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Photoinduced anomalous Hall effect in two-dimensional transition metal dichalcogenides
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A circularly polarized ac pump field illuminated near resonance on two-dimensional transition metal dichalco-
genides (TMDs) produces an anomalous Hall effect in response to a dc bias field. In this work, we develop a
theory for this photoinduced anomalous Hall effect in undoped TMDs irradiated by a strong coherent laser field.
The strong field renormalizes the equilibrium bands and opens up a dynamical energy gap where single-photon
resonance occurs. The resulting photon dressed states, or Floquet states, are treated within the rotating-wave
approximation. A quantum kinetic equation approach is developed to study the nonequilibrium density matrix
and time-averaged transport currents under the simultaneous influence of the strong ac pump field and the weak
dc probe field. Dissipative effects are taken into account in the kinetic equation that captures relaxation and
dephasing. The photoinduced longitudinal and Hall conductivities display notable resonant signatures when the
pump field frequency reaches the spin-split interband transition energies. Rather than valley polarization, we
find that the anomalous Hall current is mainly driven by the intraband response of photon-dressed electron
populations near the dynamical gap at both valleys, accompanied by a smaller contribution due to the interband
response. These findings highlight the importance of photon-dressed bands and nonequilibrium distribution
functions in achieving a proper understanding of the photoinduced anomalous Hall effect in a strong pump
field.
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I. INTRODUCTION

Since the discovery of graphene [1], van der Waals materi-
als have emerged as a broad family of two-dimensional (2D)
layered materials with diverse physical properties ranging
from semimetals, semiconductors, and insulators to 2D ferro-
magnets and superconductors [2]. Two-dimensional transition
metal dichalcogenides (TMDs) (e.g., MoS2, WS2, MoSe2, and
WSe2) are van der Waals semiconductors with a band gap
within the visible spectrum. In monolayers, TMDs exhibit
broken spatial inversion symmetry combined with strong spin-
orbit interaction, resulting in a large valence-band splitting
appearing across the direct gaps at the valleys K and K ′
[3] with inherently coupled spin and valley degrees of free-
dom [4]. Through the valley selection rule, carriers near the
valence-band edge at each of the valleys couple preferentially
to light with a definite circular polarization, allowing them to
be selectively excited to the conduction band. For frequencies
above the band gap, the optical excitation creates a carrier
population imbalance between the two valleys, i.e., a valley
polarization [5].

If the system is additionally driven by a dc electric field,
valley-resolved photovoltaic transport occurs. In particular,
an anomalous Hall effect will result from the net transverse
charge current due to unbalanced population of photoexcited
K and K ′ carriers [6,7]. A similar Hall effect, caused by
photoinduced spin polarization, has also been predicted [8]
in semiconductor systems due to spin-orbit coupling and
observed [9–12] in III-V semiconductor structures, Bi2Se3

topological insulator thin film [13], and few-layer WTe2 Weyl

semimetal [14]. In TMDs, this photoinduced anomalous Hall
effect (AHE) has been recently observed in illuminated sam-
ples of monolayer MoS2 as well as bilayer MoS2 placed under
an out-of-plane electric field [15,16]. It has also been re-
cently observed in illuminated samples of exfoliated graphene
[17,18], in which the Hall effect is purely due to optically
induced Berry curvature.

Early theoretical treatments on the photoinduced Hall ef-
fect in TMDs have been largely focused on the role of
valley selection rules and Berry curvatures obtained from the
equilibrium bands, with the tacit assumption that the opti-
cal excitation is sufficiently weak that the electronic band
structure remains unaltered under irradiation. Hall transport
in the regime of strong optical excitations, which can reveal
rich quantum dynamics through photon-dressing effects and
are readily realizable in experiments, has received increasing
theoretical attention [19–24]. In a recent experiment [25], dy-
namic Stark shift of the bands has been observed in WS2 under
a strong optical pump field with subgap frequency. When the
pump frequency is above the band gap, hybridization between
the photon-dressed valence and conduction bands generates
a dynamical gap [26,27]. The hybridized states, which are
also known as Floquet states, have not yet been observed in
TMDs but have been directly observed in topological insu-
lator surface states [28,29]. The realization of Floquet states
provides a means to realize many interesting nonequilibrium
phenomena [30], such as Floquet topological phases [31,32],
Floquet control of exchange interaction [33,34] and tunneling
[35], and Floquet time crystals [36].
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Under strong optical excitation by the pump field, the
valley-resolved Hall effect is influenced by the photon renor-
malization of the electronic bands as well as nonequilibrium
carrier kinetics [37]. In this work, we provide a density matrix
formulation for photoinduced valley Hall transport that allows
us to treat the photon-dressed bands and carrier kinetics in a
single framework. Our theory is developed using the rotating-
wave approximation, which provides better analytic insights
compared to full numerical solutions, in the regime of near
resonance and weak coupling where multiphoton effects are
unimportant [24]. Band populations and interband coherences
are obtained in a transparent manner from the solution of the
kinetic equation of the density matrix. These are then used
to compute the photoinduced valley polarization and longitu-
dinal and Hall photoconductivities. Our findings reveal that
the physical picture behind the photoinduced anomalous Hall
effect is much more nuanced in a strong laser field than the
commonly assumed picture of valley population imbalance,
due to the formation of different photon-dressed bands at the
two valleys.

Our paper is organized as follows. Section II lays out
the model of our system and discusses the photon-induced
renormalization of the equilibrium band structure. We then
introduce the density matrix formalism and the kinetic equa-
tion governing its dynamics in Sec. III. In Secs. IV and V,
we solve the kinetic equation and obtain the density matrix
of the pumped system, first in the absence and then in the
presence of the dc electric field. Section VI then presents the
derivation of the photovoltaic longitudinal and Hall currents
and our numerical results of the photoconductivities, followed
by our conclusion in Sec. VII.

