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Spatial dispersion contribution to second harmonic generation in inversion-symmetric materials
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It is well known that second harmonic generation (SHG) from dipoles within the bulk vanishes in inversion-
symmetric semiconductor materials as a consequence of parity symmetry. Hence SHG is then ascribed in
the form of either surface dipole effects or bulk-related electric quadrupole or magnetic dipole effects. By
incorporating the redefined spatial dispersion into the simplified bond-hyperpolarizability model, we show
that the SHG spatial dispersion contribution for Si(001) and Si(111) facet orientations can be reformulated
by a third-rank tensor containing one independent parameter, namely, the complex SHG spatial dispersion
hyperpolarizability. Our results show that certain unexplained rotational anisotropy SHG intensity features for
different incoming light wavelengths or optical penetration depths can be well reproduced only if the contribution
from spatial dispersion is incorporated.
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I. INTRODUCTION

The recent progress in surface science techniques capable
of probing surfaces in situ and in a nondestructive way has re-
newed interest in linear and nonlinear optical techniques such
as second harmonic generation (SHG). This interest has been
accompanied by theoretical efforts to model the measured
data, either interpreting them in a classical phenomenological
picture [1–3] or taking into account quantum mechanics by
involving transitions between initial and final states [4–9].
Especially for SHG, the interpretation of the various nonlin-
ear contributions to explain experimental data is sometimes
controversial. Several authors [10–12] claim that part of the
SHG response arises from the surface and bulk quadrupoles
or from magnetic dipole effects, whereas others are mainly
considering surface contributions [13,14].

To our knowledge, discussions regarding the effect of
spatial dispersion in nonlinear optics remain limited, even
in high-symmetry centrosymmetric materials such as silicon
(Si). Here, we define spatial dispersion as the spatial varia-
tion of the incident fundamental field inside the medium as
discussed by Peng et al. [12]. Guyot-Sionnest and Shen [10]
argue that the electric dipole terms vanish for SHG, and the
authors consider magnetic dipoles and electric quadrupoles as
sources for bulk-related SHG. Although they mention spatial
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dispersion in the form of a gradient term in their work, they
also state that for cubic crystals (e.g., Si, Cu, Ge) the field
gradient term only applies to the surface and the gradient con-
tribution should vanish inside the bulk. We will later explain
that this bulk gradient contribution does not vanish.

So far, a direct proof that spatial dispersion from an in-
coming light decay can contribute significantly to rotational
anisotropy SHG (RASHG) intensity experimental data re-
mains elusive although it has been shown more recently using
classical electrodynamics calculation that spatial dispersion
can also contribute to SHG if an electric field gradient is
present [12]. Still, its exact contribution relative to the other
SHG sources (surface dipolar and bulk quadrupolar) has never
been investigated explicitly and is often left out in the analysis
of bulk dipole transitions in materials with inversion symme-
try [15–17]. A new hope of uncovering the spatial dispersion
contribution in inversion-symmetric materials arises from the
formulation of the simplified bond-hyperpolarizability model
(SBHM) first proposed by Powell et al. [14] by expand-
ing the Ewald-Oseen extinction theorem in linear optics to
nonlinear optics [18]. Assuming that the RASHG intensity
originates from anharmonic oscillating dipoles along the Si
covalent bonds, they successfully explained the origin of the
RASHG data for vicinal Si(111) using only two complex
hyperpolarizability independent parameters, which proves to
be a major simplification of earlier phenomenological models
[1,2,19]. An effort was also made to introduce terrace and step
hyperpolarizability to model Si(111) using the SBHM with
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different offcut directions and different offcut magnitudes
[20]. In addition, the SBHM was later improved to explain that
the RASHG intensity profile from other silicon orientations
can indeed be modeled more precisely if other nondipolar
sources are involved such as a quadrupolar contribution [18].
Using the SBHM, we were able to model a surface RASHG
experiment for a nonvicinal Si(111) surface with satisfactory
results [21]. Indeed, it has also been shown using arbitrary
input polarization that bulk quadrupolar effects contribute
significantly to the total RASHG intensity of certain Si sur-
faces [22,23] and are related to the first-order derivatives of
the microscopic response function [24]. The validity of the
SBHM was further confirmed with the ability to model exper-
imental RASHG data from zinc blende samples confirming
the existence of bulk dipole radiation as the dominant source
of SHG [25]. We also showed recently that second harmonic
generation in wurtzite structures, e.g., ZnO, with surface twin
boundaries can also be described using the SBHM [26] as well
as third harmonic generation (THG) from within the ZnO bulk
[27].

In this paper we derive an expression for the SHG spatial
dispersion tensor using the SBHM. The connection between
the third-rank susceptibility tensor obtained from the SBHM
and that obtained from group theory (GT) was first established
for SHG and THG in Si structures [28,29]. The results show
that when Kleinman symmetry can be applied, the nonzero
tensor from GT can be derived via the SBHM, where the
latter requires either the same or fewer independent param-
eters than GT. Thus the SBHM is generally simpler than
phenomenological models that apply GT to calculate the ten-

sor. It will be shown later in this paper that our previous
work on applying the SBHM to electric-field-induced second
harmonic (EFISH) experimental results from a metal oxide
semiconductor (MOS) is useful for the calculation of the
spatial dispersion third-rank tensor [30] with an important
note that the third-order nonlinear susceptibility tensor related
to EFISH can be reduced into a second-order nonlinear sus-
ceptibility tensor. In this paper we will apply some of the
line of thinking in our previous EFISH work to show that
spatial dispersion can also be reinterpreted and analyzed in the
form of an effective second-order nonlinear SHG polarization.
We therefore arrange this paper as follows: In Sec. II we
provide an argument as to how SHG spatial dispersion can be
interpreted and how it can occur for a certain diamond facet
orientation. In Sec. III we discuss how this interpretation can
be incorporated in the theoretical framework of Peng et al.
[12]. In Sec. IV we discuss experimental evidence of a spatial
dispersion contribution using the SBHM for a Si(111) facet.
Finally, a summary is provided in Sec. V.

