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Coexistence of topological edge states and skin effects in the non-Hermitian Su-Schrieffer-Heeger
model with long-range nonreciprocal hopping in topoelectric realizations
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Recently, the topological phase in non-Hermitian systems has been a rapidly expanding field. The iconic fea-
tures of non-Hermitian systems are exceptional points at which the eigenmodes coalesce and the non-Hermitian
skin effect. We study the non-Hermitian Su-Schrieffer-Heeger model with long-range nonreciprocal hopping and
find the model exhibiting topologically nontrivial phases which can be characterized by the non-Bloch winding
number. With specific parameter values, the skin effect can be eliminated. As long-range nonreciprocal hopping
is not easy for experimental implementations, we furthermore propose a feasible electrical-circuit simulation
with operational amplifiers to implement the non-Hermitian term to realize these interesting states.
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I. INTRODUCTION

Recently, non-Hermitian systems have attracted tremen-
dous attention in the fields of condensed-matter physics and
topological materials [1–12] since the non-Hermitian Hamil-
tonians are found to be appropriate for describing many
systems, such as open systems [13–18], wave systems with
gain and/or loss [19–25], etc. Specifically, the Su-Schrieffer-
Heeger (SSH) model, with a simple mathematical form but
rich topological phases, has been suggested to analytically
elucidate the physical properties of non-Hermitian systems
[26–30]. Previous works have reported novel topological be-
haviors in non-Hermitian SSH systems, such as exceptional
points (EPs) under the periodic boundary condition (PBC)
and the skin effect [26,31–33] under the open boundary con-
dition (OBC). Physically, EPs, defined as the points where
the eigenvalues and the corresponding eigenvectors coalesce
[34,35], often lead to unconventional effects in non-Hermitian
systems such as enhanced transmission through quantum dots
for quantum resonances [36,37] and enhanced laser linewidth
in a phonon laser [38]. The skin effect means exponential
localization of continuum-spectrum eigenstates for both bulk
and edge states at boundaries, which leads to the breakdown
of the conventional bulk-boundary correspondence (BBC). As
a result, the open boundary spectra manifest quite different
from that of the PBC, and thus, the OBC systems cannot
be described by the conventional Bloch band theory. Sev-
eral attempts have been devoted to restoring the BBC and
building the connection between topological invariants and
the topological edge states such as the non-Bloch band theory
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with quasimomentum of the complex value in a generalized
Brillouin zone (GBZ) [31,39–41] and a semi-infinite system
to demonstrate the topological origin of non-Hermitian skin
effects [33,42].

Due to a mathematical equivalence between the
Schrödinger equation in the non-Hermitian system and
wave equations or linearized equations of motion in
classical physics [43], there have been many attempts to
realize the non-Hermitian physics in real systems, such as
photonics system [44,45], the acoustics system [46], electrical
circuits [47], mechanical systems [48], and exciton-polariton
condensates [49,50]. Among them, the topological electric
circuit simulation, which may be much easier to tune by
changing the parameters of the circuit components than other
implementations of topological phases, has been proved to be
an effective approach to realize various topological phases,
such as Weyl semimetals [47,51], nodal-line semimetals
[52,53], fracton physics [54], non-Hermitian Majorana edge
states [55], non-Hermitian high-order topological phases
[56–58], and the four-dimensional topological phase [59].
However, the long-range nonreciprocal hoppings have not
been realized in real systems, including the electric circuit
system. In this work, we consider long-range nonreciprocal
hoppings in a topoelectric realization with a periodic electric
circuit composed of inductors, capacitors, and operational
amplifiers. We propose to analyze the effect on the topological
behaviors of adding long-range nonreciprocal hopping to the
one-dimensional (1D) SSH model and to find the condition of
the coexistence of topological edge states and skin effects in
the non-Hermitian SSH model with long-range nonreciprocal
hopping.