II. MODEL OF TMD COUPLED TO
AN OPTICAL PUMP FIELD

The low-energy Hamiltonian of a 2D TMD is given by [4]

H0 = v(τkxσx + kyσy) +
(

�̂ − λτ

2
sz

)
σz + λτ

2
sz, (1)

where σ denotes the vector of Pauli matrices in the pseudospin
basis capturing the d-orbital states of the transition metal
element, 2�̂ is the band-gap energy, v is the band velocity,
2λ is the spin-orbit splitting of the valence bands, τ = ±1
is the valley index for K and K ′, respectively, and sz = ±1
is the spin index for up and down. In the vicinity of each
valley, the low-energy physics is described by two copies of
the spin-resolved Dirac Hamiltonian with a band gap 2�1,2 =
2�̂ ∓ λ. In this paper, we take MoS2 as the prototypical ex-
ample of TMDs, and we use the corresponding values [4] of
band gap 2�̂ = 1.66 eV, spin-orbit splitting 2λ = 0.15 eV,
and band velocity v = 5.35 × 105 ms−1 for our numerical
calculations.

We can develop our theory for one spin s and one valley
τ and obtain the total photovoltaic current at the end by
summing the contributions from both spins and both val-
leys. Dropping the inessential energy shift from the last term,
Eq. (1) takes the typical form of a massive Dirac Hamiltonian

H0 = v(τkxσx + kyσy) + �σz, (2)

where � = �̂ − τ szλ/2, which takes the two values �1,2

corresponding to τ sz = ±1. Diagonalizing Eq. (2) gives the
conduction-band (+) and valence-band (−) energy ±αk =
±

√
(vk)2 + �2, and the corresponding spinor wave functions,

χk+ =
[

cos(θk/2)
sin(θk/2)eiτφ

]
, χk− =

[ − sin(θk/2)
cos(θk/2)eiτφ

]
, (3)

where we have defined cos θk = �/αk , sin θk = τvk/αk ,

tan φ = ky/kx, and k =
√

k2
x + k2

y .
The pump field laser is described by an ac electric

field E = E0(cos ωt x̂ + μ sin ωt ŷ), in which μ = ±1 de-
notes the left and right circular polarization. The light-matter
interaction Hamiltonian follows from the minimal cou-
pling k → k + eA (where e > 0 is the electronic charge)
with the vector potential A = − ∫

E dt = −(E0/ω)(sin ωt x̂ −
μ cos ωt ŷ). The total Hamiltonian then becomes H = H0 −
(�/2)(τ sin ωtσx − μ cos ωtσy), where � = 2eE0v/ω. The
pump field couples to the orbital degrees of freedom only, and
optical transitions preserve spins.

It will be convenient to define [38–40] a set of mutually
perpendicular pseudospin unit vectors {α̂k, β̂k, γ̂k} and cor-
responding basis matrices (σα, σβ, σγ ) = σ · (α̂k, β̂k, γ̂k ) to
rewrite the Hamiltonian. With the definition κ̂τ ≡ cos φx̂ +
τ sin φŷ, we define the unit vectors as

α̂k = sin θk κ̂τ + cos θk ẑ, (4)

β̂k = τ ẑ × κ̂τ , (5)

γ̂k = −τ cos θk κ̂τ + τ sin θk ẑ. (6)

{α̂k, β̂k, γ̂k} forms a right-handed triad defined locally at each
k point. Note that they are dependent on the valley index τ .
{σα, σβ, σγ } are the corresponding pseudospin projections

σα =
[

cos θk sin θke−iτφ

sin θkeiτφ − cos θk

]
, (7)

σβ = iτ

[
0 −e−iτφ

eiτφ 0

]
, (8)

σγ = τ

[
sin θk − cos θke−iτφ

− cos θkeiτφ − sin θk

]
. (9)

It is also useful to note that σα,β,γ is related to the usual Pauli
matrices σx,y,z through the pseudospin-to-band unitary trans-
formation Uk ≡ [χk+ χk−] by σα = UkσzU†

k , σβ = Uk (τσy)U†
k ,

σγ = Uk (−τσx )U†
k . We can then represent the total Hamilto-

nian as follows:

H =
[
αk + �

2
μτ sin θk sin(φ − μωt )

]
σα (10)

+�

2
μτ cos(φ − μωt )σβ − �

2
μ cos θk sin(φ − μωt )σγ .

The total Hamiltonian above, now expressed in the new pseu-
dospin representation, can be further transformed into the
rotating frame using the unitary transformation U = e−iωtσα/2

as H̃ = U †HU − iU †∂tU . Hereafter, quantities in the rotating
frame (RF) will be denoted with an overhead tilde. In the
RF-transformed pseudospin basis, σα is unchanged since it
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FIG. 1. Photon-dressed bands ±Ẽk for spin-up electrons at val-
ley K (solid) and spin-down electrons at valley K ′ (dashed) under
a circularly polarized pump field with strength E0 = 200 MV/m
and helicity μ = 1. The equilibrium band-gap value is taken as
2� = 2�1 = 1.585 eV. Part (a) corresponds to subgap pump field
frequency ω = 1.4 eV, and (b) to above-gap frequency ω = 1.74 eV.
Energy values are scaled by �1 and momentum kx, ky by k�1 =
�1/v.

commutes with U , while the other two basis matrices become

U †σβU = cos(ωt )σβ − sin(ωt )σγ , (11)

U †σγU = cos(ωt )σγ + sin(ωt )σβ. (12)

Following the rotating-wave approximation (RWA), we retain
only time-independent terms and obtain the rotating-frame
Hamiltonian as

H̃ =
(
αk − ω

2

)
σα + �

4
Mk (cos φσβ − μ sin φσγ ), (13)

where Mk ≡ μτ + cos θk captures the valley selection rule
at k = 0 with Mk = 2 when μ = τ , and zero otherwise.
Diagonalizing the Hamiltonian H̃ gives the photon-dressed
conduction- and valence-band dispersions in the rotating
frame,

Ẽk = ±
√(

αk − ω

2

)2
+

(
�

4
Mk

)2

. (14)

Figure 1 shows the photon-dressed bands of the spin-up elec-
trons at valley K and the spin-down electrons at valley K ′ for
the cases when the light frequency is below and above the
band gap. For circularly polarized light, the dispersion Ẽk is
isotropic in the k-space since Mk is independent of φ. For
the case of subgap frequency ω < 2� in Fig. 1(a), the band

gap is enhanced from the equilibrium value due to the dy-
namical Stark effect [41], becoming

√
δ2

d + �2 in the rotating
frame, where δd = 2� − ω is the detuning. One notices that
the difference between the photon-dressed bands at the two
valleys is quite small even at large fields. A more dramatic
difference can be seen when the frequency exceeds the band
gap in Fig. 1(b). At both valleys, a dynamical gap is opened
at a finite k value. The gap is sizable, ∼77.2 meV, at valley K
but is minuscule, ∼3.7 meV, at valley K ′, which can be barely
resolved at the scale of the plot.

