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Nonequilibrium effects on the electron-phonon coupling constant in metals
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Understanding of the energy exchange between electrons and phonons in metals is important for micro- and
nanomanufacturing and system design. The electron-phonon (e-ph) coupling constant describes such exchange
strength, yet its variation remains still unclear at micro- and nanoscale where the nonequilibrium effects
are significant. In this work, an e-ph coupling model is proposed by transforming the full scattering terms
into relaxation time approximation forms in the coupled electron and phonon Boltzmann transport equations.
Consequently, the nonequilibrium effects are included in the calculation of the e-ph coupling constant. The
coupling model is verified by modeling the ultrafast dynamics in femtosecond pump-probe experiments on a
metal surface, which shows consistent results with the full integral treatment of scattering terms. The e-ph
coupling constant is strongly reduced due to both the temporal nonequilibrium between different phonon
branches and the spatial nonequilibrium of electrons in confined space. The present work will promote not
only a fundamental understanding of the e-ph coupling constant but also the theoretical description of coupled
electron and phonon transport at micro- and nanoscale.
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I. INTRODUCTION

Excitation of a metal by a femtosecond pulse laser involves
a very complex process including electron-photon, electron-
electron, electron-phonon, and phonon-phonon interactions
[1,2]. In spite of its complexity, the preassumption of thermal
equilibrium for electron and phonon subsystems is usually
adopted, and electrons will exchange energy with phonons
through electron-phonon (e-ph) scattering [3,4]. However,
extensive experimental and theoretical studies have demon-
strated the failure of the thermal equilibrium assumption due
to both the nonthermalized electrons and the nonequilibrium
between different phonon polarizations [5–12]. In addition,
when the characteristic length of metals shrinks to nanoscale
in micro- and nanoelectronics, the spatial nonequilibrium
effect arising from size effect becomes significant [13,14].
These nonequilibrium effects will further influence the energy
exchange between electrons and phonons.

In order to describe the strength of energy exchange in
metals, the e-ph coupling constant defined as energy transfer
rate per unit volume and per temperature difference between
electrons and phonons is quantitatively introduced [15]. In
1957, Kaganov et al. studied the energy transfer through
e-ph coupling firstly based on the Boltzmann transport theory
and formulated an expression of the e-ph coupling constant.
This expression connected the e-ph coupling constant to
an empirical electron relaxation time, which was based on
both the free electron gas model and thermal equilibrium for
electron and phonon subsystems, respectively [16]. Nearly
30 years later, Allen insightfully related the coupling function
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to the Eliashberg function in superconductivity, and then de-
rived the corresponding theoretic formula of the e-ph coupling
constant [17]. Later on, Allen’s formula was validated by
the femtosecond pulse laser experiments [18] and became a
basic principle for most metals. However, the key assumption
behind Allen’s derivation was that both electrons and phonons
were in thermal quasiequilibrium corresponding to their re-
spective temperatures, which might be not valid at micro- and
nanoscale [13,14].

Generally, the nonequilibrium effects are significant when
the characteristic length of the system is comparable to the
mean free path of heat carriers or the characteristic time of
the process is comparable to the relaxation time. As a result,
the transport properties such as thermal conductivity and elec-
tronic conductivity decrease notably from the standard bulk
values [19,20]. In terms of the e-ph coupling constant, the
results are not clear for thin films and nanoparticles in the
literature by the different researchers using the femtosecond
pump-probe experiments [21–28]. It remains inconclusive
how the e-ph coupling constant varies when the characteristic
length of metals reduces to nanoscale size. In ultrafast dynam-
ics irradiated by a femtosecond pulse laser, nonthermalized
electrons exist due to the finite electron-electron relaxation
time [5–8,12]. This means that electrons have transferred
energy to phonons before the electron subsystem reaches
thermal equilibrium. An experiment in a pulse-heated metal
showed that nonthermalized electrons make the e-ph en-
ergy relaxation process slower [7]. The theoretical analysis
also showed that the e-ph coupling rate is weakened com-
paring to the thermalized limit at low excitation intensities
[2,29]. Moreover, the coupling strength between electrons
and different phonon branches is often different and thus
the nonequilibrium between different phonon polarizations
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occurs [10,11]. However, it remains to investigate how the
e-ph coupling constant is influenced by this temporal nonequi-
librium effect between different phonon branches. Therefore,
this work aims to reveal the variation of the e-ph coupling
constant in metals at micro- and nanoscale when the spatial or
temporal nonequilibrium effects are significant.

Current calculations of the e-ph coupling constant are
generally based on the semiclassical e-ph scattering term in
the Boltzmann transport equation which includes an e-ph
scattering matrix element representing alterations of electron
states by absorbing or emitting a phonon [30]. The prevailing
method is to solve the e-ph scattering matrix element using ab
initio calculation and thus the e-ph coupling constant is com-
puted by summing the energy change in the e-ph scattering
process [31–33]. This commonly used method is also based
on the assumption of equilibrium for electron and phonon
subsystems, respectively. In contrast, the direct solution of the
coupled electron and phonon Boltzmann transport equations
(BTEs) provides an alternative choice. Based on the evolution
of distribution functions, the nonequilibrium effects can be
intrinsically considered. However, the challenge of the cou-
pled electron and phonon BTEs lies in the treatment of the
scattering term due to its integral form and coupling between
electron and phonon distribution functions, which makes the
direct solution very difficult [2,9,29,34]. In addition to the
linear-response assumption [9], the integral form of scattering
terms is solvable as done by Rethfeld et al. [2] and Ono [34]
when the drift term is neglected. Yet, with this treatment, it
is hard to consider the drift term simultaneously which is
necessary for the transport issues. In addition, there are also
some macroscopic models to capture the coupled electron
and phonon transport, including the two-temperature model
(TTM) and the multitemperature model (MTM) with the e-ph
coupling constant as an input parameter [10,15,35–37]. There-
fore, the other aim of this study is to propose a feasible
treatment of the scattering term in the coupled electron and
phonon BTEs. For solution of BTEs, two categories of nu-
merical schemes are currently available, including a stochastic
method such as the Monte Carlo (MC) scheme [38,39] and
a deterministic method such as the discrete-ordinate method
(DOM) [40,41]. The treatment of e-ph coupling in MC
schemes is still challenging so that we choose the DOM
scheme first.

The “nonequilibrium” may have two kinds of mean-
ing: (i) the “overall” nonequilibrium between electrons and
phonons as their temperatures are different, and (ii) the “lo-
cal” nonequilibrium as either electrons or phonons are not
equilibrium in their own group. When talking about the e-ph
coupling constant, the “overall” nonequilibrium is default.

Therefore, in contrast, the present work focuses on the “local”
nonequilibrium and studies the effects of this local nonequi-
librium on the e-ph coupling constant. The remainder of this
article is organized as follows. In Sec. II, the theoretical
derivation of the scattering model for the coupled electron
and phonon BTEs is provided and the computational scheme
for numerical solution is presented. The proposed coupling
model is verified by modeling the ultrafast dynamics process
in femtosecond pump-probe experiments. The variation of the
e-ph coupling constant is studied in Sec. III when nonequilib-
rium between different phonon branches or nonequilibrium of
electrons exists. The concluding remarks are finally made in
Sec. IV.