In this work, a non-Hermitian SSH model with long-range
nonreciprocal hopping is considered to investigate the effects
of different parameter conditions on the energy eigenvalue
spectra and topological properties. We show two cases of EPs
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FIG. 1. Non-Hermitian SSH model. The dashed box indicates
the unit cell.

in the first Brillouin zone classified by the number of EPs:
A two-EP case and a four-EP case. For the former case, the
conventional BBC is broken down, and the coexistence of
topological edge states and skin effects can be observed in this
model. The non-Bloch band theory is employed to construct
the non-Bloch topological invariants in the GBZ and to inves-
tigate the non-Hermitian skin effect. However, for the latter
case, the BBC exists, but the skin effect is excluded. Finally,
we realize these properties by topoelectric simulations, which
can be easily achieved by tuning the long-range nonreciprocal
hoppings.

II. UNIQUE FEATURES IMPOSED BY NON-HERMITICITY

The non-Hermitian SSH model with long-range hopping
under investigation is shown in Fig. 1, in which a unit cell
contains two particles. The intracell interaction between the
A and B particles within the same cell is reciprocal, while
the intercell interactions between the A and B particles lo-
cated within different cells are nonreciprocal, which forms the
non-Hermitian system. The tight-binding Hamiltonian for this
non-Hermitian SSH model can be written as

H (k) = dx(k)σx + dy(k)σy,

dx(k) = t1 + (t2 + t3) cos k + i(γ + δ) sin k, (1)

dy(k) = (t2 − t3) sin k + i(δ − γ ) cos k,

where σi are the Pauli matrices and t1,2,3, γ , and δ are hopping
parameters, as shown in Fig. 1. Due to the absence of σz, this
model has chiral symmetry, defined by σzH (k)σz = −H (k).
The Bloch eigenvalues of the Hamiltonian shown in Eq. (1)
are obtained as E±(k) = ±

√
d2

x (k) + d2
y (k). The eigenvalues

coincide at the EPs [60,61], where E±(k) = 0. when solving
E±(k) = 0, to ensure that the hopping parameters solved are
real numbers, dx(k) and dy(k) should be purely real or purely

(a)

(d)(c)

(b)

Topological

edge modes

FIG. 2. (a) Energy spectra for systems with the PBC (solid curves) and the OBC (solid circles) with length N = 80 (unit cell). Parameter
values are t1 = 1.1, t2 = 1, t3 = 0.4, γ = 0.5, δ = 0.2. (b) |E | and (c) real and (d) imaginary parts of E of an open chain with N = 160 unit
cells as a function of t1. The zero-mode line is shown in red. Parameter values are t2 = 1, t3 = 0.4, γ = 0.5, δ = 0.2.
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FIG. 3. (a) The absolute values of the amplitude from a zero-mode eigenstate (main figure) and bulk eigenstates (inset), showing the skin
effect. (b) Winding number calculated by the GBZ approach. Parameter values are t2 = 1, t3 = 0.4, γ = 0.5, δ = 0.2.

imaginary numbers on every k point. The EPs obtained can be
summarized in two cases: (1) k = 0 when t1 = −(t2 + t3) ±
(δ − γ ) and k = π when t1 = (t2 + t3) ± (δ − γ ) and (2) k =
arccos( t1

−2t2±2γ
) when t2 = t3 and γ + δ = 0.

First, we take the parameter condition which satisfies
case 1 into consideration. As shown in Fig. 2(a), the solid
curves represent the energy spectra for systems with the
PBC, while the spectrum of the Hamiltonian under the OBC
Hopen [solid circles in Fig. 2(a)] is obviously different from
that of the PBC. The edge state zero mode can be identi-
fied in the spectrum, showing the topological origin of these
parameters. Naturally, the phase transition points between
topologically trivial and nontrivial phases under the same pa-
rameter condition should be solved out. For simplicity, if the
hopping parameters satisfy s =

√
t2−γ

t2+γ
=

√
t3−δ
t3+δ

, we can con-
struct a diagonal matrix S = diag(1, 1, s, s, s2, s2, . . . , sM, sM )
to transform Hopen into a Hermitian matrix with a sim-
ilarity transformation S−1HopenS. Then the non-Hermitian
model above become a Hermitian SSH model for |t2| > |γ |
and |t3| > |δ|, with the hopping parameters t̃1 = t1, t̃2 =√