The drastic difference between the two photon-dressed
bands is a result of the valley-selective coupling of electrons
with circularly polarized light through the matrix element Mk .
From Eq. (14), the magnitude of the gap can be found as
�Mk=kr /2, where kr is the momentum at which the resonance
transition occurs when 2αkr = ω. For frequency values near
the TMD band gap such as ω = 1.7 eV, to generate a dy-
namical gap of 10–100 meV at valley K , the range of ac
field amplitude required is 25–250 MV/m, which is attainable
in state-of-the-art ultrafast optical experiments [25,42,43]. In
free-standing graphene, a strong circularly polarized light
similarly opens up a dynamical gap at the Dirac points, and
in recent experiments the induced Dirac gap is estimated to be
∼70 meV [17].

The photon-dressed states Eq. (14), which are obtained
within the RWA, capture similar physics to the Floquet states
in the 2 × 2 truncated Floquet space in the neighborhood of
a dynamical gap [44–46], with ± in Eq. (14) corresponding
to the Floquet quasienergies of the zeroth conduction and first
valence sidebands. For near-resonance frequencies ω ≈ 2�1

in TMDs, the dimensionless light-matter coupling parame-
ter λ = eE0v/(h̄ω2) � 10−2 � 1 for E0 up to 250 MV/m,
therefore the system is well within the weak-coupling (also
known as weak drive) regime in which the RWA is expected
to provide an excellent approximation.

III. KINETIC EQUATION

To calculate the photocurrent response, we first obtain the
density matrix ρk in the presence of the pump and probe fields.
The Hamiltonian H including the pump field vector potential
is treated as the nonperturbative part of the problem. The
perturbative part is due to the weak dc probe field E, which
is included in the Hamiltonian in the form of a slowly varying
scalar potential �(r) such that eE = ∇�(r). We follow the
standard procedure to derive the equation of motion for the
one-time density matrix using the nonequilibrium Green’s
function formalism [47,48]. After obtaining the quantum ki-
netic equation of the two-time lesser Green’s function G<,
performing the Wigner transformation and gradient expan-
sion, the equation of motion for the density matrix can be
obtained from the kinetic equation of G< in the equal-time
limit, which in frequency space translates to the following
relation:

ρk (t ) = −i
∫ ∞

−∞

dω

2π
G<

k,ω(t ). (15)
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Performing the above steps, we then find the kinetic equation
for ρk:

∂ρk

∂t
− eE · ∂ρk

∂k
+ i[H, ρk] = Is[ρk], (16)

where H is the total Hamiltonian including the optical pump
field in Sec. II, and Is[ρk] represents the scattering integral that
describes the damping effects of relaxation and dephasing.
Here intraband drift motion due to the dc field is included via
the second term on the left-hand side of the kinetic equation.
Since ρk is a 2 × 2 density matrix in the pseudospin space, it
can be decomposed using the basis {I, σα, σβ, σγ } as

ρk = nkI + 1
2 Sk · σ. (17)

nk and Sk have the meanings of a charge and a pseudospin
distribution function, respectively. In this work, we confine
ourselves to considering carrier scattering processes that are
spin-conserving and valley-conserving. This assumption is
valid when no magnetic impurity is present and atomic-scaled
defects that give rise to intervalley scattering are negligible.
Our approach here can be easily extended to include scattering
that flips spins and valleys [49]. Then, in the relaxation-time
approximation [41], the scattering integral takes the following
form with phenomenological longitudinal relaxation rate �

and transverse relaxation rate �⊥:

Is[ρk] = −
[
�

(
nk − n(eq)

k

)
I + �

2

(
Sk,α − S(eq)

k,α

)
σα

+�⊥
2

Sk,βσβ + �⊥
2

Sk,γ σγ

]
, (18)

where Sk,α, Sk,β , Sk,γ denote the components of Sk along
{α̂k, β̂k, γ̂k}, respectively. Sk,α describes the population differ-
ence Sk,α = ρk,cc − ρk,bb between the conduction band (c) and
the valence band (b) and is also known as interband population
inversion (with Sk,α = 1 for full inversion), whereas Sk,β , Sk,γ

describe interband coherence that leads to optical polarization.
� and �⊥ phenomenologically capture the effects of the decay
of interband population inversion and optical polarization as
well as intraband momentum relaxation. We note that in-
clusion of dissipative effects is essential for the irradiated
system to attain the nonequilibrium steady state. Before light
is turned on, the system is assumed to be in equilibrium and
the Fermi level is inside the band gap, with a completely
filled valence band and an empty conduction band so that
n(eq)

k = 1/2, S(eq)
k,α

= −1, and S(eq)
k,β

= S(eq)
k,γ

= 0.

IV. EFFECTS OF PUMP FIELD: ZEROTH-ORDER
DENSITY MATRIX

To obtain the photoconductivity, we solve Eq. (16) up to
first order in E by linearizing the density matrix as ρk =
ρ

(0)
k + ρ

(1)
k . The density matrix ρ

(0)
k is the zeroth-order solu-

tion to Eq. (16) under a zero dc probe field E = 0, and ρ
(1)
k is

the first-order correction due to a finite E . Equation (16) then
reduces to the following two equations satisfied by ρ

(0)
k and

ρ
(1)
k :

∂ρ
(0)
k

∂t
+ i

[
H, ρ

(0)
k

] = Is
[
ρ

(0)
k

]
, (19)

∂ρ
(1)
k

∂t
− eE · ∂ρ

(0)
k

∂k
+ i

[
H, ρ

(1)
k

] = Is
[
ρ

(1)
k

]
. (20)

Since we are interested in the steady-state regime, the above
equations can be conveniently solved by transforming them
into the rotating frame, in which the density matrix ρ̃k be-
comes time-independent within the RWA: ∂ρ̃k/∂t = 0. The
resulting equations satisfied by ρ̃

(0)
k and ρ̃

(1)
k then take the

same form as Eqs. (19) and (20) with ∂/∂t = 0.
Our strategy for solving the 2 × 2 kinetic equation (19)

in the pseudospin space is to project it onto the basis
{I, σα, σβ, σγ }, which produces four linearly independent
equations that can be solved simultaneously. The zeroth- and
first-order density matrices ρ̃