II. THEORETICAL MODEL AND NUMERICAL METHOD

A. Coupled electron and phonon BTEs under relaxation
time approximation

The coupled electron and phonon BTEs without magnetic
field are expressed as [42]

∂ fk

∂t
+ ve · ∇r fk − eE

h̄
· ∇k fk = �e-ph, (1)

∂nQ,p

∂t
+ vph,p · ∇rnQ,p = �ph-e + �ph-ph, (2)

where fk ≡ f (r, k, t ) is the electron distribution function
denoting the electron occupation number around the wave
vector k and the spatial position r at the moment t and
nQ,p ≡ n(Q, p, r, t ) is the phonon distribution function with
p the phonon polarizations and Q the phonon wave vec-
tor. ve is the electron drift velocity with vph,p the phonon
group velocity of different polarizations. h̄ is the reduced
Planck constant and E is the effective electric field with e
the element charge. In the scattering process, the e-ph col-
lision dominates for the alteration of electron distribution
function, which is represented by �e-ph. Under low-fluence
excitation and perturbation, the electron-electron interaction is
very weak due to the greatly restricted scattering phase space
by the Pauli exclusion principle [7,8]. Considering also the
screened effect, the contribution from this electron-electron
interaction is neglected as a first step [20,42]. �ph-e and �ph-ph

denote the alteration of the phonon distribution function by
the phonon-electron (ph-e) scattering and phonon-phonon
(ph-ph) scattering, respectively. The imperfection scattering
is not considered as a first step, which can be incorporated
in a straightforward way in the near future. Based on Fermi’s
golden rule, the integral forms of �e-ph and �ph-e are formu-
lated as

�e-ph = −2π

h̄

∑
Q,p

|g(k′, k, p)|2{ fk(1 − fk′ )
[
(nQ,p + 1)δ(εk − εk′ − h̄ωQ,p) + nQ,pδ(εk − εk′ + h̄ωQ,p)

]
−(1 − fk ) fk′

[
(nQ,p + 1)δ(εk − εk′ + h̄ωQ,p) + nQ,pδ(εk − εk′ − h̄ωQ,p)

]}
, (3)

�ph-e = −2π

h̄

∑
k

|g(k′, k, p)|2 fk(1 − fk′ )
[
nQ,pδ(εk − εk′ + h̄ωQ,p) − (nQ,p + 1)δ(εk − εk′ − h̄ωQ,p)

]
, (4)
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where g(k′, k, p) is the e-ph scattering matrix element with its square representing the probability of electron transition from
the state k with energy εk to the state k′ with energy εk′ by absorbing or emitting a phonon with frequency ωQ,p [19,42].
The summation of the electron wave vector state includes the spin degeneracy. In particular, the electron distribution function
and phonon distribution function are strongly coupled with each other through the collision terms. In addition, the BTEs are
integro-differential equations, which makes the direct solution very challenging.

Within the linear-response regime, the electron and phonon distribution function can be written as fk = f eq
k (T̃e) + � fk,

nQ,p = neq
Q,p(T̃ph) + �nQ,p, respectively, with the deviation part to be a small quantity � fk � f eq

k (T̃e), �nQ,p � neq
Q,p(T̃ph) away

from the equilibrium state f eq
k (T̃e), neq

Q,p(T̃ph) at the pseudotemperatures T̃e, T̃ph, respectively. In this way, the e-ph scattering term
in Eq. (3) and the ph-e scattering term in Eq. (4) are reformulated into

�e-ph = −2π

h̄

∑
Q,p

|g(k′, k, p)|2
{[(

f eq
k (T̃e) − f eq

k′ (T̃e)
)(

nQ,p − neq
Q,p(T̃e)

) + � fk
(
neq

Q,p(T̃ph) + 1 − f eq
k′ (T̃e)

)
−� fk′

(
neq

Q,p(T̃ph) + f eq
k (T̃e)

)]
δ(εk − εk′ − h̄ωQ,p)

+ [(
f eq
k (T̃e) − f eq

k′ (T̃e)
)(

nQ,p − neq
Q,p(T̃e)

) + � fk
(
neq

Q,p(T̃ph) + f eq
k′ (T̃e)

)
−� fk′

(
neq

Q,p(T̃ph) + 1 − f eq
k (T̃e)

)]
δ(εk − εk′ + h̄ωQ,p)

}
, (5)

�ph-e = −2π

h̄

∑
k

|g(k′, k, p)|2
{[

f eq
k (T̃e) − f eq

k′ (T̃e)
][

nQ,p − neq
Q,p(T̃e)

] + � fk
[
neq

Q,p(T̃ph) + f eq
k′ (T̃e)

]

−� fk′
[
neq

Q,p(T̃ph) + 1 − f eq
k (T̃e)

]}
δ(εk − εk′ + h̄ωQ,p). (6)

Generally, the pseudotemperature of electrons, T̃e, is different from that of phonons, T̃ph, such that the expression nQ,p −
neq

Q,p(T̃e) is formulated with neq
Q,p(T̃e) at the electron pseudotemperature. This expression contains the nonequilibrium phonon

part �nQ,p and the difference between the electron and phonon pseudotemperatures neq
Q,p(T̃ph) − neq

Q,p(T̃e).
The nonequilibrium phonon in the electron scattering term in Eq. (5) is called phonon drag [43]. Correspondingly, the

nonequilibrium electron in the phonon scattering term as shown by � fk and � fk′ in Eq. (6) is called electron drag. These are
mutual effects which fully couple the electron and phonon BTEs [44]. Nevertheless, the drag effects play a non-negligible role at
a low temperature as the ph-ph scatterings are greatly weakened and the phonons cannot get back to the local equilibrium quickly.
At the temperature scope concerned in the present work, the drag effects are neglected as the first step. In addition, when dealing
with the e-ph scattering term in Eq. (5), the remaining terms neq

Q,p(T̃ph) − neq
Q,p(T̃e) implicitly contained in nQ,p − neq

Q,p(T̃e) are
almost canceled with each other through the first-order Taylor expansion of the term f eq

k (T̃e) − f eq
k′ (T̃e). In other words, the terms

nQ,p − neq
Q,p(T̃e) in the electron scattering term are negligible due to the inappreciable drag effect at the evaluated temperature

and the nearly canceling summation of absorption and emission processes. Furthermore, under an isotropic scattering picture,
the nonequilibrium � fk′ of other electron states in Eq. (5) vanishes by integration [45]. Therefore, the e-ph scattering term in
Eq. (5) and the ph-e scattering term in Eq. (6) are simplified into the form of relaxation time approximation:

�e-ph = −2π

h̄

∑
Q,p

|g(k′, k, p)|2
{
� fk

[
neq

Q,p(T̃ph) + 1 − f eq
k′ (T̃e)

]
δ(εk − εk′ − h̄ωQ,p)

+� fk
[
neq

Q,p(T̃ph) + f eq
k′ (T̃e)

]
δ(εk − εk′ + h̄ωQ,p)

}

= − � fk

τk,e-ph
= − fk − f eq

k (T̃e)

τk,e-ph
, (7)

�ph-e = −2π

h̄

∑
k

|g(k′, k, p)|2[ f eq
k (T̃e) − f eq

k′ (T̃e)
][

nQ,p − neq
Q,p(T̃e)

]
δ(εk − εk′ + h̄ωQ,p) = −nQ,p − neq

Q,p(T̃e)

τQ,p,ph-e
, (8)

with the e-ph and ph-e scattering relaxation times defined, respectively, as

1

τk,e-ph
= 2π

h̄

∑
Q,p

|g(k′, k, p)|2
{[

neq
Q,p(T̃ph) + 1 − f eq

k′ (T̃e)
]
δ(εk − εk′ − h̄ωQ,p)

+[
neq

Q,p(T̃ph) + f eq
k′ (T̃e)

]
δ(εk − εk′ + h̄ωQ,p)

}
, (9)

1

τQ,p,ph-e
= 2π

h̄

∑
k

|g(k′, k, p)|2[ f eq
k (T̃e) − f eq

k′ (T̃e)
]
δ(εk − εk′ + h̄ωQ,p). (10)