(t2 − γ )(t2 + γ ), t̃3 = √
(t3 − δ)(t3 + δ). In k space, the

Hamiltonian is

H̃ (k) = [t̃1 + (t̃2 + t̃3) cos k]σx + [(t̃2 − t̃3) sin k]σy. (2)

For this Hermitian SSH model, we can obtain the phase transi-
tion points between topologically trivial and nontrivial phases
in t̃1 = ±[t̃2 + t̃3][62], namely,

t1 = ±(√
t2
2 − γ 2 +

√
t2
3 − δ2

)
. (3)

With the hopping parameters in Fig. 2(a), Eq. (3) gives
t1 ≈ ±1.21. Then we depict the open chain spectrum as a
function of t1 and observe the transition point at t1 ≈ ±1.21,
which is consistent with Eq. (3). For t1 ∝ (−1.21, 1.21), the
energy spectra of the real-space Hamiltonian is gapless, while
the energy spectrum of H (k) may be gapped, indicating the
breakdown of conventional bulk-boundary correspondence.

Furthermore, we can consider the eigenstate
of the open boundary Hamiltonian Hopen as ψ

[(ψ1,A, ψ1,B, . . . , ψM,A, ψM,A)T ]. So for the open boundary
eigenstates |ψ〉 and |ψ̃〉 for Hopen and H̃ , respectively, it is
obvious that Hopen|ψ〉 = E |ψ〉 equals H̃ |ψ̃〉 = E |ψ̃〉, with
|ψ〉 = S|ψ̃〉. Because H̃ is a Hermitian SSH model, the
eigenstates of Hopen are exponentially localized on one side
of the 1D open chain when γ �= 0 and δ �= 0, as shown in
Fig. 3(a), which is called the “non-Hermitian skin effect”
[63]. In conclusion, for t1 ∝ (−1.21, 1.21) in case 1, both
topological edge states and the non-Hermitian skin effect
exist in our model.

To further identify the non-Hermitian topological phases,
the topological invariant needs to be calculated. Recent studies
have proposed that, to describe the complex wave number k in
the 1D non-Hermitian SSH model, the Bloch phase factor eik

can be replaced by β = eik, which determines the generalized
Brillouin zone Cβ , a loop on the complex plane [31,39–41]. In
this way, we can rewrite the non-Hermitian Hamiltonian H (k)
as H (β ) for our model, which is given as

H (β ) = h+(β )σ+ + h−(β )σ−,

h+(β ) = t1 + (t2 − γ )β−1 + (t3 + δ)β, (4)

h−(β ) = t1 + (t2 + γ )β + (t3 − δ)β−1,

where σ+/− = (σx ± iσy)/2. Then we solve the eigenvalue
equation |H (β ) − E | = 0 to obtain 2N solutions. The mid-
dle two solutions βN and βN+1 (|β1| � |β2| � · · · � |βN | �
|βN+1| � · · · � |β2N−1| � |β2N |) constitute Cβ under the con-
dition βN = βN+1. According to the chiral symmetry, a Q
matrix Qβ can be constructed from the eigenstates of H (β ).
Finally, the winding number is defined as

w = i

2π

∫
Cβ

dqq−1(β ), (5)

where qβ is the off-diagonal element of Qβ . The winding
number defined by Eq. (5) is calculated and shown in Fig. 3(a).
More details are depicted in Appendix A. The changing point
of w agrees with the transition point mentioned above.
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FIG. 4. (a) and (b) Illustration of how the ordering of |β| determines the topological phase. |β| = |a1|, |a2|, |b1|, |b2| are colored red, light
red, cyan, and light cyan, respectively, with t2 = 1, t3 = 0.4, γ = 0.5, δ = 0.2 in (a) and t2 = 1, t3 = 1, γ = 0.1, δ = −0.1 in (b). The inset
in (b) is the GBZ formed by complex-valued |b1,2| in the specified energy region at t1 = 2. The orange and green regions represent that the
energies are real and purely imaginary, respectively. |β| = |a1|, |a2|, |b1|, |b2| are shown by a red square, a light red square, a cyan dot, and
a light cyan dot, respectively. (c) Phase diagram on the t1-t2 plane with t3 = 0.4, γ = 0.5, δ = 0.2. (d) Phase diagram on the δ-γ plane with
t1 = 0.8, t2 = 1, t3 = 1. The cyan region represents a topologically nontrivial system, and the orange region represents the TSM phase, while
the white region and the red line represent a topologically trivial system. M1,2,3 are three data points of different phases along the black arrow
(t2 = 0.7) in (c) with t1 = 0.6, 0.9, 1, respectively. N1,2,3 are three data points in (d) of different phases along the black arrow (δ = 0.1) with
γ = −0.1, −0.5, −0.95, respectively.