(0)
k , ρ̃

(1)
k are then expanded, re-

spectively, as

ρ̃
(0,1)
k = n(0,1)

k I + 1
2

(
S̃(0,1)

k,α
σα + S̃(0,1)

k,β
σβ + S̃(0,1)

k,γ
σγ

)
. (21)

The rotating frame Hamiltonian H̃ , written in the new pseu-
dospin basis, has been derived in Eq. (13). Since the set
of basis matrices satisfy the usual commutation relation
[σi, σ j] = 2iεi jkσk with i, j, k ∈ {α, β, γ }, one can easily find[

H̃ , ρ̃
(0)
k

] =
(
αk − ω

2

)(
S̃(0)

β iσγ − S̃(0)
γ iσβ

)
− �

4
Mk cos φ

(
S̃(0)

α iσγ − S̃(0)
γ iσα

)
− �

4
Mkμ sin φ

(
S̃(0)

α iσβ − S̃(0)
β iσα

)
. (22)

Note that the charge density distribution function nk is decou-
pled from the kinetic equation for S̃k since the contribution
from nk vanishes in Eq. (22) upon commutation operation.
Substituting Eqs. (21) and (22) into the kinetic equation and
solving, we find the steady-state solution for ρ̃

(0)
k :

ρ̃
(0)
k = n(eq)

k I + 1
2 Sk,0σα + 1

2 (Sk,1 cos φ + Sk,2 sin φ)σβ

+ 1
2μ(Sk,2 cos φ − Sk,1 sin φ)σγ , (23)

where ⎡
⎣Sk,0

Sk,1

Sk,2

⎤
⎦ = −1

(2αk − ω)2 + �2
⊥ + (�Mk/2)2�⊥/�

×
⎡
⎣ (2αk − ω)2 + �2

⊥
(�Mk/2)(2αk − ω)

−(�Mk/2)μ�⊥

⎤
⎦. (24)

Figures 2(a)–2(d) show the interband population difference
S̃(0)

k,α
= Sk,0 at valleys K and K ′ under a circularly polarized

pump field with helicity μ = 1 for the cases when the fre-
quency is below and above the band gap. When ω < 2�

[Figs. 2(a) and 2(b)], a small population of electrons is ex-
cited into the conduction band localized around the band
edge k = 0. Most of the electron population remains in the
valence band, with S̃(0)

k,α
≈ −1. For ω > 2� [Figs. 2(c) and

2(d)], electrons of both valleys are excited predominantly to
those states that are peripheral to the ring of resonant states
ω = 2αk where the dynamical gap opens [Fig. 1(b)]. Near
those states around the circular “opening” in Fig. 2(c) for
valley K , S̃(0)

k,α
reaches a maximum of ∼ − 10−4 indicating that
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FIG. 2. Population difference S̃(0)
k,α = Sk,0 between the conduction and valence bands at valley K and K ′ under a circularly polarized pump

field with helicity μ = 1 and strength E0 = 100 MV/m for (a),(b) ω = 1.4 eV and (c),(d) ω = 1.74 eV. The labels for the K and K ′ valleys are
indicated above the plots. Relaxation and dephasing parameters are taken as � = �⊥ = 1 meV, and the equilibrium band gap 2� is the same
as in Fig. 1. Note the difference in scales in the plots (a) and (b).

the valence-band electrons there are strongly excited to the
conduction band. In comparison, fewer electrons are photoex-
cited at valley K ′ as shown in Fig. 2(d), where the maximum
S̃(0)

k,α
reaches about −0.3. Because the dynamical gap is much

smaller at K ′ than at K [Fig. 1(b)], the excited populations at
K ′ are localized closely at the resonant states resulting in a
much sharper distribution of S̃(0)

k,α
in the momentum space.

V. EFFECTS OF dc BIAS: FIRST-ORDER
DENSITY MATRIX

Having obtained the steady-state solution to Eq. (19), we
proceed to solve Eq. (20) in the rotating frame using the
decomposition Eq. (21) for ρ̃

(1)
k . The dc electric field is taken

as E = E x̂ directed along x̂. The E-dependent driving term
in Eq. (20) is completely determined by ρ̃

(0)
k and can be

resolved as

eE · ∂ρ̃
(0)
k

∂k
= eE (DII + Dk,ασα + Dk,βσβ + Dk,γ σγ ), (25)

with functions DI,Dk,α,Dk,β ,Dk,γ as coefficients. From
Eqs. (23) and (24) it is obvious that DI = 0, and we can
obtain explicit expressions of Dk,α,Dk,β ,Dk,γ as provided
in Appendix A. The commutator [H̃, ρ̃

(1)
k ] is the same as in

Eq. (22) with the superscript (0) replaced by (1). It follows
that n(1)

k = 0 and S̃(1)
k,α

, S̃(1)
k,β

, S̃(1)
k,γ

are determined by⎡
⎢⎣

� −�
2 Mkμ sin φ −�

2 Mk cos φ
�
2 Mkμ sin φ �⊥ (2αk − ω)
�
2 Mk cos φ −(2αk − ω) �⊥

⎤
⎥⎦

⎡
⎢⎣

S̃(1)
k,α

S̃(1)
k,β

S̃(1)
k,γ

⎤
⎥⎦

= 2eE

⎡
⎣Dk,α

Dk,β

Dk,γ

⎤
⎦. (26)

The above equation gives explicit analytic expressions
for S̃(1)

k,α
, S̃(1)

k,β
, S̃(1)

k,γ
, which are relegated in Appendix B. In

Figs. 3(a)–3(d), we show the correction to the population
difference S̃(1)

k,α
due to the dc electric field at both valleys for

the ω below and above the band gap. Since S̃(1)
k,α

is proportional

to E , we plot S̃(1)
k,α

/E . In contrast to S̃(0)
k,α

, S̃(1)
k,α

is asymmetric
in k-space due to the dc field breaking in-plane rotational
symmetry. Below the band gap [Figs. 3(a) and 3(b)], S̃(1)

k,α

is generally very small. For a dc field E = 10 kV/m, for

instance, S̃(1)
k,α

∼ 10−4 at valley K and S̃(1)
k,α

∼ 10−7 at valley
K ′. When the frequency is increased to above the band gap,
S̃(1)

k,α
is dramatically enhanced near the resonant states by two

and six orders of magnitude, respectively, as seen in Figs. 3(c)
and 3(d). This shows that a resonant pump field excitation
induces a much stronger effect on the photoexcited population
distribution perturbed by the dc bias.

