, and so
does the disorder-averaged density of states ν̄ε. The magnitude
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of this effect can be estimated from Eq. (68). After transform-
ing the integration measure as

∫
p → ν

∫ ∞
−μ

dξp, it is important
for our purposes not to extend the lower limit of the integration
range to −∞. The equation for ν̄ε obtained after performing
the integral in ξp can be solved approximately and allows us to
estimate ν̄ ′

ε/ν ∼ (ε2
F τ )−1. The important point is that ν̄ ′

ε/ν is
smaller than D′

ε/D by a factor (εF τ )−1 � 1. As explained in
Sec. II, this smallness allows us to justify the constant density
of states approximation.

As is clear from the relation Q0 = (τ/τε )σ3, the inclusion
of a nonconstant density of states for the diffusion modes
described by the NLσM would require a modification of the
constraint Q̂2 = 1 and thus fundamentally alter the structure
of the model. Such a generalization would, for example, be
necessary to obtain χ

dyn,0
kn,1 of Eq. (7) instead of χ̃

dyn,0
kn,1 in

Eq. (25). The second contribution discussed in Sec. II B,
χ

dyn,0
kn,2 , and the static part χ st,0

kn , arise in a different way. They
have their origin in a purely electronic contribution,

Sη� = −2T ∂T n0

∫
x
�ηT γ̂2 ��0. (70)

This term was not included in Eq. (66), because T ∂T n0 ∝ ν̄ ′
ε.

As a consequence, S0
δQ in Eq. (13) also acquires additional

contributions, S0
δQ → S0

δQ + Sηϕ + SηX , where

SηX = −π

2
T ∂T n0�

0
ρTr[η̂δX̂ ], (71)

Sηϕ = 2T ∂T n0

∫
x
�ηT γ̂2 �ϕFL. (72)

The static part of the correlation function is obtained from Sηϕ

as χ st,0
kn = −T ∂T n0z0

1, and χ
dyn,0
kn,2 originates straightforwardly

from SηX .

VII. CONCLUSION

In this paper, we introduced a NLσM approach aimed at
calculating quantities that are strongly affected by particle-
hole asymmetry. We focused on two-dimensional systems
with quadratic dispersion, and derived a minimal extension
of the Finkel’stein model which accounts for deviations of
the electron velocity from the Fermi velocity by including
a frequency-dependent diffusion coefficient. The generalized
model is obtained from Finkel’stein’s model by replacing the
Q̂-field by X̂ = Q̂ + 1

4i D
′
ε(∇Q̂)2. Our considerations in this

paper were based on the Keldysh NLσM. Due to the struc-
tural similarity, we expect the replacement rule Q → X to be
applicable for the NLσM in the Matsubara formalism as well.

We studied a model with short-range Fermi-liquid in-
teractions. Coulomb interactions can be included into the
formalism using the procedure outlined in Ref. [19]. As an
application, we analyzed the heat density-density correlation
function in the ladder approximation, and calculated interac-
tion corrections to its static part. These calculations served two
purposes. They demonstrated that the results obtained with
the help of the generalized NLσM are consistent with results
previously obtained by different means [31]. The calculations
also constitute a first step in analyzing interaction corrections
to the thermoelectric transport coefficient, a problem that will
be addressed in a future publication.
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APPENDIX A: GAUSSIAN ACTION

In this Appendix, we discuss the Gaussian action resulting
from S0

δQ [Eq. (13)], and the corresponding contraction rules.
In this paper, we work with the exponential parametrization,

Û = e−P̂/2, Û = eP̂/2, {P̂, σ̂3} = 0. (A1)

The matrix Q̂ is related to P̂ as Q̂ = σ̂3 exp(P̂). We further
write P̂ as a matrix in Keldysh space in the form

P̂εε′ (r) =
(

0 dcl;εε′ (r)
dq;εε′ (r) 0

)
, (A2)

where dcl/q are Hermitian matrices in the frequency domain
and in spin space, [dαβ

cl/q;εε′ ]∗ = dβα

cl/q;ε′ε. Expanding S0,ηϕ +
Sint,η up to second order in P̂ and neglecting the source fields,
one finds the Gaussian action as

S = − iπν

4

∫
tr[D̂ε̂ (∇P̂)2 − 2iε̂σ̂3P̂2]