More generally, we can directly distinguish the topology
of the given model by the ordering of the roots βn at E = 0,
which is consistent with the ordering of the spatial decay
length of their corresponding eigenmodes [33]. First, we ob-

tain the complex roots of h+/−(β ), a1,2 = −t1±
√

t2
1 −4(t2−γ )(t3+δ)
2(t3+δ)

and b1,2 = −t1±
√

t2
1 −4(t2+γ )(t3−δ)
2(t2+γ ) , which constitute βn. Second,

H (β ) can be rewritten as [33]

H (β ) =
(

0 Caβ
−qa�

pa
i (β − ai )

Cbβ
−qb�

pb
i (β − bi ) 0

)
, (6)

where Ca/b is the normalization constant, pa = pb = p = 2,
qa = qb = q = 1, and ra = rb = p − q = 1. According
to Ref. [33], the topological criterion is expressed as
follows: The first (ra + rb) largest βn’s can never be

composed of ra members from ai and rb members from
bi. In other words, the largest two roots must be either
a1,2 or b1,2 for the given model. We take cases 1 and 2
as examples to show the process of determining the range
of hopping parameters. With the hopping parameters in
Fig. 2, the absolute values of a1,2 and b1,2 changing with
t1 are shown in Fig. 4(a). When |t1| � 2

√
(t2 + γ )(t3 − δ)

[|t1| � 2
√

(t2 − γ )(t3 + δ)], a1,2 (b1,2) becomes complex,
and its absolute value remains constant:

√
t2−γ

t3+δ
(
√

t3−δ
t2+γ

).
When t1 (t1 > 0) is outside the above range, |a1| (|b1|)
monotonously decreases, while |a2| (|b2|) monotonously
increases. Thus, |a1| and |b2| meet at the phase transition

point: |tT P| = t2
2 −t2

3 −γ 2+δ2√
(t2−t3 )2−(γ−δ)2

≈ 1.21. However, for

case 2, at t1 = 0, we can obtain t2
2 − γ 2 = ±(t2

3 − δ2)

125411-4



COEXISTENCE OF TOPOLOGICAL EDGE STATES AND … PHYSICAL REVIEW B 103, 125411 (2021)

)b()a(

FIG. 5. (a) Energy spectra for systems with the PBC. (b) The amplitude values from a bulk eigenstate. Parameter values are t1 = 0.8,

t2 = 1, t3 = 1, γ = 0.1, δ = −0.1.

from |a1,2| = |b1,2|. Under these conditions, if t1 > 0,
obviously, |a1| � |

√−(t2−γ )
(t3+δ) | = 1 � |a2|, and |b1| �

|
√−(t3−δ)

(t2+γ ) | = 1 � |b2|, which cannot satisfy the topological
criterion, as shown in Fig. 4(b). Therefore, the system with the
hopping parameters in case 2 cannot possess topological edge
states.

Moreover, when we focus on the range of 1.8 < |t1| < 2.2,
as shown in Fig. 4(b), a unique feature of the generalized Bril-
louin zone can be found. For example, at t1 = 2 in Fig. 4(b),
|a1,2| and |b1,2| correspond to the gap-closing points of H (β ),
shown as squares and dots in the inset in Fig. 4(b), respec-
tively. Because |a2| < |b1| = |b2| < |a1| holds, the condition
for the formation of the GBZ can be satisfied, and |b1,2| are on
the GBZ. Hence, they are the exceptional points on the GBZ,
and this feature is called a topological semimetal (TSM) phase
with exceptional points in the GBZ [64]. Based on a similar
analysis, we obtain the phase diagram on the t1-t2 plane in
Fig. 4(c) and the γ -δ plane in Fig. 4(d). The cyan areas
represent the parameter range with topologically nontrivial
properties, and hence, topological edge modes exist. The or-
ange areas represent the TSM phase, which is an intermediate
phase between a trivial insulator phase and a topologically
nontrivial insulator phase in the GBZ. The hopping param-
eters in the white area and the red line lead to a topologically
trivial system.