The degree of asymmetry can be analyzed by resolving S̃(1)
k,α

into even and odd harmonics of φ. While Figs. 3(a) and 3(d)
seem to show only an asymmetry along the kx direction, there
is also a small degree of asymmetry along the ky direction that
is not apparent at the scale of the plots. In Appendix B we
show the explicit expressions of the first odd (sin φ) and even
(cos φ) harmonics of S̃(1)

k,α
, which corresponds to asymmetries

along the ky and kx directions, respectively. As we will explain
in Sec. VI, the asymmetry of this distribution function along
the transverse direction to the dc bias, along with smaller
effects from the interband responses S̃(1)

k,β
and S̃(1)

k,γ
, leads to

the photoinduced anomalous Hall effect.
The preferential coupling between the left (right) circularly

polarized light and the K (K ′) valley results in a popula-
tion imbalance of photoexcited conduction-band electrons
between the two valleys. Using the pseudospin-to-band uni-
tary transformation Uk , the conduction-band density matrix
can be found as ρk,cc = nk + S̃k,α/2. ρk,cc is predominantly
given by the zeroth-order contribution n(eq)

k + Sk,0/2 as the
correction S̃(1)

k,α
/2 induced by the dc bias is comparatively

small. Because n(eq)
k = 1/2 is independent of the valley

degrees of freedom, the conduction-band population differ-
ence between the two valleys is �nv = ∑

k (ρK
k,cc − ρK ′

k,cc) =∑
k[(Sk,0 + S̃(1)

k,α
)K − (Sk,0 + S̃(1)

k,α
)K ′

]/2. Then the total pop-
ulation imbalance can be found by summing over the spin
degrees of freedom in the original TMD Hamiltonian Eq. (1),
which correspond to the two values of the gap 2�1 and 2�2.
They give the interband transition energies at k = 0 for the
two spins. Figure 4 shows the resulting total �nv as a func-
tion of the frequency for different values of the pump field.
Although the RWA is valid for frequencies near the band
edges, for display purposes we show an extended range of
ω in Figs. 4 and 5. Near the band edges, �nv exhibits a
shoulderlike feature when the frequency reaches 2�1 and then
peaks at the second gap 2�2. Away from the band edges,
�nv gradually tails off toward higher frequencies, while it
approaches zero toward lower frequencies inside the band gap.
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FIG. 3. First-order correction to the population difference S̃(1)
k,α/E scaled by the dc bias field E between the conduction and valence bands

at valley K and K ′ for (a),(b) ω = 1.4 eV and (c),(d) ω = 1.74 eV. The labels for the K and K ′ valleys are indicated above the plots. The pump
field has the same helicity and strength, and the values of �,�⊥, � are the same as in Fig. 2.

We note that the latter two trends could in principle receive
a small non-RWA correction not captured in our theory as
the frequency is tuned further away from the band edges. At
this point, it may be tempting to obtain the anomalous Hall
conductivity from this valley population imbalance as in the
dc case. However, because of the formation of photon-dressed
bands in the presence of a pump field, the photoinduced Hall
current is no longer simply given by this valley population
imbalance and the Berry curvatures of the equilibrium bands.
We can estimate the Hall conductivity obtained in this way
[15] using Fig. 4, and we find that it is an order of magnitude
too small compared to our exact results presented in Fig. 5.
Instead, the photoinduced transport currents are determined
by the distribution function S̃

(1)
k of the photon-dressed bands

as described below.

VI. LONGITUDINAL AND ANOMALOUS HALL
PHOTOCONDUCTIVITIES

To calculate the photovoltaic current, the density matrix
needs to be transformed back into the stationary frame ρ

(1)
k =

U ρ̃
(1)
k U †,

ρ
(1)
k = n(1)

k I + 1
2 S̃(1)

k,α
σα + 1

2

(
S̃(1)

k,β
cos ωt − S̃(1)

k,γ
sin ωt

)
σβ

+ 1
2

(
S̃(1)

k,β
sin ωt + S̃(1)

k,γ
cos ωt

)
σγ . (27)

Eo=10 MV/m

Eo=20 MV/m

Eo=30 MV/m

Eo=40 MV/m

1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

ω (eV)

Δ
n v

(×
10

12
cm

−2
)

FIG. 4. Conduction-band population difference between the two
valleys to the zeroth order, as a function of ω for different values of
E0 with μ = 1. Relaxation and dephasing parameters are taken as
� = �⊥ = 1 meV.

The expectation value of the current density is then calculated
from J = �kTr{ jk (t )ρ (1)

k (t )}, where “Tr” denotes trace over
degrees of freedom other than the momentum, and jk (t ) is the
single-electron current operator,

jk (t ) = −e
∂HR(t )

∂k
= −e

(
∂HR

∂k
k̂ + 1

k

∂HR

∂φ
φ̂

)
. (28)

HR(t ) above is the stationary-frame Hamiltonian within the
RWA, and it can be obtained by transforming H̃ in Sec. II back
to the stationary frame HR(t ) = UH̃U † − iU∂tU †,

HR(t ) = αkσα + �

4
Mk (cos φ cos ωt + μ sin φ sin ωt )σβ

+�

4
Mk (cos φ sin ωt − μ sin φ cos ωt )σγ . (29)

The matrix trace calculation can be facilitated by de-
composing the longitudinal (x-direction) and transverse
(y-direction) single-electron current operators into compo-
nents of {σα, σβ, σγ }, such that ji(t ) = î · jk (t ) = ji,α (t )σα +
ji,β (t )σβ + ji,γ (t )σγ with i ∈ {x, y}. Explicit expressions of
ji,α (t ), ji,β (t ), ji,γ (t ) are relegated to Appendix A. It is easy
to verify that the basis matrices satisfy the trace relation
Tr{σμσν} = 2δμν , where μ, ν ∈ {α, β, γ }. Using this property
with Eq. (27), the photovoltaic longitudinal and Hall currents
can be calculated from ρ

(1)
k as

Ji =
∑

k

[
S̃(1)

k,α
ji,α + (

S̃(1)
k,β

cos ωt − S̃(1)
k,γ

sin ωt
)

ji,β

+ (
S̃(1)

k,β
sin ωt + S̃(1)

k,γ
cos ωt

)
ji,γ

]
. (30)