The assumption of isotropic electron-acoustic phonon scattering in metals is nearly valid at a temperature higher than the
Debye temperature.
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Subsequently, we adopt the relaxation time approximation for the three-phonon umklapp scattering process with the normal
scattering and high-order phonon-phonon scattering negligible at the phonon temperature regime in the present work. Thus, the
ph-ph scattering is formulated as

�ph-ph = −nQ,p − neq
Q,p(T̃ph)

τU,ph-ph
, (11)

with the umklapp scattering spectral relaxation time defined as [46]

1

τU,ph-ph(ω, p, T̃ph)
= BUω2T̃ph exp(−
p/3T̃ph). (12)

In Eq. (12), BU = h̄γ 2
p

M
pv
2
ph,p

with the Grüneisen parameter γp and Debye temperature 
p for different phonon polarizations, M

being the average atomic mass.
The assumption of distinct pseudotemperatures for TA and LA phonons when dealing with the e-ph scattering term in Eq. (5)

and the ph-ph scattering term in Eq. (11) seems to be more consistent with the present study of nonequilibrium. However,
the identical pseudotemperature for TA and LA phonons is adopted due to the following two aspects: (i) The influence of
phonon pseudotemperature on the e-ph scattering term is only reflected in the expression of relaxation time in Eq. (9), where
the distinguishing treatment of TA and LA phonons has negligible impact; (ii) ph-ph scattering pushes TA and LA phonons
toward equilibrium and thus one representative phonon pseudotemperature in ph-ph scattering term is usually introduced [47].
Therefore, we assume an overall phonon pseudotemperature in dealing with e-ph and ph-ph scattering terms as an initial step.

For thermal transport, the contribution from the built-in electric field is negligibly small in metals [20,48] and neglected
as demonstrated in our previous work [38]. With also the assumption of isotropic band structure and dispersion relation, the
relaxation times of e-ph scattering and ph-e scattering are averaged on the same energy state as

1

τe-ph(ε)
= 1

De(ε)

∑
k

1

τk,e-ph
δ(ε − εk ), (13)

1

τph-e(ω, p)
= 1

Dph(ω, p)

∑
Q

1

τQ,p,ph-e
δ(ω − ωQ,p). (14)

In Eqs. (13) and (14), De(ε) and Dph(ω, p) are the density of states (DOS) for electrons including the spin degeneracy and
for phonons at different polarizations, respectively. With the help of the property of the Dirac δ function, the following coupling
functions are introduced as [34]

Ce-ph(ε, ε′, ω, p) = 1

h̄De(ε)

∑
k,Q

|g(k′, k, p)|2δ(ε − εk )δ(ε′ − εk′ )δ(ω − ωQ,p), (15)

Cph-e(ε, ε′, ω, p) = 1

h̄Dph(ω, p)

∑
k,Q

|g(k′, k, p)|2δ(ε − εk )δ(ε′ − εk′ )δ(ω − ωQ,p), (16)

with the equation Cph-e(ε, ε′, ω, p) = De(ε)
Dph (ω,p)Ce-ph(ε, ε′, ω, p). The coupling function in Eq. (15) can be determined by ab initio

calculation, or related to the Eliashberg function when neglecting the energy dependence of electron states [17,34]. Thus the
spectral relaxation times in Eqs. (13) and (14) are formulated, respectively, as

1

τe-ph(ε)
= 2π

∑
p

∫ {[
neq

ω (T̃ph) + 1 − f eq
ε−h̄ω

(T̃e)
]
Ce-ph(ε, ε − h̄ω,ω, p)

+[
neq

ω (T̃ph) + f eq
ε+h̄ω

(T̃e)
]
Ce-ph(ε, ε + h̄ω,ω, p)

}
dω, (17)

1

τph-e(ω, p)
= 2π

∫
De(ε)

Dph(ω, p)

[
f eq
ε (T̃e) − f eq

ε+h̄ω
(T̃e)

]
Ce-ph(ε, ε + h̄ω,ω, p)dε. (18)

Eventually, the strongly coupled electron and phonon BTEs (1) and (2) are greatly simplified into the relaxation time
approximation forms:

∂ fk

∂t
+ ve · ∇r fk = − fk − f eq

k (T̃e)

τe-ph(ε)
, (19)

∂nQ,p

∂t
+ vph,p · ∇rnQ,p = −nQ,p − neq

Q,p(T̃e)

τph-e(ω, p)
− nQ,p − neq

Q,p(T̃ph)

τU,ph-ph
, (20)
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with the relaxation times given by Eqs. (12), (17), and (18),
respectively. The local pseudoequilibrium distributions for
electrons and phonons are the Fermi-Dirac distribution and
the Bose-Einstein distribution, respectively [49]:

f eq
k (T̃e) = 1

exp[(εk − μ)/kBT̃e] + 1
, (21)

neq
Q,p(T̃ph) = 1

exp(h̄ωQ,p/kBT̃ph) − 1
, (22)

where kB is the Boltzmann constant. The chemical potential μ

is very close to Fermi energy εF at the concerned temperature
lower than around 1% of the corresponding Fermi temperature
in this work, so that μ = εF is assumed for simplicity without
losing accuracy [49]. The e-ph scattering connects the energy
transfer between electrons and phonons so that the electron
and phonon BTEs (19) and (20) are not decoupled and the
simultaneous solution is essential. If under the preassumption
that phonons are sufficiently thermalized to be in equilibrium
with electrons, the coupled equations are automatically de-
graded to the electron BTE for the electron thermal transport.

B. Computational scheme

In metals, only electrons around the Fermi energy with
a width about the thermal energy unit (kBT ) will respond
to thermal perturbation [42]. Thus, we propose to consider
the electron distribution f k above the Fermi energy and 1- fk
below the Fermi energy in the numerical simulation of elec-
tron thermal transport, as clearly demonstrated in our previous
work [38]. For a compact mathematical expression, we intro-
duce the following distribution function for electron thermal
transport:

gk = H (μ − ε) + [1 − 2H (μ − ε)] fk, (23)

where H (μ−ε) is the Heaviside step function. Thus, the elec-
tron BTE for thermal transport is reformulated as

∂gk

∂t
+ ve · ∇rgk = −gk − geq

k (T̃e)

τe-ph(ε)
, (24)

with geq
k (T̃e) = {exp(|εk − μ|/kBT̃e) + 1}−1.

The local pseudotemperatures, which are not explicitly
involved in the original collision terms, need to be deter-
mined in the current form of relaxation time approximation.
In particular, whatever the form of scattering terms are, the
intrinsic conservation laws should always be obeyed during
the corresponding scattering processes such as the e-ph and
ph-ph scatterings. Thus, in terms of thermal transport, the
energy conservation during the e-ph scattering and ph-ph
scattering processes is implemented to determine the electron
and phonon pseudotemperatures, respectively, as

∑
Q,p

h̄ωQ,p

[
−nQ,p − neq

Q,p(T̃ph)

τU,ph-ph

]
= 0, (25)

∑
k

|εk−μ|
[
−gk − geq

k (T̃e)

τe-ph(ε)

]

+
∑
Q,p

h̄ωQ,p

[
−nQ,p − neq

Q,p(T̃e)

τph-e(ω, p)

]
= 0, (26)

and the details are shown in Appendix A. Consequently, the
electron and phonon transport equations (24) and (20) com-
bined with Eqs. (25) and (26) are complete for the description
of coupled electron and phonon thermal transport process. The
calculation of the e-ph coupling constant is thus formulated as

G =
(

∂E
∂t

)
ph-e

T̃e − T̃ph
=

∑
Q,p h̄ωQ,p

(− nQ,p−neq
Q,p(T̃e )

τph-e(ω,p)

)
T̃e − T̃ph

, (27)

the contribution to which can be conveniently divided into
different phonon branches. In particular, through the descrip-
tion of distribution functions and the construction of e-ph
scattering and ph-ph scattering processes, the nonequilibrium
effects are naturally included.