In case 2, the Hamiltonian is PT symmetric, where P is the
parity operator and T is the time reversal operator, defined
by PT HT −1P−1 = H (P = σx and T = K , which denotes
complex conjugation) [65]. As in the antilinear symmetry
case, the eigenvectors of this Hamiltonian are either broken or
unbroken. Therefore, the eigenenergies are either purely real
or imaginary with the combination of the antilinear and chiral
symmetries [27], which can be seen in Fig. 5(a). The solution
to the Hamiltonian possesses four exceptional points in the
first Brillouin zone. The bulk-boundary correspondence oc-
curs in spite of the non-Hermiticity in this case. Furthermore,
we choose a bulk eigenstate to plot the amplitude values in
Fig. 5(b). Different from case 1, the Hamiltonian with t2 = t3

and γ + δ = 0 possesses pseudo-Hermitian symmetry [i.e.,
σxH†(k)σ−1

x = H (k)]. Thus, the middle two solutions to the
non-Hermitian Hamiltonian H (β ), i.e., |H (β ) − E | = 0, sat-
isfy the condition of |β2| = |β3| = 1 [66], which is consistent
with the numerical results, as shown in Fig. 4(b), leading
to the real wave number k even under the OBC. Notably,
the pseudo-Hermitian symmetry in non-Hermitian systems
restores the delocalization of bulk wave functions [66]. There-
fore, the eigenstate is not localized on the left end of the
open chain, indicating that the non-Hermitian skin effect is
excluded.

III. NON-HERMITIAN ELECTRICAL CIRCUIT LATTICE

In this section, to realize the non-Hermitian SSH model
with long-range hopping, we construct a 1D electrical cir-
cuit lattice consisting of capacitors, inductors, and operational
amplifiers [52,53,59]. The non-Hermitian effect is imple-
mented by the operational amplifier, whose input consists
of a noninverting input V+ and an inverting input V− and
whose output is represented by Vout. These three parame-
ters can be connected by the equation Vout = A(V+ − V−),
where A is the open-loop gain with a large value for an
operational amplifier, amplifying the difference between the
two inputs. V− = Vout is allowed when the inverting input is
connected to the output, leading to Vout = A(V+ − Vout ) ⇒
Vout = A

A+1V+ ≈ V+. Since no voltage crosses the inputs for
an ideal operational amplifier, the input terminals show the
characteristics of a short circuit, but there is no current be-
tween them. Based on the discussions above and Kirchhoff’s
current law, we now can construct a circuit lattice correspond-
ing to the tight-binding model, Eq. (1), which is shown in
Fig. 6.

By mapping the tight-binding Hamiltonian to the circuit
lattice, the hopping parameters correspond to the capaci-
tor, the wave function corresponds to the voltage, and the
eigenvalue corresponds to the resonance frequency. So that
a tight-binding-like Hamiltonian can be derived from the

125411-5
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FIG. 6. A 1D non-Hermitian electrical circuit lattice consisting of operational amplifiers and capacitors with long-range hopping. Ci are
capacitors. The non-Hermitian effect is implemented thanks to the operational amplifier, whose input consists of a noninverting input V+ and
an inverting input V− and whose output is represented by Vout. V− = Vout is allowed when the inverting input is connected with the output.