II. SHG SPATIAL DISPERSION IN SILICON

It is well known from standard nonlinear optics theory that
materials with inversion symmetry are described by potentials
with even powers of the coordinates (i.e., r2, r4, etc.). Because
a SHG contribution providing a response to an incident field
oscillating with frequency ω could originate, due to inversion
symmetry, only from forces which are cubic in a component
of �r, this effect has been directly excluded. Analytically, the
quantum mechanical expression for each tensor element of the
second-order susceptibility is [31]

χSHG
i jk = Ne3

ε0 h̄2

∑
n,n′

( 〈 j〉0n〈k〉nn′ 〈i〉n′0

(ωn0 − ω)(ωn′0 − 2ω)
+ 〈k〉0n〈i〉nn′ 〈 j〉n′0

(ωn0 − ω)(ωn′0 + ω)
+ 〈i〉0n〈 j〉nn′ 〈k〉n′0

(ωn0 + 2ω)(ωn′0 + ω)

)
. (1)

Here, i, j, k denote x, y, z; N is the density of oscillators;
and each sum runs over all intermediate states n, n′. For a
symmetric potential (e.g., fcc and bcc lattices with a single
atom basis) the product of an uneven number of excitations
cannot close the loop back to the original state so that χSHG

i jk
is zero. Locally, however, a diamond (111) facet orientation
is due to the atoms’ tetrahedral bonding, intrinsically inver-
sion asymmetric. This asymmetry can be observed by using
a pictorial representation of the tetrahedral hybridized sp3

wave functions [Fig. 1(a)], by displaying the ab initio po-
tential along the 〈111〉 direction [Fig. 1(b)], or by plotting
the potential within the (111) plane as an equicontour plot
[Fig. 1(c)]. The potential has been calculated with the den-
sity functional theory implementation of VASP 5.2 using the
generalized gradient approximation (GGA). The interaction
between the four electrons and the Si ion is described by the
projector augmented wave technique [32]. The constructed
potential describing fourfold ionized Si and four electrons is
rather strong (�−120 eV). The calculated electron energies,
however, are of the order of a few eV, and therefore the
electrons “feel” the asymmetry of the potential. Including the
exchange correlation part makes the potential landscape even
more asymmetric.

In contrast, the ab initio potential parallel to a Si(100)
surface is inversion symmetric, and so an electric field vector
within this plane cannot excite SHG. However, because the
polarization of the electric field can be in an arbitrary direction
to the bonds, each Si atom will produce, for an arbitrary
polarization, a SHG response. Also, for the case of Si(111),
the SHG response will be minor because two neighboring Si
atoms form a symmetric entity, if there is no perturbation.
So, in all static or long-wavelength-limit effects, the SHG
response of two neighboring Si atoms cancels, as well as for
certain symmetries between the perturbing electric field and
the crystallographic arrangement [e.g., normal incidence on
Si(110) or Si(100)].

In the general case, however, when the amplitude of the
electric field is different on both atom sites, the two responses
will not add up fully destructively and will produce in the
far field a measurable signal. A strength variation of the
electric field could occur either through strong (asymmetric)
focusing or, which is discussed beneath, by the intrinsic ab-
sorption of the fundamental wave, when it propagates into
the material. Since the ratio between the incoming beam ra-
dius and its penetration depth is 150 : 1, the contribution of
the longitudinal spatial dispersion is much higher than the
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FIG. 1. (a) Plot of the probability density for the sp3 hybridized wave functions for Si(111). (b) Ab initio potential for Si(111) along the
[111] direction. (c) Contour plot of the ab initio potential for Si in the (111) plane. The red dots represent the positions of the Si atoms.

transverse part [33]. Therefore we can assume that the spatial
dispersion of the field is significant along the optical axis (z
axis). The effect of a varying amplitude of the macroscopic
electric field can be described by either employing spatially
dispersive (nonlocal) models, which means that the dielectric
function depends on the wave vector and the frequency as
in Ref. [34], or, as done recently, deriving within a clas-
sical bond model that the spatial dispersion is proportional
to the gradient of the macroscopic electric field along the
bond [12]. Using bonds instead of the lattice positions dis-
guises the symmetry properties of the underlying lattice and
requires the use of classical mechanics. Therefore we will
proceed by explicitly specifying the spatial dependence of the
macroscopic electric fields. If a wave impinges perpendicu-
lar to, e.g., silicon with a (111) orientation [see Fig. 2(a)],
the perturbation through the electric field �E can be signifi-
cant.

Si(111), and its atoms, can be described in a simple picture
by four equivalent covalent bonds with a sequence of layers,
which are alternatingly bound by one up bond or by three
down bonds to the next layer [see Fig. 2(b)]. For our model
it is not significant whether we imagine the bonds as rigid,
such that the electrons can only move along the bond direction
[14] or as sp3-hybridized orbitals [35], or as extended co-
herent wave functions, describing the probability density for
finding the electron in a given spatial interval. The electronic

FIG. 2. (a) The incoming electric field decays along the propa-
gation direction. (b) Layers are shown where one Si atom [Si(1)] is
covalently bound to one from above and to three Si atoms under-
neath, where one is called Si(2). The center of inversion symmetry
(CIS) is located in the middle between Si(1) and Si(2).

probability density is the same for positions around Si(1) and
those around Si(2), which are at slightly different z positions
(Fig. 2). The nonlinear spatial dispersion polarization for a
single atom or layer, either Si(1) or Si(2), is then derived by

PSD,2ω
i = ε0

2

∑
jk

χSD
i jk (2ω; ω,ω)Ej (ω)Ek (ω), (2)

where χSD
i jk stands for the specific coefficient of the nonlinear

hyperpolarizability of a single Si atom or layer. The nonlinear
hyperpolarizability yields for a single Si(111) tetrahedron a
finite contribution as has been found before for a single sp3

orbital [35]. For the case of the later-discussed SBHM [14],
χSD

i jk can be easily found by setting the up and the down
hyperpolarizabilities equal in the cited reference.