Furthermore, under the present isotropic assumption, the
intensity forms are introduced by multiplying Eqs. (24) and
(20) by ve|ε−μ|De(ε)/4π and vph,ph̄ωDph(ω, p)/4π , respec-
tively:

∂Iε
∂t

+ ve · ∇rIε = − Iε − Ieq
ε (T̃e)

τe-ph(ε)
, (28)

∂φω,p

∂t
+ vph,p · ∇rφω,p

= −φω,p − φ
eq
ω,p(T̃e)

τph-e(ω, p)
− φω,p − φ

eq
ω,p(T̃ph)

τU,ph-ph
. (29)

The physical meaning of electron (phonon) intensity is the
flux of energy per unit area, per unit time, per unit solid angle
along the direction of electron (phonon) propagation, and
per unit energy (frequency) interval around ε (ω) [50]. The
local pseudoequilibrium intensities are formulated, respec-
tively, as Ieq

ε (T̃e) = ve|ε−μ|geq
ε (T̃e)De(ε)/4π and φ

eq
ω,p(T̃ph) =

vph,ph̄ωneq
ω,p(T̃ph)Dph(ω, p)/4π , where the pseudotemperature

is computed by the inverse numerical integration of Eqs. (25)
and (26) transformed into intensity forms as

∑
p

∫∫
4π

[
−φω,p − φ

eq
ω,p(T̃ph)

vph,pτU,ph-ph

]
d�dω = 0, (30)

∫∫
4π

[
− Iε − Ieq

ε (T̃e)

veτe-ph(ε)

]
d�dε

+
∑

p

∫∫
4π

[
−φω,p − φ

eq
ω,p(T̃e)

vph,pτph-e(ω, p)

]
d�dω = 0. (31)

The temperature dependence of the spectral relaxation
times is considered in the numerical solution.

To sum up, we obtain the intensity forms of the coupled
electron and phonon BTEs for numerical solution. Once the
electron and phonon intensities are resolved, the e-ph cou-
pling constant G and the local electron and phonon energy
density Ee(t ,r), Eph(t ,r) with the respective local temperature
Te and Tph are thus calculated:

G =
(

∂E
∂t

)
ph-e

T̃e − T̃ph
=

∑
p

∫∫
4π

[− φω,p−φ
eq
ω,p(T̃e )

vph,pτph-e(ω,p)

]
d�dω

T̃e − T̃ph
, (32)

Ee(t, r) =
∫∫

4π

Iε
ve

d�dε =
∫∫

4π

Ieq
ε (Te)

ve
d�dε, (33)
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Eph(t, r) =
∑

p

∫∫
4π

φω,p

vph,p
d�dω

=
∑

p

∫∫
4π

φ
eq
ω,p(Tph)

vph,p
d�dω. (34)

The DOM scheme is adopted for the numerical solu-
tion, the development and validity of which have been
demonstrated in our previous work [40,41]. Additionally, the
Gauss-Legendre (GL) quadrature is adopted for the numer-
ical integration over the electron energy, phonon frequency,
and angular variables due to its high efficiency as shown in
Appendix B.

C. Model verification

The coupled electron and phonon BTEs in Secs. II A and
II B will be verified by numerical modeling of the ultrafast
dynamics process in femtosecond pump-probe experiments.
A direct comparison with the experiment is difficult because
the probed signal, such as the reflectance change of metal
surface, includes the contribution from both electrons and
phonons with the ratio to each other dependent on the probe
laser and material. As the validation of the relaxation time
approximation of the e-ph coupling in the present model is
the key point, we compare the present coupling model to
the full integral treatment of scattering terms in Ono’s model
[34]. The widely used continuum models such as the two-
temperature model (TTM) and the four-temperature model
(FTM) are also included for comparison.

Neglecting the drift term is often adopted for simplicity
when investigating the ultrafast dynamics in femtosecond
pump-probe experiments since the characteristic timescale of
coupling and energy transfer between electrons and phonons
is very short [34]. The initial condition, electron Fermi win-
dow, phonon dispersion relation, and the expression of e-ph
coupling function in Eq. (15) for aluminum are all referred
from Ono’s model [34]. The Grüneisen parameters in the
three-phonon umklapp scattering term for different phonon
polarizations are adopted, respectively, as γTA = 2.21, γLA =
2.21 [31]. In the DOM scheme for numerical solution, the
angular and spatial variables vanish in this case due to the neg-
ligible treatment of the drift term. The discretization of the
electron energy and phonon spectrum is based on the abscissas
of the GL quadrature that are applied with 96 and 80 points
for electrons and phonons, respectively. The time step is set
to be 1 fs.

The electron and phonon energy densities, Ee(t) and Eph(t),
are calculated by Eqs. (33) and (34), respectively, without the
spatial dependence. Based on this computation, the excess
electron and phonon energy densities defined as E∗

e = Ee(t ) −
Ee(T0), E∗

ph = Eph(t ) − Eph(T0), respectively, with the ref-
erence temperature T0 = 290 K are shown in Fig. 1. The
electron energy density decreases with time accompanied by
the increase of phonon energy density due to the energy
transfer between each other. Ono’s work demonstrates that the
energy relaxation in the continuum models with the quasiequi-
librium treatment such as TTM and FTM is obviously faster
than that in his BTE model [34]. Although the present result is

FIG. 1. Time-dependent excess electron and phonon energy den-
sity: (a) excess electron energy density; (b) excess phonon energy
density; the solid line denotes the result of the present coupling
model whereas hollow circles, squares, and diamonds are that of
Ono’s model, FTM, and TTM, respectively [34].

slightly faster than that of Ono’s model due to the assumption
of weak deviation from the equilibrium state, the agreement
is generally very good in contrast to the TTM and FTM. For
some femtosecond pump-probe experiments where electrons
are highly excited to be thousands of Kelvin instantly, the
higher-order nonequilibrium effects might be relevant and
the integral treatment of the full scattering term is more
preferable. Nevertheless, in most transport cases within the
linear-response regime, the present treatment of e-ph coupling
by relaxation time approximation provides a more practical
avenue. It represents a more accurate theoretical description
compared to the continuum model whereas it is a simpler
one compared to BTE with full scattering term. In summary,
the comparison of the results by our relaxation time approx-
imation model with that by Ono’s model provides a solid
validation of our e-ph coupling model.

III. RESULTS AND DISCUSSION

In this section, we will apply the validated e-ph cou-
pling model to study the e-ph coupling constant for four
kinds of metals including aluminum, copper, silver, and gold.
The influences on the e-ph coupling constant by the tempo-
ral nonequilibrium between different phonon branches and
the spatial nonequilibrium of electrons are investigated in
Secs. III A and III B, respectively.

The electron band structure is approximated as the free
electron model and the electron Fermi window is adopted as
[εF − 15kBT, εF + 15kBT ] with T = 500 K. The phonon dis-
persion relation along the [0 0 1] direction is used to represent
the dispersion in the first Brillouin zone, and is fitted by an
empirical power law expression: ω(q) = B4,pq4 + B3,pq3 +
B2,pq2 + B1,pq with fitting parameters B1,p, B2,p, B3,p, and
B4,p. This expression for different metals is referred from
experimental data [51–54] or theoretic calculation [55]
as summarized in Table I. The nondimensional parameter
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TABLE I. Phonon dispersion relation along the [0 0 1] direction for different metals including aluminum, silver, copper, and gold at 300 K.