Kirchhoff equations,

H (k) = εsσ0 + dx(k)σx + dy(k)σy,

εs = C1 + C2 + C3 + C4 + C5 + CG,

dx(k) = −
[
C1 +

(
C2 + C4 + C3

2
+ C5

2

)
cos k

+ i

(
C3

2
+ C5

2

)
sin k

]
,

dy(k) = −
[(

C2 − C4 + C3

2
− C5

2

)
sin k

− i

(
C3

2
− C5

2

)
cos k

]
. (7)

The details of the derivation are given in Appendix B.
Comparing Eq. (1) with Eq. (7), we obtain t1 = −C1, t2 =
−(C2 + C3

2 ), t3 = −(C4 + C5
2 ), γ = −C3

2 , δ = −C5
2 . There-

fore, by tuning the values of capacitors, we can realize the
topological phases mentioned before in the 1D non-Hermitian
electrical circuit lattice with long-range hopping, such as the

M1,2,3 phases. To realize the N1,2,3 phases without negative ca-
pacitance, we need to make a little change to the circuit lattice:
exchanging the input and output of the operational amplifier,
as shown in Fig. 10. Finally, following the same derivation
process in Appendix B, we obtain t1 = −C1, t2 = −(C2 + C3

2 ),
t3 = −(C4 + C5

2 ), γ = C3
2 , δ = −C5

2 .

IV. SIMULATION RESULTS

We carried out the circuit simulations on different phases,
e.g., M1,2,3 and N1,2,3 in Figs. 4(c) and 4(d), which corre-
spond to the topologically trivial phase, topological semimetal
phase, and topologically nontrivial phase, respectively, for
both the PBC and OBC. The voltage signals V (r, t ) of the
2N (N = 40) junctions in the real-space and time domain are
extracted from the simulation results, and the amplitude of
the eigenstates V ( f ) can be calculated through the Fourier
transformation. First, the dispersion spectra under the PBC
for the M1,2,3 and N1,2,3 phases are under investigations. How-
ever, except for N1 in case 2, for the topoelectric simulations
for the other five phases under the PBC here, the influence
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FIG. 7. (a) The simulation result for N1 under the PBC. (b) The amplitude of the simulated eigenstates for N1 under the PBC. The
parameters are set as L = 5.6 μH , CG = 150 pF , C1 = 240 pF , C2 = 270 pF , C3 = 60 pF , C4 = 270 pF , and C5 = 60 pF in the 1D circuit
lattice with 40 cells.

of the negative imaginary part of the frequencies cannot be
negligible, which causes serious divergency, finally leading
to the unexpected dispersion spectra, e.g., the case of the
M1 phase, as shown in Fig. 11(a). The calculated dispersion
spectra for the N1 phase under the PBC from topoelectric
simulations is shown in Fig. 7(a) as dots, which agree well
with the dispersion calculated by models denoted by orange
lines. Different from other phases, although the negative imag-
inary frequencies exist for the N1 case under the PBC, the
circuit system still remains stable, resulting from the pro-
tection of pseudo-Hermitian symmetry [66], described by
σxH†(k)σ−1

x = H (k), since the eigenstates (VA(k),VB(k))T

are always paired with (−VA(k),VB(k))T or (VA(k),−VB(k))T .
Furthermore, the circuit system with pseudo-Hermiticity is
insensitive to the boundary conditions [66], which guaran-
tees the stability of the system for the OBC as well. The
frequency at the exceptional point for the N1 phase under the
PBC is obtained as 2.075 MHz from simulations, as shown in
Fig. 7(a), which corresponds to a wave vector consistent with
that calculated from models shown in Fig. 5(a). As shown in
Fig. 7(b), only bulk states exist for the PBC in real space, and
they are delocalized.

Second, the simulated eigenstates for all six phases under
the OBC are shown in Fig. 8. Owing to the reality of OBC
spectra, the voltage cannot diverge seriously in the finite time
length, guaranteeing the stability of the circuit system. For
the topologically nontrivial phases of the M1 and N2 phases,
both the topological edge states and skin modes exist, which

TABLE I. Detailed parameters for the simulation of M1,2,3 and
N1,2,3.