− π2ν

8

∫
r,εi

(
tr[γ̂iσ̂3P̂ε1ε2 ]γ̂ i j

2 �0
ρ tr[γ̂ j σ̂3P̂ε3ε4 ]

+ tr[γ̂iσσ̂3P̂ε1ε2 ]γ̂ i j
2 �0

σ tr[γ̂ jσσ̂3P̂ε3ε4 ]
)
δε1−ε2,ε4−ε3 . (A3)

This result allows us to find Gaussian averages of the compo-
nents of dcl and dq by inverting the quadratic form. In order to
formulate the result, it is convenient to separate the singlet and
triplet channels. To this end, we expand dcl and dq in terms of
the Pauli spin matrices σ l as

dl
cl/q;εε′ = 1

2

∑
αβ

σ l
βαdαβ

cl/q;εε′ , l = (0, 1–3). (A4)

Using this notation, we obtain for the singlet channel (l = 0)〈
d0

cl;ε1ε2
(q)d0

q;ε3ε4
(−q)

〉

= − 1

πν
Dε(q, ω)

[
δε1,ε4δε2,ε3

− δω,ε4−ε3 iπ�ε1ε2�
0
ρD−1(q, ω)D1(q, ω)Dε̃(q, ω)

]
, (A5)

A singlet channel and triplet channels do not interfere in the
Gaussian approximation. The average in the triplet channel for
i, j ∈ {1, 2, 3} reads as〈

di
cl;ε1ε2

(q)d j
q;ε3ε4

(−q)
〉

= − 1

πν
δi jDε(q, ω)

[
δε1,ε4δε2,ε3

− δω,ε4−ε3 iπ�ε1ε2�
0
σD−1(q, ω)D2(q, ω)Dε̃(q, ω)

]
,

(A6)

In Eqs. (A5) and (A6), we used the following notation: ω =
ε1 − ε2, ε = (ε1 + ε2)/2, ε̃ = (ε3 + ε4)/2, �ε,ε′ = Fε − Fε′ ,
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and δε,ε′ = 2πδ(ε − ε′). Further, in addition to the diffusons
already introduced in Sec. II B, we defined

D2(q, ω) = 1

Dq2 − iz0
2ω

, (A7)

where z0
2 = 1 − �0

σ . When the frequency dependence of Dε

is neglected, the contraction rules stated in Eq. (A5) and
Eq. (A6) reduce to those obtained from the Keldysh sigma
model in the absence of the particle-hole asymmetry.

APPENDIX B: DERIVATION OF EQ. (54)

In this Appendix, we briefly summarize the initial steps
in the derivation of the NLσM which lead to Eq. (54).
The derivation of the Keldysh NLσM was first described in
Refs. [8,9,46,47]. Here, we will use the notation introduced
in Ref. [16]. Starting from the action Sk in Eq. (51), it is con-
venient to form vectors �ψ = (ψ+, ψ−)T , and �ψ† = (ψ†

+, ψ
†
−)

with components corresponding to the fields ψ and ψ† on the
forward and backward path, respectively. Then, the Keldysh
rotation can be introduced by transforming the fields �ψ and
�ψ† as

��† = �ψ†L̂−1, �� = L̂σ̂3, L̂ = 1√
2

(
1 −1
1 1

)
. (B1)

The disorder average of the Keldysh partition function
results in a four-fermion term Sdis = (i/4πντ )

∫
r(

∫
t

��†
x
��x )2

in the action. The term Sdis can be decoupled with
the help of a Hubbard-Stratonovich transformation by
introducing an auxiliary integration over a Hermitian
matrix Q̂(r, t, t ′). As a result, the following terms

appear in the action: δS = i
2τ

∫
r,t,t ′ ��†

r,t Q̂(r, t, t ′) ��r,t ′ +
πνi
4τ

∫
r,t,t ′ tr[Q̂(r, t, t ′)Q̂(r, t ′, t )]. The saddle point equation

for Q̂ can be solved by the matrix Q̂0(r, t, t ′) = �̂t−t ′ , where
�̂ε = ûεσ̂3ûε and ûε was introduced in Eq. (17).