When the fundamental field penetrates through the bulk,
it decays with a complex wave vector k = ωñ/c and an ab-
sorption coefficient αω/2, given by αω = 4πni

λ0
, where λ0 is

the vacuum wavelength and ni is the imaginary part of the
refractive index ñ, connected to the dielectric function ε(ω)
by ε(ω) = ñ(ω)2. Because the exciting field decays along z
due to absorption, the response of the bonds of Si(1) does
not fully cancel the contribution of the lower atom Si(2). It
has to be mentioned that even for the case that the photon
energy is smaller than half the band gap, the occurrence of
SHG implies absorption of the linear wave. For a bond length
in Si of �2.35 Å the period d of the slabs is �3.16 Å, and
the normal distance 	 between the Si(1) and Si(2) atoms is
�0.8 Å. We calculate the difference of the radiated SHG field
for one slab just beneath the surface (z = 0+) as the coherent
superposition of the Si(1) and Si(2) atoms:

C(1) = (Re[eikωz])
2
e−αωzRe[eik2ωz]e−α2ωz/2,

C(2) = (
Re[eikω (z+	)]

)2
e−αω (z+	)

× Re
[
eik2ω (z+	)

]
e−α2ω (z+	)/2,

Pslab,2ω
iSD = ε0

2

∑
jk

χSD
i jk (2ω; ω,ω)(C(1) − C(2) )E

0
j (ω)E0

k (ω),

(3)

where the first equation yields the response of Si(1) at z and
the second equation yields the response of Si(2) at depth
z + 	. We explicitly use real fields in the nonlinear process.
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The exponential decaying terms in the field have to be squared
in the nonlinear process, yielding the absorption coefficient.
Also the backward propagating wave with twice the funda-
mental frequency is damped, which is then detected in vacuum
or air. The third equation makes explicit use of spatial disper-
sion, i.e., the field dependence, and E0

j denotes the transmitted
space independent fundamental electric field amplitude at z =
0+, having put the decaying terms into (C(1) − C(2) ).

Extending the calculation to the full bulk is straightforward
by splitting the crystal into slabs with Si atoms at position
1 or 2, numerating only each double layer by n, replacing
z → n · d , and summing the fields coherently over all slabs.
The procedure is similar to the Ewald-Oseen ansatz [36] for

linear optics with the difficulty of using real fields. The outside
detected field or intensity is the coherent superposition of the
field originating from the surface and the field originating
from the Si(111) bulk: I = 1

2 cε0|Esurf + Ebulk|2.
Here, we do not treat the field produced by the surface

Esurf , where specific models on reconstruction and electronic
states would have to be considered. The bulk contribution,
however, can be calculated analytically, by using computer
algebra systems, and also numerically. To determine its rel-
ative magnitude, we proceed—in order to show the physics
more clearly—by neglecting the phase of the field [� sign in
Eq. (4)]. This analytic procedure is approximately correct for
the case of rather high absorption coefficients, when the field
is overcritically damped:

P2ω,bulk
iSD = ε0

2

∑
jk

χSD
i jk

(
2ω; ω,ω

) ∞∑
n=1

(C(1,n) − C(2,n) )E
0
j (ω)E0

k (ω)

� ε0

2

(
1 − e−	(α2ω/2+αω )

)
ed (α2ω/2+αω ) − 1

∑
jk

χSD
i jk (2ω; ω,ω)E0

j (ω)E0
k (ω). (4)

A modified absorption coefficient αSHG = α2ω/2 + αω

governs the contribution of the bulk to SHG. For very large,
experimentally not achievable, αSHG (penetration depth of just
a few angstroms) the formula above yields a vanishing bulk
SHG contribution, leaving only the surface effect. As dis-
cussed before, in the general case the surface and the bulk field
should be added coherently. However, already for harmonic
excitation close to the E1 transition in Si, αSHG is of the order
of �0.02 Å−1, equivalent to penetration depths of just �120
Å for the exciting wave and �60 Å for the frequency-doubled
wave. For αSHG = 0.02 Å−1 the bulk contribution can give rise
to a quarter of the contribution of a single bond for the case of
setting the first unperturbed atom as the one with three down
bonds, or even three-quarters if it has three up bonds. It will
be shown later that the bulk contribution from quadrupoles
and spatial dispersion can roughly account for half the SHG
intensity for a large incoming light penetration depth. By this
calculation it is clear that the bulk contribution cannot be
neglected when using SHG as a surface analytical tool and
can have the same magnitude as the contribution arising from
the surface.

For very small absorption coefficients αSHG, i.e., almost
transparent materials, we find an additional condition, similar
to Manley-Rowe relations, which provides the conservation
of energy: Using Eq. (4), we use an expansion of the de-
nominator and obtain as leading term χSD	

d , equal to χSD/4.
This result cannot be correct, because vanishing adsorption
would then imply a rather strong bulk contribution. The wrong

result originates from two sources: (a) For very small absorp-
tion coefficients of the harmonic wave, the hyperpolarizability
depends, due to conservation of energy, on the absorption
coefficient αω. Using an ad hoc ansatz for the hyperpolar-
izability to be quadratic—with a small coefficient—in αω

produces the required result that for vanishing absorption of
the harmonic the frequency-doubled SHG wave vanishes too.
(It also vanishes for linear dependence.) (b) The second reason
comes from the assumption of neglecting the phases. This
assumption is not justified any more; for propagation lengths
of the order of 10 μm, phase (mis)matching (wave vectors
kω, k2ω) has to be taken into account in Eq. (4). It will be
shown in the following section how the spatial dispersion
formulation in Eqs. (3) and (4) can be incorporated in the
theoretical framework of Peng et al. [12].

III. REFORMULATION OF SPATIAL DISPERSION
NONLINEAR CONTRIBUTION

Spatial dispersion in the framework of the SBHM was first
discussed using the classical electrodynamics calculation by
Peng et al. [12]. Using a formal theoretical approach, they
show that the various allowed nonlinear contributions and
first-forbidden bulk contributions to SHG in centrosymmetric
materials can be derived using a Green’s-function expression
for the four-potential of the radiation from a point charge q
which is propagating in free space. The radiated field far-
field E f f follows as a special case of the Liénard-Wiechert
potentials for an accelerated charge [12]:

E f f = qk2

r
(
↔
I − k̂k̂) ·

∑
b̂ j

{
q(b̂ j · Eo)

κ1 − mω2
eikr−iωt ei(ko−k)·ro + q2(b̂ j · Eo)2

(κ1 − mω2)2(κ1 − 4mω2)

× [−i(b̂ j · k)(κ1 − 4mω2) + 2i(b̂ j · ko)(κ1 − mω2) − 2κ2]e2ikr−2iωt e2i(ko−k)·ro

}
. (5)
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The first term in braces is the linear optic response, and the remaining three terms describe SHG. The physical origin of the three
SHG terms is clear from the development: The first term, which involves the outgoing wave vector, is the electric quadrupole
contribution; the second term, which involves the incoming wave vector, arises from spatial dispersion; and the third term, which
depends only on the anharmonic restoring force, reduces to the contribution from asymmetric bonding at the interface for SHG
from centrosymmetric crystals [12]. The intensity is proportional to the absolute square of the far field after all contributions
have been taken into account. The spatial dispersion term in Eq. (5) is