Capacitance (pF) M1 M2 M3 N1 N2 N3

Cg 150 150 150 150 150 150
C1 240 360 400 240 240 240
C2 80 80 80 270 150 15
C3 400 400 400 60 300 570
C4 80 80 80 270 270 270
C5 160 160 160 60 60 60
CA 550 550 550 150 150 150
CB 310 310 310 270 510 780

are localized on one side of the 1D open chain, as shown
in Figs. 8(a) and 8(e), manifesting the topological nontriv-
iality and the breakdown of bulk-boundary correspondence,
as mentioned above. The frequency of the topological edge
states is obtained from simulations as 2.054 and 1.993 MHz
for the M1 and N2 phases, respectively, which agree well with
the model results. For the topologically trivial phase of the N1

phase in case 2, the calculated eigenstates for the OBC from
simulations shown in Fig. 8(d) indicate that the edge states do
not exist and the bulk modes are delocalized and exhibit the
topological triviality and the bulk-boundary correspondence,
consistent with the aforementioned model results for case 2.
For a general topologically trivial phase like the M3 phase
shown in Fig. 8(c), the edge states do not exist, but the bulk
modes are localized. The M2 and N3 phases correspond to
the TSM phase, and the circuit simulations for the OBC are
shown in Figs. 8(b) and 8(f). The eigenstates obtained from
simulations are localized at the edge and remain continuous
over the frequency range, verifying that the energy spectrum
under the OBC is gapless for the TSM phase. Different from
the TSM phase, a general topologically trivial phase like the
M3 phase shown in Fig. 8(c) possesses an obvious separation
at around f = 1.885 MHz.

V. CONCLUSIONS

In this work we have investigated the topological phase
in the 1D non-Hermitian SSH model with long-range non-
reciprocal hopping being considered. According to chiral
symmetry, two cases of exceptional points exist: (1) two EPs
located at k = 0 or k = π and (2) four EPs when t2 = t3
and γ + δ = 0. The former one shows the non-Hermitian
skin effect, indicating the breakdown of the bulk-boundary
correspondence. We also employed non-Bloch band theory to
calculate the transition point and the topological invariant of
the non-Hermitian SSH model in case 1 with the generalized
Brillouin zone. However, the latter case is a topologically
trivial case, and the non-Hermitian skin effect is excluded.
Finally, we proposed electrical circuit simulations, which have
the advantage of easily achieving and tuning long-range non-
reciprocal hoppings, to realize these exotic topological phases,
and the simulation results show consistency with the model
results.
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FIG. 8. The amplitude of the simulated eigenstates under the OBC. (a)–(c) correspond to phase sM1, M2, and M3. (d)–(f) correspond to
phases N1, N2, and N3. The parameters are listed in Table I.
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APPENDIX A: NON-BLOCH BAND THEORY

Considering the 1D non-Hermitian SSH model, if we re-
place the Bloch phase factor eik by β = eik, the non-Hermitian
Hamiltonian H (k) can be rewritten as H (β ):

H (β ) = h+(β )σ+ + h−(β )σ−,

h+(β ) = t1 + (t2 − γ )β−1 + (t3 + δ)β, (A1)

h−(β ) = t1 + (t2 + γ )β + (t3 − δ)β−1,

where σ+/− = (σx ± iσy)/2. Solving the eigenvalue equation
|H (β ) − E | = 0, we obtain

[t1+(t2 − γ )β−1+(t3 + δ)β][t1+(t2+γ )β+(t3 − δ)β−1]

= E2, (A2)

which has four solutions, satisfying |β1| � |β2| � |β3| � |β4|.
We plot |β|-E curves in Fig. 9(a). The middle two solutions
β2,3 are what we care about. In the E → 0 limit, |β2| = |β3|
can determine the transition point: t1 = 1.21 for these parame-
ters. In the common energy region, |β2| = |β3| determines the
generalized Brillouin zone (GBZ) Cβ , which is a closed loop
encircling the origin on the complex plane, and it is shown in
Fig. 9(b).

Thanks to the GBZ approach, we can also calculate the
winding number w of H (β ) by defining a Q matrix. First, the

right and left eigenstates of H (β ) can be written as

|uR〉 = 1√
2

( h+√
h+h−
1

)
,

|̃uR〉 = 1√
2

( h+√
h+h−−1

)
,

〈uL| = 1√
2

(
h−√
h+h−

, 1

)
,

〈̃uL| = 1√
2

(
h−√
h+h−

,−1

)
. (A3)

The eigenvectors, |uR〉 = σz |̃uR〉 and 〈uL| = σz 〈̃uL|, are guar-
anteed by chiral symmetry. The Q matrix is written as