TA branch (rad/s) LA branch (rad/s)

Al
6.750 × 1012q4 − 3.204 × 1013q3

+9.578 × 1012q2 + 5.147 × 1013q
6.208 × 1013q4 − 1.216 × 1014q3

+2.226 × 1013q2 + 9.825 × 1013q

Ag
8.1289 × 1012q4 − 2.4607 × 1013q3

+4.4373 × 1012q2 + 3.3748 × 1013q
1.5349 × 1013q4 − 3.8537 × 1013q3

+0.7202 × 1012q2 + 5.4066 × 1013q

Cu
1.0452 × 1013q4 − 3.5385 × 1013q3

+7.6611 × 1012q2 + 4.9674 × 1013q
4.0666 × 1012q4 − 2.643 × 1013q3

−6.351 × 1012q2 + 7.4353 × 1013q

Au
1.1451 × 1012q4 − 1.3922 × 1013q3

+7.7833 × 1012q2 + 2.2398 × 1013q
4.0651 × 1012q4 − 8.6902 × 1012q3

−2.1783 × 1013q2 + 5.5651 × 1013q

is expressed as q = Q/Qmax with Q the phonon wave
vector along the [0 0 1] direction and Qmax = 2π/a, a
being the cubic lattice constant. Transverse acoustic (TA)
polarization and longitudinal acoustic (LA) polarization are
included for calculation. The Grüneisen parameters for differ-
ent phonon branches are chosen to be the same [31,33,56] as
summarized in Table II. In addition, the e-ph coupling func-
tion is related to the Eliashberg function and approximated
as Ce-ph(ε, ε′, ω, p) � √

εF/εα
2F (ω, p) for the convenience

of considering the deviation of electron energy from the
Fermi level [34]. Furthermore, an empirical expression orig-
inally derived in the low-frequency limit is adopted for
the Eliashberg function in the whole frequency spectrum:
α2F (ω, p) = λpn(ω/ωmax,p)n/2 with n equal to 2 for a clean
bulk crystal [57]. The mass enhancement parameter λp for
different polarizations can be inversely determined as λp =
2

∫ ωmax,p

0
α2F (ω,p)

ω
dω once the Eliashberg function is obtained

[58]. As the overall mass enhancement parameter λ = 2λTA +
λLA is usually given by ab initio theoretical calculation
[31–33] or experimental measurement [58], the contribution
from different phonon branches is often not given. Thus the
ratio of different branches is referred from the empirical cal-
culation for aluminum [34] and is approximated to be λLA :
λTA ≈ 2 : 1 as given in Table II. This value is consistent with
the theoretical analysis that the e-ph coupling is dominated by
LA phonons [10].

In order to validate the parameters adopted in our model,
the electron thermal conductivity

κe =
∫

Fermi
window

(ε − εF) d f eq

dT v2
e τe−ph(ε)De(ε)dε/3,

TABLE II. Summary of electron Fermi energy εF, cubic lattice
constant a, overall mass enhancement parameter λ including the
contribution from TA polarization λTA and LA porization λLA, and
Grüneisen parameters γTA, γTA for the TA, LA branches for different
metals at 300 K.

εF (eV) [49] a (Å) [49] λ λTA λLA γTA γLA

Al 11.63 4.05 0.45 0.12 0.21 2.21 2.21
Ag 5.48 4.09 0.12 0.03 0.06 2.31 2.31
Cu 7.00 3.61 0.18 0.045 0.09 1.94 1.94
Au 5.51 4.08 0.15 0.04 0.07 2.62 2.62

phonon thermal conductivity

κph =
∑

p

∫ ωmax,p

0
h̄ω

dneq

dT
v2

ph,p

(
τ−1

ph-e + τ−1
ph-ph

)−1

× Dph(ω, p)dω/3

based on the kinetic theory [42], and the e-ph
coupling constant G = 3h̄

∫
Fermi

window
(ε − εF) d f eq

dT De(ε)dε

× ∑
p 2

∫ ωmax,p

0
α2F (ω,p)

ω
ω2dω/(πkBT ) based on Allen’s

formula [17] are, respectively, calculated for aluminum,
silver, copper, and gold, as summarized in Table III. The
overall thermal conductivity summing the contribution from
electrons and phonons as κ = κe + κph is also shown. We
compare the results of the present calculation with those by
ab initio calculation [31–33] and experimental measurements
[49,58,59]. For the overall thermal conductivity of Al, there
exists an appreciable difference between the experimental
data and the present result, which may arise from the
calculation of the Fermi velocity [60]. For the thermal
conductivities of Al and Cu contributed by phonons,
the results of the present work are a little lower than those
by the ab initio method. It might be attributed to the power
law approximation of the Eliashberg function in the whole
spectrum, which may slightly overpredict the ph-e scattering
rate for the medium-high frequency. Thus, the corresponding
phonon thermal conductivity of Al or Cu with a higher Debye
temperature may be underestimated slightly. Generally, the
e-ph coupling constant and overall thermal conductivity
calculated by the present work agree with the ab initio results
and experimental data, which validates the input parameters
adopted in our model.

A. Temporal nonequilibrium effect on e-ph coupling constant

In this section, the e-ph coupling constant in ultrafast dy-
namics is calculated. For simplicity, the drift term is neglected
as a first step. The initial condition is set that electrons are
assumed in equilibrium at 980 K with phonons undisturbed
at room temperature (300 K). This choice of initial condition
is to approach the condition in femtosecond pump-probe ex-
periments as a first step. The time step for aluminum, silver,
copper, and gold is adopted to be 2, 10, 2, and 8 fs, separately.
The number of abscissas of the GL quadrature is chosen as
96 and 80 points for electron energy and phonon spectrum,
respectively. Thus, the time-dependent e-ph coupling constant
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TABLE III. Summary of electron thermal conductivity κe, phonon thermal conductivity κph, overall thermal conductivity κ , and e-ph
coupling constant G calculated by the present work in comparison with ab initio results [31–33] or experimental data [49,58,59] for different
metals at 300 K.

κe (W/m/K) κph(W/m/K) κ (W/m/K) G (W/m3/K)

Al Present calculation 335.24 3.91 339.15 3.62 × 1017

Ab initio 232.53 [33], 246 [31] 8.95 [33],5.8 [32], 6 [31] 241.49 [33], 252 [31] 5.38 × 1017 [31]
Experiment – – 237 [49] 2.45 × 1017 [59]

Ag Present calculation 404.94 4.94 409.88 2.01 × 1016

Ab initio 450.86 [33], 370 [31] 5.69 [33], 5.2 [32], 4 [31] 456.55 [33], 374 [31] 3.0 × 1016 [31]
Experiment – – 429 [49]

Cu Present calculation 388.55 10.26 398.81 7.25 × 1016

Ab initio 361.32 [33] 17.42 [33], 16.9 [32] 378.74 [33]
Experiment – – 401 [49] ∼1 × 1017 [58]

Au Present calculation 326.88 4.05 330.93 1.92 × 1016

Ab initio 273.45 [33], 276 [31] 2.80 [33], 2.6 [32], 2 [31] 276.25 [33], 278 [31] 2.2 × 1016 [31]
Experiment – – 317 [49] 2.9 × 1016 [59]

calculated by Eq. (32) and the electron and phonon tempera-
ture computed by the inverse integration of Eqs. (33) and (34)
are shown in Fig. 2 for different metals. The energy trans-
fer occurs between electrons and phonons, which is clearly
shown by the decrease of electron temperature and increase
of phonon temperature until the temperature difference be-
tween the two vanishes. The e-ph coupling constant predicted
by Allen’s theory is constant within the temperature scope
concerned in the present work, where the excitation of d band
electrons is not necessarily considered. In comparison, the
e-ph coupling constant calculated by the present model re-
mains nearly constant and a little lower than that predicted by
Allen’s theory at the initial stage, rapidly decreasing at some
moment, and finally reducing to the value one order of mag-
nitude smaller than that of Allen’s theory. The temperature
difference between electron and phonon is still appreciable
(27.2, 5.6, 10.8, and 7.1 K for aluminum, silver, copper, and
gold, separately) when the e-ph coupling constant reduces
to half of Allen’s theoretical value. In addition, the occur-
rence instant of this rapid reduction is different for different
metals.