Before proceeding to calculate the photoconductivities, it is
useful to first check that our formulation recovers the correct
dark conductivity. The scenario of vanishing pump field cor-
responds to taking the limit �,ω → 0 such that �/ω → 0.
The rotating frame reduces to the stationary frame, and the
Hamiltonian in Eq. (13) becomes the original Hamiltonian
without light, H = αkσα . Damping terms �,�⊥ can be taken
as zero because the Fermi energy lies within the band gap.
Solutions to Eq. (26) then reduce to

S̃(1)
k,α

= 0, (31)

S̃(1)
k,β

= − τeE

2kαk
sin θk cos θk cos φ, (32)

S̃(1)
k,γ

= eE

2kαk
sin θk sin φ. (33)
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FIG. 5. Longitudinal σxx and Hall σyx conductivities in units of G0 = e2/h̄ as a function of ω under different strengths of pump field E0

with helicity μ = 1. Panels (a) and (d) show the contributions due to the K valley (τ = 1), while (b) and (e) show the K ′ valley (τ = −1), and
panels (c) and (f) show the sum of the two valleys’ contributions. Relaxation and dephasing rates are the same as in Fig. 4.

From Eq. (27), the first-order density matrix then becomes

ρ
(1)
k = n(1)

k I − τeE

4kαk
sin θk (cos θk cos φσβ − τ sin φσγ ). (34)

The y-component of the single-electron current operator in
Eq. (28) reduces to −evσy, which when written in a pseu-
dospin basis is

jy = −e
αk sin θk

k
(sin θk sin φσα + cos φσβ

−τ cos θk sin φσγ ). (35)

Calculating the transverse current Jy = �kTr{ jyρ
(1)
k }, we re-

cover the well-known dark valley-resolved Hall conductivity
σ τ

yx = Jy/E = τe2/4π h̄ where the superscript τ distinguishes
the contribution from each valley. Similarly, we find a vanish-
ing longitudinal conductivity σ τ

xx = 0 for a vanishing pump
field, as expected for undoped TMDs.

We now return to Eq. (30). Subtracting off the dark current
contribution and integrating over one time period, we obtain
the following expressions for the time-averaged photoinduced
longitudinal and Hall currents for spin s and valley τ :

Jx =
∑

k

sin2 θk

k

{
S̃(1)

k,α
αk cos φ + μ�

8
S̃(1)

k,γ
Mk,+ sin 2φ

+ �

8
S̃(1)

k,β
[Mk,− − Mk,+ cos 2φ]

}
, (36)

Jy =
∑

k

sin2 θk

k

{
S̃(1)

k,α
αk sin φ − �

8
S̃(1)

k,β
Mk,+ sin 2φ

− μ�

8
S̃(1)

k,γ
[Mk,− + Mk,+ cos 2φ]

}
, (37)

where Mk,± = μτ ± cos θ . In Eqs. (36) and (37), the first term
dependent on S̃(1)

k,α
corresponds to a Drude-like intraband re-

sponse to the dc bias from the photon-dressed conduction and

valance bands, whereas the second and third terms dependent
on S̃(1)

k,β
, S̃(1)

k,γ
arise from interband response to the dc bias.

Because of the momentum integration, it is clear that only the
first odd (even) harmonic of S̃(1)

k,α
contributes to the intraband

response of Jy (Jx), while only the zeroth, second odd and even
harmonics of S̃(1)

k,β
, S̃(1)

k,γ
enter into the interband responses of

Jy and Jx. The total longitudinal and Hall photoconductivities
are finally obtained by summing Eqs. (36) and (37) over the
spin and valley degrees of freedom and dividing over the
dc probe field E . In the dc anomalous Hall effect, interband
coherences give rise to the intrinsic geometric contribution in
ferromagnetic metals and in particular to a quantized topolog-
ical contribution in magnetic insulators [50,51].

Figure 5 shows our numerical results for the valley-specific
and total photoconductivities under left circularly polarized
light (μ = 1) calculated from Eqs. (36) and (37). One first
notices that the K valley contribution is larger than that of the
K ′ valley for both the longitudinal [Figs. 5(a) and 5(b)] and
Hall conductivities [Figs. 5(d) and 5(e)]. Similar to �nv, the
shoulder and peak features at ω = 2�1 and 2�2 are clearly
visible for σxx and σyx at valley K , while they are less promi-
nent for the conductivities at valley K ′. Interestingly, we find
that the photoinduced σyx at the two valleys carry the same
sign, in contrast to the unpumped case, in which different val-
ley contributions to the dark Hall conductivity have opposite
signs. The underlying reason can be seen as follows.

In Eq. (37) for the Hall conductivity, the contributions from
interband responses S̃(1)

k,β
, S̃(1)

k,γ
are typically small compared to

the contribution due to population inversion S̃(1)
k,α

, as shown
in Appendix C. Moreover, these interband response terms are
dominated by their K valley contributions, which are larger
than the corresponding K ′ contributions by two orders of
magnitude. Therefore, the valley dependence of σyx is
principally due to the intraband response term from S̃(1)

k,α
.

Figures 6(a) and 6(b) show an intensity plot of the first odd
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FIG. 6. First harmonic components of S̃(1)
k,α/E at

E0 = 100 MV/m, ω = 1.74 eV, and helicity μ = 1. The sin φ

component is shown in (a) for valley K and (b) for valley K ′, while
the cos φ component is shown in (c) for valley K and (d) for valley
K ′. Relaxation and dephasing rates are taken as � = �⊥ = 7 meV.

harmonic component of S̃(1)
k,α

that contributes to the Hall con-

ductivity through Eq. (37). One can see that S̃(1)
k,α

at valleys K
and K ′ [panels (a) and (b)] share the same sign as indicated
by the same color at every k-point, and thus contribute to
the photoinduced Hall current with the same sign. In the case
of the longitudinal conductivity in Eq. (36), we find that the
intraband contribution dominates over the contributions from
interband responses, so σxx is largely contributed by the cos φ

harmonic component of S̃(1)
k,α

. As shown in Figs. 6(c) and 6(d),
the first even harmonic also shares the same sign between the
two valleys but is generally much larger than the first odd
harmonic.