Q(β ) = |uR(β )〉〈uL(β )| − |̃uR(β )〉〈̃uL(β )|

=
(

0 h+√
h+h−

h−√
h+h−

0

)
. (A4)

Thus, we can obtain the off-diagonal element as q =
h+√
h+h−

, and the winding number can be defined as

w = i

2π

∫
Cβ

dqq−1(β )

= i

2π

∫
Cβ

d ln q(β )

= − 1

2π
[arg q(β )]Cβ

= − 1

2π

[arg h+(β ) − arg h−(β )]Cβ

2
. (A5)
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(a)

(d)(c)

(b)

FIG. 9. (a) |β|-E curves from Eq. (A2). t1 = 1. (b) A closed loop Cβ formed by complex-valued β2,3. t1 = 1. (c) and (d) The evolution loop
of h+/−(β ) on the complex plane with t1 = 1 and t1 = 1.4. Common parameter values are t2 = 1, t3 = 0.4, γ = 0.5, δ = 0.2.

Therefore, the phase change in h+/−(β ) along Cβ determines
the winding number w. We plot the evolution loop of h+/−(β )
on the complex plane for different parameters, and it is shown

in Figs. 9(c) and 9(d). When two loops simultaneously enclose
the origin, w takes a nonzero value [t1 = 1 in Fig. 9(c)].
However, w is zero when neither of the two loops goes around
the origin [t1 = 1.4 in Fig. 9(d)].

APPENDIX B: DETAILS OF THE DERIVATION OF EQUATION (7)

According to Kirchhoff’s current law, the currents flowing through the A and B nodes at R = 0 in Fig. 10 are given as

IA,0 = jwC1(VB,0 − VA,0) + jwC2(VB,−a − VA,0) + jw(C4 + C5)(VB,a − VA,0)

+ jw(CG + C3)(0 − VA,0) + 1

jwL
(0 − VA,0),

IB,0 = jwC1(VA,0 − VB,0) + jw(C2 + C3)(VA,a − VB,0) + jwC4(VA,−a − VB,0)

+ jw(CG + C5)(0 − VB,0) + 1

jwL
(0 − VB,0), (B1)

where VA/B,R are the voltages. Since the 1D non-Hermitian SSH model has transformation invariant symmetry, the voltage
follows the Bloch theorem: V (r + R) = eikRV (r). Kirchhoff’s current law requires IA,0 and IB,0 to be zero. Thus, the above
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FIG. 10. A 1D non-Hermitian electrical circuit lattice consisting of operational amplifiers and capacitors with long-range hopping in the
case N1,2,3.

equations can be written in matrix form (supposing a to be 1),

[
(C1 + C2 + C3 + C4 + +C5 + CG) −[C1 + C2e−ik + (C4 + C5)eik]
−[C1 + (C2 + C3)eik + C4e−ik] (C1 + C2 + C3 + C4 + +C5 + CG)

][
VA,0

VB,0

]
= 1

ω2L

[
VA,0

VB,0

]
. (B2)

Finally, we rewrite the matrix in terms of the Pauli matrices, which is given in the main text as Eq. (7).

APPENDIX C: SIMULATION DETAILS

The values of capacitors for the M1,2,3 and N1,2,3 phases are listed in Table I. For M1,2,3 under the OBC, the source is placed
to the left of the circuit lattice, while for N1,2,3 under the OBC, the source is placed on the right side. The total time length of the
simulation is set to 40 μs for the phases above except N3 (12 μs). The time step is set to 10 ns, and the frequency step is set to
1 kHz when operating the Fourier transformation.

For N1 in case 2 under the PBC, the source can be placed at any position, and the time length is set to 40 μs as well. The
simulation results for M1 under the PBC are shown in Fig. 11(a), where the simulated dispersion cannot correspond to the model
dispersion and exhibit serious divergence due to the exclusion of pseudo-Hermitian symmetry. For example, at k = −0.943,
the peak frequency is simulated to be 2.608 MHz, which is consistent with the model results, but another resonant frequency,
1.670 MHz, is excluded.
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FIG. 11. The simulation results for M1 under the PBC. The parameters are listed in Table I.
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