For the further understanding of this reduction, the e-ph
coupling constant in Eq. (32) including the contribution of
different phonon branches is correspondingly divided and
shown in Fig. 3 for Ag. This reduction is almost attributed
to the LA branch whereas the e-ph coupling constant due to
the TA branch remains nearly constant. The present trend is
also applicable for other metals including aluminum, copper,
and gold, and is not shown here to avoid repetition. The e-ph
coupling constant contributed by the LA branch even reduces
to be negative, which means that LA phonons transfer energy
to electrons. Such anomalous phenomena of energy backflow
has also been demonstrated in Ono’s model [34].

Furthermore, in order to investigate how the energy back-
flow occurs, the TA and LA phonon energy density change
rates by the e-ph scattering and ph-ph scattering are defined
as (∂Eph,TA/∂t )ph-e, (∂Eph,LA/∂t )ph-e, (∂Eph,TA/∂t )ph-ph, and
(∂Eph,LA/∂t )ph-ph, separately. Considering the phonon BTE,
the phonon energy density change rates are equal to the energy
transfer during the corresponding e-ph and ph-ph scattering
channels. Thus, the phonon energy density change rates are

calculated as

(∂Eph,TA/∂t )ph-e =
∫∫

4π

[
− φω,TA−φ

eq
ω,TA(T̃e )

vph,TAτph-e(ω,TA)

]
d�dω,

(∂Eph,LA/∂t )ph-e =
∫∫

4π

[
− φω,LA−φ

eq
ω,LA(T̃e )

vph,LAτph-e(ω,LA)

]
d�dω,

(∂Eph,TA/∂t )ph-ph =
∫∫

4π

[
−φω,TA−φ

eq
ω,TA(T̃ph )

vph,TAτU,ph-ph

]
d�dω,

and

(∂Eph,LA/∂t )ph-ph =
∫∫

4π

[
−φω,LA−φ

eq
ω,LA(T̃ph )

vph,LAτU,ph-ph

]
d�dω;

they are shown in Fig. 4(a).
Figure 4(b) shows the excess energy density of electrons

and phonons at different polarizations with the reference tem-
perature of 300 K. During the initial stage to 0.3 ps, the energy
exchange by the e-ph scattering dominates and the strength
of the electron-LA-phonon (e-LA) scattering is stronger than
that of the electron-TA-phonon (e-TA) scattering. It is clearly
shown in Fig. 4(b) that the energy increase of LA phonons is
much faster than that of TA phonons such that nonequilibrium
occurs between different phonon branches. This nonequilib-
rium effect continually enlarges from 0.3 to 2 ps due to the
continuous dominance of e-ph scattering though ph-ph scat-
tering gradually works, pushing LA and TA phonons to be in
equilibrium. Afterward, during the next 7 ps, ph-ph scattering
gradually dominates and thus the nonequilibrium between TA
and LA phonons is weakened but still exists. Considering the
continually decreasing amount of energy exchange by e-ph
scattering, the energy transfer from electrons to LA phonons
rapidly decreases to be negative around 9 ps. In other words,
energy backflow takes place, the clear signature of which is
revealed in the inset of Fig. 4(a).

In general, the intrinsically different dispersion relation
for TA and LA phonons and the different coupling strength
for e-LA and e-TA scattering represented by the coupling
function in Eq. (15) will induce nonequilibrium between dif-
ferent phonon polarizations. This will further make the ph-ph
scattering gradually work, pushing the equilibrium between
TA and LA phonons. Considering these effects, the temporal
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FIG. 2. Time-dependent e-ph coupling constant and electron,
phonon temperature in ultrafast dynamics: (a) for aluminum; (b) for
silver; (c) for copper; (d) for gold. The solid blue line represents the
e-ph coupling constant calculated by the present model whereas the
blue dash-dot line denotes that from Allen’s theory [17]; the electron
and phonon temperatures are marked by the orange dotted line and
dashed line, separately.

FIG. 3. The contribution from TA and LA branch to the e-ph
coupling constant for silver: the blue and red lines represent the
result of the present model contributed by the LA and TA branches,
respectively, whereas the dash-dot line denotes that of Allen’s theory
[34].

nonequilibrium between different phonon branches always
exists. Finally, energy backflow occurs and the e-ph coupling
constant rapidly decreases. The present exploration of the
time-dependent e-ph coupling constant by our model is signif-
icant for the description of the electron and phonon coupling
process in the femtosecond pump-probe experiments. The use
of an invariable e-ph coupling constant in the continuum TTM
model requires further reexamination in the near future.

In addition, the different types of initial condition are in-
vestigated. First of all, the Gaussian-type initial distribution
for electrons [34] can be straightforwardly incorporated, the
influence of which on the e-ph coupling constant compared
to the currently preassumed high temperature condition is
checked and shown in the Fig. 5(a). The Gaussian-type initial
condition that approximately amounts to an effective electron
temperature of 980 K has no effect on the result of the e-ph
coupling constant. Moreover, the influence by different values
of preassumed electron temperature is also investigated in
Fig. 5(b). The e-ph coupling constant is nearly independent
of electron temperature lower than 1000 K, which agrees with
the conclusion in the ab initio calculation [30]. It clearly
shows that the occurrence of the reduction of the e-ph cou-
pling constant is slightly influenced by the choice of different
electron initial temperatures. This may arise from the tem-
perature dependence of relaxation time. These results further
validate the present model with more general application.

B. Spatial nonequilibrium effect on e-ph coupling constant

In this section, the e-ph coupling constant is calcu-
lated when the characteristic length of metals is reduced to
nanoscale size. The quantum effect, which might be signifi-
cant below nanometers, will not be considered in the present
work as the first step. The cross-plane electron and phonon
coupling transport through a thin gold film is simulated with
the isothermal boundary and periodic boundary condition
exerted on the x direction and the y direction, respectively.
The z direction is omitted for simplicity. The temperature of
Th = 310 K and Tc = 290 K is assigned on the electron and
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FIG. 4. Time-dependent phonon energy density change rate
and the excess energy density of electron and phonon for silver:
(a) phonon energy density change rate; the blue and black solid lines
represent the result of the LA phonon by e-ph scattering and ph-ph
scattering, separately, whereas the red line denotes that of the TA
phonon by e-ph scattering, and the dashed line is shown for eye
guidance; the energy density change rate of the TA phonon by ph-ph
scattering is correspondingly inverse with that of the LA phonon
due to the energy conservation principle during the ph-ph scattering
process; the inset is the magnified figure of the period from 5 to 40
ps. (b) The excess energy density of electron and phonon; the red
line represents the result of electron whereas the blue dashed and
black dash-dot lines denote that of the LA phonon and TA phonon,
respectively.

phonon simultaneously at the left-hand and right-hand sides of
the x direction, respectively. The thicknesses of 400, 80, and
5 nm are, respectively, simulated with a width of 2 nm for the
lateral periodic boundary. In numerical solution, the number
of abscissas of the GL quadrature is chosen as 48 and 48
points for electron energy and phonon spectrum, respectively,
and 32 points for both the discretization of azimuth and polar

FIG. 5. The influence of different types of electron initial condi-
tion on the e-ph coupling constant for silver: (a) Gaussian-type initial
state vs the preassumed high-temperature condition; the blue and red
lines represent the results of the preassumed temperature condition
whereas the black dashed line denotes that of the Gaussian-type
initial state. (b) The different values of preassumed initial electron
temperature; the blue and red lines represent the results of the initial
electron temperature of 980 K whereas the black dashed line denotes
that of initial electron temperature of 320 K.

angle. The number of spatial grids is 201, 81, and 41 for
thicknesses of 400, 80, and 5 nm, separately, with three nodes
for the y direction. Therefore, the e-ph coupling constant in
Eq. (32) is shown in Fig. 6. Meanwhile, the local electron
and phonon temperatures calculated by Eqs. (33) and (34) are
further normalized as 
 = (T − Tc)/(Th − Tc) and displayed.
When the temperatures of electrons and phonons gradually
coincide as clearly shown in the middle region in Figs. 6(a)
and 6(b), the amount of energy exchange between electrons
and phonons tends to be zero. The use of expression (32) to
calculate the e-ph coupling constant is meaningless and thus
the result of the e-ph coupling constant is not displayed in this
middle region.