ESD
f f = qk2

r
(
↔
I − k̂k̂) ·

8∑
j=1

2iq2b̂ j (b̂ j · Eo)2(b̂ j · ko)(κ1 − mω2)

(κ1 − mω2)2(κ1 − 4mω2)
e2ikr−2iωt e2i(ko−k)·ro, (6)

which can be written more compactly as

ESD
f f = S

qk2

r
(
↔
I − k̂k̂) · 2i

8∑
j=1

αSDb̂ j (b̂ j · Eo)2(b̂ j · ko)

= S
qk2

r
(
↔
I − k̂k̂) ·

8∑
j=1

p(SD)
j , (7)

where αSD = q2(κ1−mω2 )
(κ1−mω2 )2(κ1−4mω2 ) is the spatial dispersion non-

linear hyperpolarizability which is a function of the incoming
frequency ω, S is given by e2ikr−2iωt e2i(ko−k)·ro ,

p(SD)
j = αSD b̂ j (b̂ j · Eo)2(b̂ j · ko)

= ↔
χ

(3)

SBHM-SD · · · E(ω) ⊗ E(ω) ⊗ ko (8)

is the spatial dispersion nonlinear polarization, and
↔
χ

(3)

SBHM-SD
is the third-rank spatial dispersion nonlinear susceptibility.
Interestingly, Eq. (8) looks very similar to the third equation in
Eq. (3), where ko in the later equation is given by the decaying
field gradient term (C(1) − C(2) ) in the second-order nonlinear
SHG spatial dispersion polarization. The slight difference be-
tween the results of Peng et al. [12] and our results is only
in the way in which we look at them. Peng et al. take, in
our opinion, the whole symmetric charge distribution of two
silicon atoms together and declare it as one charge moving
along the bond. Then the longitudinal spatial dispersion is
due to the fact that this charge distribution moves in a field
gradient. In this paper, we analyze the spatial dispersion by
looking at two charges, each one sitting in the vicinity of each
Si atom, and due to a decaying field in the z direction, we have
a noncanceling contribution.

We now proceed by analyzing the tensorial properties of
the reformulated spatial dispersion. From the viewpoint of the
SBHM, if the sample is allowed to rotate freely along the z

axis by an angle of φ, then
↔
χ

(3)

SBHM-SD takes the form

↔
χ

(3)

SBHM-SD = 1

V

∑
j=1

αSD(R(z) · b̂ j ) ⊗ (R(z) · b̂ j ) ⊗ (R(z) · b̂ j )

⊗ (R(z) · b̂ j ), (9)

where V is the volume, b̂ j are the unit vectors in the direction
of the atomic bonds, and R(z) is the rotation matrix about the
z axis. Here, b̂ j are the unit vectors in the direction of the
atomic bonds. By inserting the bond vectors and rotational
matrix for the Si(100) and Si(111) facets and performing a
contraction with the incoming field, one will readily obtain

a third-rank tensor containing only one independent param-
eter, namely, the SHG spatial dispersion hyperpolarizability.
This approach is similar to our previous work regarding SHG
from an electric-field-induced second harmonic (EFISH) gen-
eration [30] in the z direction with only one independent
parameter, namely, the spatial dispersion hyperpolarizability
complex number. A full derivation of this result with regard to
group theory is given in the Appendix.

IV. EXPERIMENTAL EVIDENCE OF SPATIAL
DISPERSION IN Si(111)

In this section we focus our discussion on the Si(111) facet
orientation instead of Si(001) because in the latter orientation
the spatial dispersion contribution is harder to separate from
the other sources due to the symmetric fourfold SHG intensity
peak feature. The Si(111) bond unit vectors and the defined
coordinate systems in the simulation are similar to those in
Ref. [21]. Some of the few wavelength-dependent data for a
p-incoming fundamental, p-outgoing wave SHG polarization
(which we refer to as pp throughout the text) on a nonmiscut
Si(111) sample have been measured by Kravetsky et al. [37]
for three different frequencies at an angle of incidence (AOI)
of 45◦, as replotted in the left column of Fig. 3. Experimen-
tally, it turns out that the SHG signal is, as a function of
the azimuthal angle 0◦–360◦, either threefold, when the ab-
sorption length is small [for a vacuum wavelength of λ0,2ω =
266 nm, Fig. 3(a)] or sixfold, when the absorption length is
huge [for a vacuum wavelength of λ0,2ω = 532 nm, Fig. 3(c)]
[37]. This feature can be easily explained by assuming a bulk
contribution in the form of a quadrupole and spatial dispersion
contribution. However, as has been shown in the previous dis-
cussion, the spatial dispersion contribution can be redefined
in the SBHM as similar to a bulk dipolar contribution and is
responsible for the different features of the smaller threefold
second harmonic (SH) intensity peaks. This is because for low
AOI the projection of the field on the three bonds is almost
identical, giving a sixfold symmetry: The fundamental wave
has an AOI of 45◦ in air, within the oxide the AOI is �29◦,
and within Si the AOI is, due to its large refractive index,
� 11.3◦, depending on the wavelength, where if one takes an
AOI = 0◦, a perfect sixfold SH intensity pattern is directly
obtained.

Furthermore, to reproduce the experimental fit, it has to
be noted that the nonlinear SH susceptibility value depends
on the incoming (ω) and SH (2ω) frequency as can be seen
from Eq. (1). Therefore we apply different parameters for the
surface SH nonlinear susceptibility for the three different SHG
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FIG. 3. Left: Measured azimuthal dependence as a function of wavelength [(a) 266 nm, (b) 385 nm, and (c) 532 nm]. Data are replotted
(with permission) from Ref. [37]. Right: Simulated SBHM data of one slab using one (bulk) hyperpolarizability and two angles of incidence.
For λ0,2ω = 266 nm, only an AOI = 29◦ (SiO2) was used; for the case of λ0,2ω = 532 nm, an AOI = 11.47◦ for the harmonic wave was used.
For λ0,2ω = 385 nm a linear combination of AOI = 29◦ and AOI = 11.0◦ was used. The total intensity is plotted using black lines, and the
intensity from the contributing bonds is given with dashed blue (up bond), red (down bond 1), green (down bond 2), and brown (down bond 3)
lines.