The origin of the first odd harmonic in S̃(1)
k,α

arises from
terms with a (E × k)z dependence in the driving term of the
kinetic equation (25) [which results in terms ∝ Sk1,2Mk,−/k in
Eqs. (A2) and (A3)]. These terms originate from interband co-
herences Sk,1 and Sk,2 in the photon-dressed bands [Eqs. (23)
and (24)] and vanish when the pump field goes to zero, there-
fore they are purely induced by the dressing photon field.
Thus, we can distinguish two types of interband coherence
effects: one that is primarily induced by the dc bias, and one
that is primarily induced by the pump field. When there is no
irradiation, the dark Hall conductivity is only due to the in-
terband coherence originating from the off-diagonal elements
of S̃(1)

k , the interband response to the dc bias. Under irradi-
ation, however, the photon-dressed conduction and valence
bands are coherent mixtures of the equilibrium conduction

and valence bands hybridized by the one-photon excitation
process. This photon-induced interband coherence therefore
also enters into the intraband response S̃(1)

k under a dc bias,
and it plays a more dominant role than the interband responses
S̃(1)

k,β
, S̃(1)

k,γ
.

Returning to Fig. 5, panels (c) and (f) show the total
conductivities obtained from summing the two valleys’ con-
tributions. The magnitude of σxx is about three orders of
magnitude larger than that of σyx. If the circular polarization
state is changed from μ = 1 to −1, our numerical results
show that both the magnitude and sign of the longitudinal
conductivity remain unchanged, while the valley-specific con-
tributions of the Hall conductivity are changed according
to σ τ=∓1,μ=−1

yx = −σ τ=±1,μ=1
yx , resulting in an overall sign

change of the total Hall conductivity σyx as expected on the
grounds of time-reversal.

To summarize, we find that both the photoinduced anoma-
lous Hall and longitudinal conductivities are chiefly due to
the intraband response of photon-dressed electrons arising
from their asymmetric momentum-space distribution func-
tions, which can be attributed to interband coherences directly
induced by the pump field. This is accompanied by gener-
ally smaller contributions due to interband coherence effects
induced by the dc bias. The latter, which correspond to the
off-diagonal elements of the density matrix in the band rep-
resentation, are the origin of geometric effects and give rise
to Berry curvatures [52–54]. Hence our findings imply that
the intrinsic geometric response to the dc field only plays a
secondary role in the photoinduced anomalous Hall effect, in
contrast to the case of the dc valley Hall effect [4,6]. Our
findings here are consistent with Ref. [18], which reached a
similar conclusion for photoexcited graphene.

In this work, we have provided a noninteracting theory
for the photoinduced anomalous Hall effect, neglecting the
effects of excitons and trions. This is justified because exci-
tons under a dc bias are rapidly dissociated into free electrons
and holes [55,56] that contribute to steady-state transport.
Trion effects, on the other hand, do not contribute in the
undoped samples we are considering where the equilibrium
Fermi level lies deep within the band gap. Excitonic effects,
however, could contribute in a more subtle way. In systems
whose low-energy Hamiltonian breaks Galilean invariance,
excitonic effects couple the intraband and interband dynamics
resulting in interaction-induced correction in dynamic trans-
port properties such as the Drude weight [57,58]. This effect is
strongest in gapless systems such as graphene and is generally
suppressed with an increasing band gap [59]. Although TMDs
have a large band gap, their electron-electron interaction effect
is also stronger than in graphene or gapped bilayer graphene,
and further study could shed light on whether the competition
between these two effects would lead to considerable inter-
action correction to the anomalous Hall conductivity. In this
paper, we have considered only the intrinsic band-structure
contribution to the photoinduced anomalous Hall effect. A
further extension of our theory could include the extrinsic
effect due to spin-orbit scattering with impurities [50], which
will be a subject of future investigation. Finally, we empha-
size that while we are motivated by TMDs in this work, the
theoretical method we developed for the massive Dirac model
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and its massless limit can be applied more generally to other
materials with gapped or gapless Dirac quasiparticles [60–62]
driven by a strong pump field.

VII. CONCLUSION

To close, we have presented a theory for the photoin-
duced valley Hall transport for undoped 2D transition-metal
dichalcogenides under a strong optical pump field. Our the-
ory is developed using the density matrix formalism, which
enables treatment of the photon-dressed bands and carrier
kinetics on an equal footing. The conceptual simplicity of our
method allows us to obtain useful theoretical insights on the
population distribution of the photon-dressed bands. Under
a circularly polarized pump field, we find considerable dif-
ferences in the photon-dressed bands and the nonequilibrium
carrier distributions at the two valleys due to the valley-
dependent optical selection rule. In each valley, electrons are
predominantly excited to photon-dressed states around the
dynamical gap. Both the valley polarization and the pho-

toinduced anomalous Hall conductivity are found to increase
with the pump field and display notable signatures at the
spin-resolved interband (i.e., “A” and “B”) transition energies.
Despite this similarity, we show that valley polarization plays
a less important role in causing the photoinduced Hall effect
than was commonly assumed, and the Hall effect is mainly
driven by an asymmetric momentum-space distribution of
photon-dressed electrons in the transverse direction. The the-
ory and findings presented in this work highlight the important
role of photon-dressed bands in understanding photoinduced
transport, and they demonstrate the viability of optical control
of spins and valleys through the photon-dressing effects of
electronic bands.
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APPENDIX A: DRIVING TERM D AND SINGLE-PARTICLE CURRENT OPERATORS jx AND jy

In this Appendix, we provide explicit analytic expressions for the quantities that are too lengthy to be included in the main
text. By decomposing the driving term in the kinetic equation as in Eq. (25) into the identity and transformed Pauli matrices, we
have

Dk,α = 1

2

{
cos φ

[
∂Sk0

∂k
+ μτ

∂θk

∂k
(Sk2 cos φ − Sk1 sin φ)

]
+ 1

k
sin φ sin θ (Sk1 cos φ + Sk2 sin φ)

}
, (A1)

Dk,β = 1

2

{
cos φ

(
∂Sk1

∂k
cos φ + ∂Sk2

∂k
sin φ

)
− 1

k
sin φ[sin θSk0 − μτ (Sk1 sin φ − Sk2 cos φ)Mk,−]

}
, (A2)

Dk,γ = 1

2

{
cos φ

[
μ

(
∂Sk2

∂k
cos φ − ∂Sk1

∂k
sin φ

)
− Sk0τ

∂θk

∂k

]
+ 1

k
τ sin φ(Sk1 cos φ + Sk2 sin φ)Mk,−

}
. (A3)