The mean free path (MFP) of phonons is about one order
of magnitude smaller than that of electrons in metals [20].
Thus, it is more difficult for electrons in the thin film to be
sufficiently thermalized with the isothermal boundaries. It is

125412-10



NONEQUILIBRIUM EFFECTS ON THE … PHYSICAL REVIEW B 103, 125412 (2021)

FIG. 6. The e-ph coupling constant and the nondimensional tem-
perature 
 = (T − Tc )/(Th − Tc ) of electrons and phonons for the
thin gold film of different thicknesses: (a) 400 nm; (b) 80 nm;
(c) 5 nm. The hollow squares represent the e-ph coupling constant
calculated by the present model whereas the orange dashed line
denotes that from Allen’s theory [34]; the nondimensional electron
and phonon temperature are marked by the black solid line and blue
dashed line, respectively.

manifested by a larger temperature jump of electrons than that
of phonons at the boundary, which further increases as the film
thickness decreases. Consequently, nonequilibrium between

electrons and phonons exists, and then an energy exchange
occurs. However, the energy exchange (shown in the e-ph cou-
pling constant) is weakened compared to Allen’s theoretical
calculation, which shall be attributed to the spatial nonequi-
librium effect of electrons. In other words, electrons are more
likely to reach the boundary before they exchange energy with
phonons so that the e-ph coupling constant decreases near
the boundary. In addition, the e-ph coupling constant further
decreases by the increase of this spatial nonequilibrium effect
as the film thickness decreases. The other metals includ-
ing aluminum, silver, and copper exhibit similar results not
shown here. This exploration will promote the fundamental
understanding of electron and phonon coupling at very small
scale. Generally, the nonequilibrium effects of electrons and
phonons are increasingly important at nanoscale. As a result,
the electron drag and phonon drag might play a non-negligible
role at this small scale besides at low temperature. It has been
rarely touched upon in the literature and requires more studies
in the near future.

IV. CONCLUSIONS

In the present work, an electron-phonon (e-ph) coupling
model is proposed through transforming the original e-ph
and ph-e scattering terms in the coupled electron and phonon
Boltzmann transport equations into the relaxation time ap-
proximation forms. This model is applied to investigate the
e-ph coupling constant when the temporal or spatial nonequi-
librium effects are important. We demonstrate a verification
of the coupling model by numerical modeling of the ultrafast
dynamics process in femtosecond pump-probe experiments,
which shows generally consistent results with the full integral
treatment of scattering terms. The e-ph coupling constant
decreases rapidly due to the temporal nonequilibrium effect
between different phonon branches. Moreover, the e-ph cou-
pling constant is much reduced by the nonequilibrium of
electrons in confined space. As the nonequilibrium effect is
intrinsically included, this e-ph coupling model provides a
feasible tool for the theoretical description of coupled electron
and phonon transport systems at micro- and nanoscale. The
present work will promote the fundamental understanding and
modeling of the electron and phonon coupling process.
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APPENDIX A: DETERMINATION
OF PSEUDOTEMPERATURES

We consider the zero-order moment equations through
multiplying Eqs. (24) and (20) by |εk − μ| and h̄ωQ,p,
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respectively, and summing over the wave vector space:

∑
k

|εk − μ|∂gk

∂t
+

∑
k

ve|εk − μ| · ∇rgk =
∑

k

−|εk − μ|gk − geq
k (T̃e)

τe−ph(ε)
, (A1)

∑
Q,p

h̄ωQ,p
∂nQ,p

∂t
+

∑
Q,p

vph,ph̄ωQ,p · ∇rnQ,p =
∑
Q,p

−h̄ωQ,p

nQ,p − neq
Q,p(T̃e)

τph-e(ω, p)
+

∑
Q,p

−h̄ωQ,p

nQ,p − neq
Q,p(T̃ph)

τU,ph-ph
. (A2)

Moreover, the energy balance equations require

∂Ee

∂t
+ ∇ · qe = −�e-ph, (A3)

∂Eph

∂t
+ ∇ · qph = �e-ph, (A4)

where �e−ph denotes the energy transfer from electrons to phonons. The heat flux of electrons and phonons is defined as qe =∑
k ve|εk − μ|gk, qph = ∑

Q,p vph,ph̄ωQ,pnQ,p, separately. Correspondingly, comparing the energy balance equations with the
zero-order moment equations, it generally gives the equations:

∑
k

−|εk − μ|gk − geq
k (T̃e)

τe-ph(ε)
+

∑
Q,p

−h̄ωQ,p

nQ,p − neq
Q,p(T̃e)

τph-e(ω, p)
= 0, (A5)

∑
Q,p

−h̄ωQ,p

nQ,p − neq
Q,p(T̃ph)

τU,ph-ph
= 0, (A6)

which are actually (26) and (25) in the main text. In other words, Eqs. (A5) and (A6) describe the energy conservation principle
during the e-ph and ph-ph scattering processes, respectively. Thus, these two equations are implemented to calculate the electron
and phonon pseudotemperatures.

APPENDIX B: DOM SCHEME

A transient two-dimensional scheme is considered whereas the extension to three-dimensional (3D) problem is straightfor-
ward. For a short abbreviation, I and φ are used to denote Iε and φω,p, separately. Considering the discretization of the angular
and frequency/energy domains by the abscissas of the Gauss-Legendre (GL) quadrature, the intensity forms of electron and
phonon BTEs (28) and (29) reduce to

∂Iθ,ϕ
n

ve,n∂t
+ uθ

∂Iθ,ϕ
n

∂x
+ η

ϕ

θ

∂Iθ,ϕ
n

∂y
= − Iθ,ϕ

n − Ieq
n (T̃e)

(veτe-ph)n

, (B1)

∂φθ,ϕ
mp

vph,mp∂t
+ uθ

∂φθ,ϕ
mp

∂x
+ η

ϕ
θ

∂φθ,ϕ
mp

∂y
= −

φθ,ϕ
mp

− φ
eq
mp (T̃e)

(vphτph-e)mp

−
φθ,ϕ

mp
− φ

eq
mp (T̃ph)

(vphτU,ph-ph)mp

, (B2)

where n = 1, 2, . . . , Ne and mp = 1, 2, . . ., Nph,p are the discrete electron energy nodes and spectral nodes of phonon
polarization p, respectively. ve,n and vph,mp are the module of electron drift velocity and phonon group velocity of different
branches. θ = 1, 2, . . . , Nθ and ϕ = 1, 2, . . . , Nϕ are the discrete nodes for the polar angle [0, π ] and semi azimuth angle [0,

π ], separately, with η
ϕ

θ =
√

1 − u2
θ cos[(1 + uϕ )π/2], uθ and uϕ being the corresponding abscissas of GL quadrature.