frequencies used in fitting Fig. 3 for Si(111) SHG intensity
pp polarization obtained from Ref. [37]. The values of the
nonlinear surface susceptibilities for Si(111) were obtained
from Fig. 2(a) in Ref. [38] and were derived using ab initio
self-consistent tight-binding theory. The values of the SHG
nonlinear surface susceptibility χ (2)

zzz for the SH wavelengths
of 266, 385, and 532 nm are 15 × 10−19, 5 × 10−19, and
3 × 10−19 m2/V, respectively [38]. In addition, the escape
depth and absorption coefficient of the SH radiation for the SH
wavelengths of 266, 385, and 532 nm are 5, 40, and 800 nm,
respectively [37]. Hence the observed RASHG intensity in
Fig. 3(a) corresponding to the SH wave of 266 nm shows very
strong surface SH effects since the optical penetration is only
1–2 atomic layers deep and the observed pattern resembles a
threefold peak surface Si(111) symmetry in accordance with
the C3v point group. For the SH wavelength of 2ω = 385
nm the surface nonlinear susceptibility is only 1/3 of that of
2ω = 266 nm, and now the optical penetration depth is 40 nm,
so bulk effects become significant.

We now modify the SBHM to model SH spatial dispersion
from bulk dipoles by assigning different AOIs as explained in
the first paragraph of this section. In the SBHM the harmonic
polarization is given by �P2ω = ∑

j β2 j �b j �b j �b j • • �E �E = χ2 •
• �E �E , with the bullets denoting inner tensorial products sum-
ming over all bonds j. The hyperpolarizability β2 j denotes the
nonlinear hyperpolarizability of the Si bond, pointing towards
the tetrahedra corners, and is a function of the frequency.
Therefore the changes in the nonlinear hyperpolarizability
due to frequency are given by a second parameter or onset
mimicking the hyperpolarizability strength β2 to adjust the
arbitrary intensity SHG experimental data since we do not
know the exact value of β2 as a function of the frequency.
In the right column of Fig. 3 the fits are shown. It turns out
that in order to obtain the best fit the change in the bulk
hyperpolarizability value for higher SH frequencies has to be
adjusted to compensate the changes in the surface dipole off-
set after considering Fresnel coefficients for the bulk sources.
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FIG. 4. Comparison between (a) pp RASHG intensity polar plot experiment by Mitchell et al. [41] for a fundamental incoming wavelength
of 830 nm and the corresponding SBHM simulation assuming (b) almost no penetration into the bulk (AOI = 29◦) and (c) penetration into
the bulk (AOI = 11.3◦). The SBHM calculation takes into account the surface contribution (blue lines), bulk quadrupole (green lines), spatial
dispersion (red lines), and Fresnel coefficients to produce the total SHG intensity (black dashed lines). The increase in the small threefold SH
intensity peak is due to spatial dispersion.

To obtain the exact value of the bulk hyperpolarizability, fur-
ther investigation is required using ab initio models to explore
Eq. (1) and introduce a symmetry breaking due to field decay
as well as investigate the interactions and the involved transi-
tions. Indeed, one can follow the approach taken by Mendoza
and Mochán in Ref. [39], where the macroscopic nonlinear
bulk and surface susceptibilities for different frequencies were
calculated from the microscopic susceptibility tensors of each
bond, yielding good agreement with the experimental work
of Aspnes and Studna [40]. We believe that such an approach
can also be performed for spatial dispersion involving a bulk
field gradient along the optical axis. However, the calculation
of nonlinear SH spatial dispersion susceptibility lies beyond
the scope of this research, where we focus mainly on the phe-
nomenological aspects of the SBHM and on the reformulation
of spatial dispersion from a classical point of view, and we
encourage further investigation on this subject.

The modified SBHM now considers the contribution from
bulk dipoles from two factors: the radiating dipoles them-
selves at smaller AOI due to Snell’s law and due to changes
in the hyperpolarizability (frequency effect). Nevertheless,
we believe that the latter effect together with the increase
in bulk layers can be a significant factor in explaining the
20-fold SH pp intensity increase in Fig. 3(b) and in Fig. 5
of Ref. [39]. In the simulation, we apply an AOI of 45◦, as
replotted in the left column of Fig. 3. An additional parameter
was used to adjust the relative contribution of the surface
with AOI = 29◦, yielding a mainly threefold symmetry, and
of the bulk with AOI � 9◦, giving rise to a sixfold symmetry.
The SBHM yields for the up bond a baseline shift (plotted
in blue), and the contribution of the three down bonds is
plotted in red, green, and brown. The total intensity is plotted
in black. For λ0,2ω = 266 nm, only an AOI = 29◦ was used,
for λ0,2ω = 532 nm a pure bulk spatial dispersion contribution
was considered, and for the intermediate wavelength λ0,2ω =
385 nm a combination of AOI = 29◦ and AOI = 11.0◦ was
used. The assignments “surface dipoles” and “bulk dipoles”
in Fig. 3 stem purely from the different AOIs depending on
the different frequency-dependent refractive indices. The fit

for λ0,2ω = 532 nm shows a symmetric sixfold peak pattern
although we have carried out similar RASHG experiments for
λ0,2ω = 445 nm, which is close to 532 nm, showing a similar
threefold pattern [22]. Interestingly, the smaller threefold peak
can also be attributed to the relative phase values between the
isotropic and anisotropic coefficients a(3) and c(3) in Eq. (76)
of Ref. [39] using the polarizable bond model. In this paper
we offer an alternative view that this effect can also arise due
to spatial dispersion because of the different driving fields
experienced by dipoles along the optical axis since the in-
coming field is absorbed. To support this claim, we calculated
the ratios between the high and low SHG pp intensity peaks
and compared them with existing experimental data, and we
obtained a very good match.