We are interested in describing the slow diffusive motion
of electrons at long times and distances. In the NLσM formal-
ism, the diffusive behavior is encoded in gapless fluctuations
around the saddle point solution Q̂0 that respect the condition
(Q̂ ◦ Q̂)t,t ′ = δ(t − t ′). The symbol ◦ denotes a convolution
in time. A convenient parametrization of the fluctuations
reads as

Q̂ = û ◦ Q̂ ◦ û, Q̂ = Û ◦ σ̂3 ◦ Û , (B2)

where Û = Ût,t ′ (r), and (Û ◦ Û )t,t ′ = δ(t − t ′). All these
steps are standard in the derivation of the Keldysh NLσM.
We present the fermionic part of the action as

S[ ��†, ��] =
∫

x,x′
��†

x

[
Ĝ−1

0 (x, x′) + δr,r′
i

2τ
Q̂(r, t, t ′)

]
��x′ .

(B3)

Here, Ĝ0 is the noninteracting Green’s function of the clean
system with the typical triangular structure

Ĝ0 =
(

GR
0 GK

0

0 GA
0

)
= û ◦ Ĝ0 ◦ û, (B4)

where Ĝ0 = diag(GR
0 , GA

0 ) is diagonal, and GR
0 , GA

0 , and GK
0

are the retarded, advanced, and Keldysh components, respec-
tively. In order to prepare the gradient expansion, we rotate
the fields �� and ��† as

�� → û ◦ Û ◦ ��, ��† → ��† ◦ ˆ̄U ◦ û, (B5)

respectively. It is convenient to Fourier transform all fields
with respect to the time arguments, and to use a matrix nota-
tion for the resulting fields in the frequency space. This brings
us to Eq. (54).

APPENDIX C: DERIVATION OF S2 IN EQ. (59)

The term S2 displayed in Eq. (59) is obtained from Eq. (56)
by integrating ��† and �� while retaining terms of fourth order
in gradients of the slow field Û and ˆ̄U . Such terms originate
from the following two contributions to the action in Eq. (56):
SV = 1

2m

∫
r

��†[V̂ i−→∇ i − ←−∇ iV̂ i] �� and SV2 = 1
2m

∫
r

��†V̂ iV̂ i ��,
upon averaging with S0 = ∫

r
��†Ĝ−1 ��. Six terms can give

rise to four gradients, δSa = − i
4! 〈〈S4

V〉〉, δSb = − 1
2! 〈〈S2

VSV2〉〉,
δSc = i

2 〈〈S2
V2〉〉, δSd = i

2 〈〈S2
V〉〉, δSe = i〈〈SVSV2〉〉, and δS f =

− 1
3! 〈〈S3

V〉〉. Here, the double brackets 〈〈. . . 〉〉 denotes the con-
nected average with respect to S0. The calculation is simplified
by the fact that the frequency dependence of the Green’s func-
tion Ĝ can be neglected. Furthermore, only terms that are odd
under the transformation (23) are relevant for our discussion
since such terms reflect the particle-hole asymmetry in the
system. We find that the important contributions come from

δSa = − 8πνDD′
ε〈nin jnknl〉Tr[V̂ i⊥V̂ j⊥V̂k‖V̂ l‖σ̂3],

δSb = − πνDD′
ε

× Tr[V̂ iV̂ i(V̂ j‖V̂ j⊥ − V̂ j⊥V̂ j⊥ − V̂ j⊥V̂ j‖)σ̂3],

δSe =πνDD′
εTr[∇ iV̂ i⊥(V̂ jV̂ j )⊥σ̂3],

δS f = − πνDD′
εTr[Vk‖[∇ jV̂k⊥, V̂ j⊥]σ̂3]. (C1)

Here, 〈nin jnknl〉 = 1
8 (δi jδkl + δikδ jl + δilδ jk ) is an angular av-

erage over components of the unit vector n, summation over
repeated vector indices is implied, and we denote the diagonal
and off-diagonal components of V̂ i in Keldysh space as V̂ i‖
and V̂ i⊥, respectively. Summing up all contributions we obtain

S2 = 2πνDD′
εTr[V̂ i⊥V̂ i⊥V̂ j⊥V̂ j⊥σ̂3], (C2)

which can be brought to the form displayed in Eq. (59) with
the help of the identity ∇iQ̂ = 2Û V̂ iσ̂3

ˆ̄U in conjunction with
the normalization condition Q̂2 = 1.
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