The single-particle current operator is calculated in the stationary frame from the Hamiltonian in Eq. (29) obtained within the
RWA,

jx,α = −e

[
∂αk

∂k
cos φ + �

8
(Mk,+)2 1

k
τ sin θ sin ωt + �

8

1

k
τ sin3 θ (− sin ωt cos 2φ + μ sin 2φ cos ωt )

]
, (A4)

jx,β = −e

[
−αk sin θ

1

k
sin φ + �

8

1

k
sin2 θMk,− cos ωt − �

8

1

k
sin2 θMk,+(cos ωt cos 2φ + μ sin 2φ sin ωt )

]
, (A5)

jx,γ = −e

[
−ταk sin θ cos θ

1

k
cos φ + �

8

1

k
sin2 θMk,− sin ωt + �

8

1

k
sin2 θMk,+(μ cos ωt sin 2φ − cos 2φ sin ωt )

]
. (A6)

jy,α = −e

[
∂αk

∂k
sin φ − �

8
(Mk,+)2 1

k
μτ sin θ cos ωt − �

8

1

k
τ sin3 θ (sin ωt sin 2φ + μ cos 2φ cos ωt )

]
, (A7)

jy,β = −e

[
αk sin θ

1

k
cos φ + �

8

1

k
μ sin2 θMk,− sin ωt + �

8

1

k
sin2 θMk,+(− cos ωt sin 2φ + μ cos 2φ sin ωt )

]
, (A8)

jy,γ = −e

[
−ταk sin θ cos θ

1

k
sin φ − �

8
μ

1

k
sin2 θMk,− cos ωt − �

8

1

k
sin2 θMk,+(μ cos ωt cos 2φ + sin 2φ sin ωt )

]
. (A9)

APPENDIX B: FIRST-ORDER DENSITY MATRIX

The solutions obtained by solving Eq. (26) are presented as follows. First, in the current expressions Eqs. (36) and (37), we
observe the following φ-dependence: S̃(1)

k,α
is multiplied by a cos φ or sin φ, while S̃(1)

k,β
and S̃(1)

k,γ
are multiplied by 1, cos 2φ, or

sin 2φ. Therefore, we only need to keep terms dependent on cos φ, sin φ in S̃(1)
k,α

and terms on 1, cos 2φ, sin 2φ in S̃(1)
k,β

and S̃(1)
k,γ

;
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other terms will vanish upon integration over φ. Hence we show only the relevant terms that will give a nonvanishing contribution
to the time-averaged longitudinal and Hall currents:

S̃(1)
k,α

= 1

8k

eE

D

{
4μτ� sin2 θkIm

{
ST

k BL
k

}
sin φ +

[
4k�Mk,+Re

{
∂ST

k

∂k
BL

k

}
+ 8k

∂Sk,0

∂k
|BL

k |2
]

cos φ

}
· · · , (B1)

S̃(1)
k,β

= 1

8k

eE

D

{[
4τ�Mk,−Im

{
ST

k BL
k

} + 4μk� Im

{
∂ST

k

∂k
BL

k

}
+ 2k(2αk − ω)Mk,+�

∂Sk,0

∂k
+ kM2

k,+�2 ∂Sk,1

∂k

]

+
[

− 4τ�Mk,−Re
{
ST

k BL
k

} + 4μ�k Re

{
∂ST

k

∂k
BL

k

}
− 2μkMk,+�⊥�

∂Sk,0

∂k
− μτ sin2 θkMk,+�2Sk,2

]
sin 2φ

+
[

− 4τ�Mk,−Im
{
ST

k BL
k

} + 4μk� Im

{
∂ST

k

∂k
BL

k

}
+ 2k(2αk − ω)Mk,+�

∂Sk,0

∂k
+ kM2

k,+�2 ∂Sk,1

∂k

]
cos 2φ

}
· · · ,

(B2)

S̃(1)
k,γ

= 1

8k

eE

D

{[
4μτ�Mk,−Re

{
ST

k BL
k

} + 4k� Im

{
∂ST

k

∂k
BL

k

}
− 2kMk,+�⊥�

∂Sk,0

∂k
+ τ sin2 θkMk,+�2Sk,2

]

+
[

− 4μτ�Mk,−Re
{
ST

k BL
k

} + 4�k Re

{
∂ST

k

∂k
BL

k

}
− 2kMk,+�⊥�

∂Sk,0

∂k
− τ sin2 θkMk,+�2Sk,2

]
cos 2φ

+
[

4μτ�Mk,−Im
{
ST

k BL
k

} − 4k� Im

{
∂ST

k

∂k
BL

k

}
− 2μk(2αk − ω)Mk,+�

∂Sk,0

∂k
− μkM2

k,+�2 ∂Sk,1

∂k

]
sin 2φ

}
· · · ,(B3)

where Sk,0, Sk,1, Sk,2 are given in Eqs. (24), Mk,± is defined under Eq. (37), and

ST
k = Sk,1 − iSk,2 = −�

2
Mk,+

(2αk − ω) + iμ�⊥
(2αk − ω)2 + �2

⊥ + (�Mk,+/2)2(�⊥/�)
, (B4)

BL
k = (2αk − ω) + iμ�⊥, (B5)

and D is the determinant of the 3 × 3 matrix in Eq. (26),

D = �

[
�2

⊥ + (2αk − ω)2 + �⊥
�

(
�

2

)2

M2
k,+

]
. (B6)

APPENDIX C: S̃(1)
k,α, S̃(1)

k,β, S̃(1)
k,γ CONTRIBUTIONS IN THE LONGITUDINAL AND HALL CONDUCTIVITIES

In Fig. 7, we display the contributions due to S̃(1)
k,α

, S̃(1)
k,β

, S̃(1)
k,γ

in the longitudinal [Eq. (36)] and Hall conductivities [Eq. (37)],
which supplement our discussions on our results in Fig. 5.
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FIG. 7. Valley-specific conductivities (a) σxx and (b) σyx in units of G0 = e2/h̄ as a function of the field strength E0 for a pump field with
frequency ω = 1.62 eV and helicity μ = 1. For each of σxx and σyx , the contribution from S̃(1)

k,α is shown in the first row, S̃(1)
k,β in the second

row, and S̃(1)
k,γ in the third row, whereas the two columns show the cases for valleys K and K ′. Relaxation and dephasing rates are taken as

� = �⊥ = 1 meV.
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