Figure 4 shows the SBHM simulation to reproduce the
experimental results of Ref. [41] for a very small penetra-
tion light depth of 5–10 nm at the interface (AOI = 29◦),
depicted in Fig. 4(b), and for a higher penetration depth
(AOI = 11.3◦) corresponding to a Si refractive index of n =
3.7 for an incoming wavelength of 830 nm and absorption
coefficient of around 760.12 cm−1 based on the data re-
ported by Aspnes and Studna [40], as shown in Fig. 4(c).
The surface nonlinear hyperpolarizability values correspond-
ing to the involved frequencies were obtained from Ref. [38],
and the bulk hyperpolarizabilities were adjusted accordingly.
The SBHM simulation considers the contribution from sur-
face dipoles, the contribution from bulk quadrupoles, and the
bulk spatial dispersion SHG contribution as well as Fresnel
coefficients for the pp polarization. The Fresnel coefficients
and the hyperpolarizability offsets will be important to ob-
tain a rough estimate of the surface, quadrupole, and spatial
dispersion contributions for all possible light polarizations.
Because measurements were made using arbitrary SHG inten-
sity units, the ratio between the high threefold peak and low
threefold peak is important. For the experiment in Fig. 4(a)
the high-peak-to-low-peak ratio is 4.5. Assuming AOI = 29◦
as shown in Fig. 4(b), the high-peak-to-low-peak ratio is 7.5,
which is far from a good fit even if the offset ratios are
adjusted or if only surface dipoles (ratio is 35/2.5 = 14) or
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bulk quadrupoles (pure threefold) are considered. The best
fit with experiment was obtained for an AOI = 11.3◦, which
matches Snell’s law for an incoming wavelength of 830 nm
when the surface, quadrupole, and spatial dispersion contri-
bution onset ratio was 2 : 1 : 1, or in other words the surface
contribution was two times larger than the quadrupole and
spatial dispersion contribution as shown in Fig. 4(c). The
spatial dispersion contribution is thus significant to reproduce
the best fit.

We found using the SBHM simulation that decreasing the
AOI from 29◦ to 0◦ gradually corresponds to an increase
in the smaller threefold peak SHG intensity, becoming fully
sixfold if the AOI is set to zero. The SBHM prediction is
observed in the experimental data measured by Kravetsky
et al. [37], where the threefold small peak for λ0,2ω = 415
nm is higher than that for λ0,2ω = 385 nm. In addition, our
simulation also shows that only the spatial dispersion SHG
contribution is responsible for this effect because as shown
in Figs. 4(b) and 4(c) the bulk quadrupole (green lines) and
surface contribution (red lines) does not alter the threefold
peak height. Thus this is the first proof that the SHG spatial
dispersion radiation can explain the difference in the variation
of the threefold SHG small peak pattern for different incoming
wavelengths. However, despite using two bulk-related contri-
butions, namely, spatial dispersion and bulk quadrupole, it is
clear to us that the surface contribution will be important for
certain surface terminations—and is furthermore frequency
dependent [42].

Moreover, we would also state that this model can be
applied for a different material, e.g., crystal symmetry [38], by
attributing the proper bond vector orientation for the surface
and bulk and performing the same procedure, namely, a layer-
by-layer analysis as in Eq. (3). In addition, for a transparent
material the absorption coefficient is very small, so that the
field decay is negligible within the optical penetration depth.
Therefore spatial dispersion due to bulk dipole is not signifi-
cant in this case. For very large absorption, such as the case in
Fig. 3(a), the optical penetration depth is only a few nanome-
ters, and spatial dispersion becomes negligible. Furthermore,
other Si(111) RASHG experimental data for an incoming pp
wavelength of 830 nm corresponding to λ0,2ω = 415 nm also
exist [41] showing a threefold peak pattern similar to our
experimental result [22].

To test the absolute surface-versus-bulk SHG contribution
ratio, we offer an experimental setup that can also be useful
to determine the strength of spatial dispersion. Despite there
having been proposals in the literature [20,43], e.g., using
steps to separate the “pure” bulk and surface contributions,
we propose one unambiguous technique, separating the har-
monic and frequency-doubled signals in space. The proposal
works for (slightly) dispersive materials and makes use of
the different propagation directions inside the material of the
harmonic and frequency-doubled reflection. Just using the
Huygens principle of constructing the planes of equal phase
for �Eω and �E2ω (see Fig. 5), one can determine experimentally
the bulk SHG contribution by cutting a Si crystal (e.g., with
a focused ion beam) in a shape as shown. Such a geometry
allows one to let the �E2ω field pass through the interface
without undergoing refraction (but certainly weakened by the

FIG. 5. Proposed geometry for measuring unambiguously the
dipolar bulk contribution of SHG. For a harmonic wave of 1064 nm
(n = 3.64) with an AOI = 45◦ and a SHG frequency of 532 nm
(n = 4.14, penetration depth 1.3 μm) and for θvic of 9.8◦ the SHG
wave passes the vicinal surface without being refracted (θbulk = 0).
However, the harmonic wave is refracted at 5.8◦ to the right. There-
fore the frequency-doubled wave, which contains surface and bulk
contributions, is approximately 35◦ separated from the field only
containing the bulk contribution.

effect). The radiating �Eω, however, is refracted to increasing
angles.

V. SUMMARY

Summarizing, we show that in the diamond structure, a
spatial dispersion SHG response can exist if two atoms, estab-
lishing a symmetric entity, experience different field strengths
and thereby the radiated harmonic field does not fully cancel.
The dipole-allowed bulk SHG spatial dispersion originates
then due to the finite absorption length of the electric field
in the material. Analysis of the spatial dispersion nonlinear
polarization and tensorial properties shows that the theoretical
formulation of Peng et al. [12] regarding spatial dispersion in
the form of a third-order nonlinear SHG effect can be reformu-
lated in terms of a second-order SHG effect using a reduced
third-rank nonlinear spatial dispersion susceptibility with only
one independent parameter in the tensor. Furthermore, our
SBHM simulation shows that the spatial dispersion contribu-
tion is roughly half and equal to the surface dipole and bulk
quadrupole contribution, respectively, yielding an excellent fit
only if spatial dispersion is included in the SBHM. However,
an exact comparison can only be obtained if the nonlinear
bulk hyperpolarizabilities can be calculated from ab initio
models, and further work in this area is encouraged. Finally,
we compare our simulation results with available wavelength-
dependent SHG data, whose azimuthal dependence can be
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well modeled, and propose a measurement scheme capable
of unambiguously separating bulk and surface effects.
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APPENDIX

The bond direction of the Si bonds is defined by following
the convention from standard crystallographic tables for the
conventional diamond cell [44,45]. For the Si(100) orientation
the bond unit vector directions are

b̂1 =

⎛
⎜⎝

− 1√
2

sin β

2

− 1√
2

sin β

2

− cos β

2

⎞
⎟⎠, b̂2 =

⎛
⎜⎝

1√
2

sin β

2
1√
2

sin β

2

− cos β

2

⎞
⎟⎠,

b̂3 =

⎛
⎜⎝

− 1√
2

sin β

2
1√
2

sin β

2

− cos β

2

⎞
⎟⎠, b̂4 =

⎛
⎜⎝

1√
2

sin β

2

− 1√
2

sin β

2

cos β

2

⎞
⎟⎠

(A1)

with opposing bonds

b̂5 = −b̂1, b̂6 = −b̂2, b̂7 = −b̂3, b̂8 = −b̂4. (A2)