Subsequently, the implicit and first-order upwind scheme is applied to the temporal and spatial discretization. Considering
the signs of uθ and η

ϕ
θ , the Eqs. (B1) and (B2) are further written into the discrete forms by the general format

Iθ,ϕ,t+1
n,i, j − Iθ,ϕ,t

n,i, j

ve,n�t
+ uθ + |uθ |

2

Iθ,ϕ,t+1
n,i, j − Iθ,ϕ,t+1

n,i−1, j

�x
+ uθ − |uθ |

2

Iθ,ϕ,t+1
n,i+1, j − Iθ,ϕ,t+1

n,i, j

�x

+ η
ϕ

θ + |ηϕ

θ
|

2

Iθ,ϕ,t+1
n,i, j − Iθ,ϕ,t+1

n,i, j−1

�y
+ η

ϕ

θ − |ηϕ

θ
|

2

Iθ,ϕ,t+1
n,i, j+1 − Iθ,ϕ,t+1

n,i, j

�y
= − Iθ,ϕ,t+1

n,i, j − Ieq,t+1
n,i, j (T̃e)

(veτe-ph)n

, (B3)

φ
θ,ϕ,t+1
mp,i, j − φ

θ,ϕ,t
mp,i, j

vph,mp�t
+ uθ + |uθ |

2

φ
θ,ϕ,t+1
mp,i, j − φ

θ,ϕ,t+1
mp,i−1, j

�x
+ uθ − |uθ |

2

φ
θ,ϕ,t+1
mp,i+1, j − φ

θ,ϕ,t+1
mp,i, j

�x

+ η
ϕ
θ + |ηϕ

θ
|

2

φ
θ,ϕ,t+1
mp,i, j − φ

θ,ϕ,t+1
mp,i, j−1

�y
+ η

ϕ
θ − |ηϕ

θ
|

2

φ
θ,ϕ,t+1
mp,i, j+1 − φ

θ,ϕ,t+1
mp,i, j

�y

= −
φ

θ,ϕ,t+1
mp,i, j − φ

eq,t+1
mp,i, j (T̃e)

(vphτph-e)mp

−
φ

θ,ϕ,t+1
mp,i, j − φ
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mp,i, j (T̃ph)

(vphτU,ph-ph)mp

. (B4)
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In Eqs. (B3) and (B4), i = 1, 2, . . . , Nx and j = 1, 2, . . . , Ny denote the spatial notes in the x direction and y direction,
respectively, whereas t = 0, 1, 2, . . . , Nt represents the temporal nodes. Thus, the discrete electron and phonon intensities are
derived from Eqs. (B3) and (B4), separately:

Iθ,ϕ,t+1
n,i, j = Iθ,ϕ,t

n,i, j + αe-phIeq,t+1
n,i, j (T̃e) + cu

n+|cu
n|

2 Iθ,ϕ,t+1
n,i−1, j + |cu

n|−cu
n

2 Iθ,ϕ,t+1
n,i+1, j + cη

n+|cη
n |

2 Iθ,ϕ,t+1
n,i, j−1 + |cη

n |−cη
n

2 Iθ,ϕ,t+1
n,i, j+1

1 + αe-ph + |cu
n| + |cη

n | , (B5)

φ
θ,ϕ,t+1
mp,i, j =

φ
θ,ϕ,t
mp,i, j + �

eq,t+1
mp,i, j + cu

mp+|cu
mp |

2 φ
θ,ϕ,t+1
mp,i−1, j + |cu

mp |−cu
mp

2 φ
θ,ϕ,t+1
mp,i+1, j + cη

mp+|cη
mp |

2 φ
θ,ϕ,t+1
mp,i, j−1 + |cη

mp |−cη
mp

2 φ
θ,ϕ,t+1
mp,i, j+1

1 + αph-e + αph-ph + ∣∣cu
mp

∣∣ + ∣∣cη
mp

∣∣ , (B6)

with

cu
n = ve,nuθ�t/�x, cη

n = ve,nη
ϕ

θ �t/�y, cu
mp

= vph,mpuθ�t/�x, cη
mp

= vph,mpη
ϕ

θ �t/�y,

αe-ph = �t/τe-ph,n, αph-e = �t/τph-e,mp, αph-ph=�t/τU,ph-ph,mp, �
eq,t+1
mp,i, j =αph-eφ

eq,t+1
mp,i, j (T̃e)+αph-phφ

eq,t+1
mp,i, j (T̃ph). (B7)

The pseudotemperatures of phonons and electrons are thus calculated based on the numerical solution of Eqs. (30) and (31)
by dichotomy or Newton’s method:

4π
∑

p

ωmax,p

2

Nph,p∑
mp=1

φ
eq
mp

(
T̃ t+1

ph,i, j
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wϕwθwmp, (B8)

4πεHFW
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2
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(vphτph-e)mp

wϕwθwmp, (B9)

where wϕ, wθ , wn, and wmp are the corresponding weight coefficients with εHFW the half-width of the Fermi window. Similarly,
the macroscopic variables including local electron, phonon temperature and e-ph coupling constant are computed based on
formulas (32)–(34):

4πεHFW

Ne∑
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Ieq
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(
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)
ve,n
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Gt+1
i, j =

4π
∑

p
ωmax,p

2

∑Nph,p

mp=1
φ

eq
mp (T̃ t+1

e,i, j )
(vphτph-e )mp

wmp − π
∑

p
ωmax,p

2

∑Nph,p

mp=1

∑Nθ

θ=1

∑Nϕ

ϕ=1

φ
θ,ϕ,t+1
mp,i, j

(vphτph-e )mp
wϕwθwmp

T̃ t+1
e,i, j − T̃ t+1

ph,i, j

. (B12)

In addition, the isothermal boundary for the x direction and periodic boundary for the y direction are shown, respectively:

Iuθ >0,ϕ,t+1
n,x=0, j = Ieq

n (Th), Iuθ <0,ϕ,t+1
n,x=L, j = Ieq

n (Tc), φ
uθ>0,ϕ,t+1
mp,x=0, j = φeq

mp
(Th), φ

uθ <0,ϕ,t+1
mp,x=L, j = φeq

mp
(Tc), (B13)

I
θ,η

ϕ
θ >0,t+1

n,i,y=0 = I
θ,η

ϕ
θ >0,t+1

n,i,y=H , I
θ,η

ϕ
θ <0,t+1

n,i,y=H = I
θ,η

ϕ
θ <0,t+1

n,i,y=0 , φ
θ,η

ϕ
θ >0,t+1

mp,i,y=0 = φ
θ,η

ϕ
θ >0,t+1

mp,i,y=H , φ
θ,η

ϕ
θ <0,t+1

mp,i,y=H = φ
θ,η

ϕ
θ <0,t+1

mp,i,y=0 , (B14)

whereas other types of boundaries can be directly referred from our previous work [40].
Therefore, the computational procedures of the DOM scheme for the coupled electron and phonon BTEs is as follows:
(a) Initialize the electron and phonon intensity, and pseudoequilibrium intensity field at the moment t + 1 by that of the last

time step.
(b) Implement the boundary conditions.
(c) Update the electron and phonon intensity field by Eqs. (B5) and (B6).
(d) Calculate the electron and phonon pseudotemperatures based on Eqs. (B8) and (B9), and the corresponding pseudoequi-

librium intensity.
(e) Compare the pseudoequilibrium intensity with that of the last iteration; if the convergence criterion is not satisfied, go

back to step (b) until it is satisfied.
(f) Compute the macroscopic variables and then go to the next time step and loop from step (a) until finishing the prescribed

time steps or reaching the steady state.
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