By substituting the bond definitions in Eqs. (A1) and (A2)
into Eq. (9) and evaluating β we obtain the following matrix:

↔
χ

(3)

SBHM-SD = αSD

V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

4
9 [3 − cos (4φ)] − 4

9 sin (4φ) 0

− 4
9 sin (4φ) 8

9 cos2 (2φ) 0

0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

− 4
9 sin (4φ) 8

9 cos2 (2φ) 0

8
9 cos2 (2φ) 4

9 sin (4φ) 0

0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 8
9

0 0 0

8
9 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 4
9 sin (4φ) 8

9 cos2 (2φ) 0

8
9 cos2 (2φ) 4

9 sin (4φ) 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

8
9 cos2 (2φ) 4

9 sin (4φ) 0

4
9 sin (4φ) 4

9 [3 − cos (4φ)] 0

0 0 8
9

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

0 0 0

0 0 8
9

0 8
9 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 8
9

0 0 0

8
9 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0

0 0 8
9

0 8
9 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

8
9 0 0

0 8
9 0

0 0 8
9

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

Setting φ = 0, the tensor simplifies to

↔
χ

(3)

SBHM-SD = 8αSD

9V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

If we assume for the sake of simplicity that the incoming p-polarized field is directed normal to the sample or along the z

axis, we have ko = (0, 0, 1), and then we can contract the spatial dispersion tensor
↔
χ

(3)

SBHM−SD with ko = (0, 0, Ez ) so that for
this special case the third-order spatial dispersion tensor reduces to a second-order nonlinear tensor, which is obviously the third
column of the tensor elements in Eq. (A4).
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↔
χ

(2)

SBHM-SD = 8αSDeff

9V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎠

⎛
⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎠

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

The second-order tensor above is similar to the tensor ob-
tained from group theory (GT), where for Si the bulk point
group is Oh and a field gradient due to spatial dispersion
along the z axis will cause the symmetry to break into a lower
symmetry similar to the Si(001) surface, which is C2v and
takes the form

↔
χ

(2)

GT-SD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

0 0 s3232

0 0 0

s3322 0 0

⎞
⎟⎠

⎛
⎜⎝

0 0 0

0 0 s3232

0 s3322 0

⎞
⎟⎠

⎛
⎜⎝

s3223 0 0

0 s3223 0

0 0 s3333

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

Equation (A6) is a 3 × 3 matrix whose elements are also a
3 × 3 matrix. The first index “i′′ corresponds to the rows in the
principal matrix, whereas the indices “ j′′ and “k′′ correspond
to the rows and columns in the internal 3 × 3 matrices. For the
the case of SHG, the two fundamental driving fields are indis-
tinguishable, so we can apply intrinsic permutation s3322 =
s3232. Furthermore, assuming symmetry in the diagonal of the
contracted matrix representation, we have s3223 = s3232, and
again both the spatial dispersion and SHG second-order tensor
now only require two independent parameters.

Analogously, if the incoming field is s polarized, then ko =
(0, 1, 0), and in this case we have

↔
χ

(2)

SBHM-SD = 8αSDeff

9V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A7)

A similar approach can be taken for different Si facet
orientations. For the case of Si(111) we first apply a rotation
on the (001) matrix about the z axis and evaluate the tensor at
φ = π/4, labeled R(z)(π/4). Afterwards, a second transfor-
mation about the x axis for an angle of β/2 is applied, which
we label as R(x)(β/2). After applying these transformations
and contracting with a unitary vector along the z axis, the
resulting effective third-rank tensor for the Si(111) orientation
is

←→χ (2)
SBHM-SD = 8α2effSD

27V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

0 −√
2 1

−√
2 0 0

1 0 0

⎞
⎟⎠

⎛
⎜⎝

−√
2 0 0

0
√

2 1

0 1 0

⎞
⎟⎠

⎛
⎜⎝

1 0 0

0 1 0

0 0 7

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A8)

which again shows that in the SBHM the third-rank tensor
describing spatial dispersion requires only one independent
parameter, which is the second-order effective spatial disper-
sion hyperpolarizability. The tensor in Eq. (A8) is similar to
the GT tensor for a symmetry breaking of the point group Oh

into C3v .

[1] J. E. Sipe, D. J. Moss, and H. M. van Driel, Phys. Rev. B 35,
1129 (1987).

[2] V. Mizrahi and J. E. Sipe, J. Opt. Soc. Am. B 5, 660 (1988).
[3] N. Arzate and B. S. Mendoza, Phys. Rev. B 63, 113303 (2001).
[4] B. Gokce, E. J. Adles, D. E. Aspnes, and K. Gundogdu, Proc.

Natl. Acad. Sci. U. S. A. 107, 17503 (2010).
[5] C. Schriever, C. Bohley, and R. B. Wehrspohn, Opt. Lett. 35,

273 (2010).
[6] M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan,

E. Degoli, E. Luppi, V. Veniard, S. Ossicini, D. Modotto,
S. Wabnitz, R. Pierobon, and L. Pavesi, Nat. Mater. 11, 148
(2012).

[7] J. F. McGilp, J. Phys.: Condens. Matter 22, 084018 (2010).
[8] K. Sahu, K. B. Eisenthal, and V. F. McNeill, J. Phys. Chem. C

115, 9701 (2011).

[9] F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E.
Sipe, and M. Kauranen, Phys. Rev. B 80, 233402 (2009).

[10] P. Guyot-Sionnest and Y. R. Shen, Phys. Rev. B 38, 7985
(1988).

[11] W. S. Kolthammer, D. Barnard, N. Carlson, A. D. Edens, N. A.
Miller, and P. N. Saeta, Phys. Rev. B 72, 045446 (2005).

[12] H. J. Peng, E. J. Adles, J.-F. T. Wang, and D. E. Aspnes, Phys.
Rev. B 72, 205203 (2005).

[13] M. Corvi and W. L. Schaich, Phys. Rev. B 33, 3688 (1986).
[14] G. D. Powell, J.-F. Wang, and D. E. Aspnes, Phys. Rev. B 65,

205320 (2002).
[15] R. W. Boyd, Nonlinear Optics (Academic, New York, 2003).
[16] Y. R. Shen, Nature (London) 337, 519 (1989).
[17] N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys.

Rev. 174, 813 (1968).

125410-10

https://doi.org/10.1103/PhysRevB.35.1129
https://doi.org/10.1364/JOSAB.5.000660
https://doi.org/10.1103/PhysRevB.63.113303
https://doi.org/10.1073/pnas.1011295107
https://doi.org/10.1364/OL.35.000273
https://doi.org/10.1038/nmat3200
https://doi.org/10.1088/0953-8984/22/8/084018
https://doi.org/10.1021/jp2022083
https://doi.org/10.1103/PhysRevB.80.233402
https://doi.org/10.1103/PhysRevB.38.7985
https://doi.org/10.1103/PhysRevB.72.045446
https://doi.org/10.1103/PhysRevB.72.205203
https://doi.org/10.1103/PhysRevB.33.3688
https://doi.org/10.1103/PhysRevB.65.205320
https://doi.org/10.1038/337519a0
https://doi.org/10.1103/PhysRev.174.813


SPATIAL DISPERSION CONTRIBUTION TO SECOND … PHYSICAL REVIEW B 103, 125410 (2021)

[18] E. J. Adles and D. E. Aspnes, Phys. Status Solidi A 205, 728
(2008).

[19] J. A. Litwin, J. E. Sipe, and H. M. van Driel, Phys. Rev. B 31,
5543 (1985).

[20] J. F. McGilp, J. Phys.: Condens. Matter 19, 016006 (2007).
[21] H. Hardhienata, A. Prylepa, D. Stifter, and K. Hingerl, J. Phys.:

Conf. Ser. 423, 012046 (2013).
[22] C. Reitböck, D. Stifter, A. Alejo-Molina, K. Hingerl, and H.

Hardhienata, J. Opt. (Bristol) 18, 035501 (2016).
[23] C. Reitböck, D. Stifter, A. Alejo-Molina, H. Hardhienata, and

K. Hinger, Appl. Surf. Sci. 421, 761 (2017).
[24] K.-D. Bauer, M. Panholzer, and K. Hingerl, Phys. Status Solidi

B 253, 234 (2016).
[25] H. Hardhienata, A. Alejo-Molina, C. Reitböck, A. Prylepa, D.

Stifter, and K. Hingerl, J. Opt. Soc. Am. B 33, 195 (2016).
[26] H. Hardhienata, I. Priyadi, H. Alatas, M. D. Birowosuto, and P.

Coquet, J. Opt. Soc. Am. B 36, 1127 (2019).
[27] H. Hardhienata, I. Priyadi, B. Nurjanati, and H. Alatas,

J. Nonlinear Opt. Phys. Mater. 27, 1850025 (2018).
[28] A. Alejo-Molina, H. Hardhienata, and K. Hingerl, J. Opt. Soc.

Am. B 31, 526 (2014).
[29] E. S. Jatirian-Foltides, J. J. Escobedo-Alatorre, P. A. Marquez-

Aguilar, H. Hardhienata, K. Hingerl, and A. Alejo-Molina, Rev.
Mex. Fis. E 62, 5 (2016).

[30] A. Alejo-Molina, K. Hingerl, and H. Hardhienata, J. Opt. Soc.
Am. B 32, 562 (2015).

[31] G. New, Introduction to Nonlinear Optics (Cambridge Univer-
sity Press, Cambridge, 2011).

[32] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

[33] B. Gokce, K. Gundogdu, E. J. Adls, and D. E. Aspnes, J. Korean
Phys. Soc. 58, 1237 (2011).

[34] V. Agranovich and V. Ginzburg, Spatial Dispersion in Crystal
Optics and the Theory of Excitons, Interscience Monographs
and Texts in Physics and Astronomy Vol. 18 (Interscience, New
York, 1966).

[35] J. E. Mejia, C. Salazar, and B. S. Mendoza, Rev. Mex. Fis. 50,
134 (2004).

[36] H. Fearn, D. F. V. James, and P. W. Milonni, Am. J. Phys. 64,
986 (1996).

[37] I. Kravetsky, L. Kulyuk, J. McGilp, M. Cavanagh, S. Chandola,
J. Boness, G. Marowsky, and F. Harbsmeier, Surf. Sci. 402–
404, 542 (1998).

[38] V. I. Gavrilenko and F. Rebentrost, Appl. Phys. A: Mater. Sci.
Process. 60, 143 (1995).

[39] B. S. Mendoza and W. L. Mochán, Phys. Rev. B 55, 2489
(1997).

[40] D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).
[41] S. A. Mitchell, R. Boukherroub, and S. Anderson, J. Phys.

Chem. B 104, 7668 (2000).
[42] S. Mitchell, M. Mehendale, and D. Villeneuve, Surf. Sci. 488,

367 (2001).
[43] G. Lüpke, D. J. Bottomley, and H. M. van Driel, J. Opt. Soc.

Am. B 11, 33 (1994).
[44] J. F. Nye, Physical Properties of Crystals: Their Representation

by Tensors and Matrices (Oxford University Press, New York,
1985).

[45] R. C. Powell, Symmetry, Group Theory, and the Physical Prop-
erties of Crystals (Springer-Verlag, New York, 2010).

125410-11

https://doi.org/10.1002/pssa.200777846
https://doi.org/10.1103/PhysRevB.31.5543
https://doi.org/10.1088/0953-8984/19/1/016006
https://doi.org/10.1088/1742-6596/423/1/012046
https://doi.org/10.1088/2040-8978/18/3/035501
https://doi.org/10.1016/j.apsusc.2016.10.131
https://doi.org/10.1002/pssb.201552538
https://doi.org/10.1364/JOSAB.33.000195
https://doi.org/10.1364/JOSAB.36.001127
https://doi.org/10.1142/S021886351850025X
https://doi.org/10.1364/JOSAB.31.000526
https://rmf.smf.mx/ojs/rmf-e/article/view/4743/4649
https://doi.org/10.1364/JOSAB.32.000562
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.3938/jkps.58.1237
https://rmf.smf.mx/ojs/rmf/article/view/3232
https://doi.org/10.1119/1.18315
https://doi.org/10.1016/S0039-6028(97)00982-5
https://doi.org/10.1007/BF01538239
https://doi.org/10.1103/PhysRevB.55.2489
https://doi.org/10.1103/PhysRevB.27.985
https://doi.org/10.1021/jp000450d
https://doi.org/10.1016/S0039-6028(01)01161-X
https://doi.org/10.1364/JOSAB.11.000033

