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Intrinsic and extrinsic spin-orbit coupling and spin relaxation in monolayer PtSe2
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Monolayer PtSe2 is a semiconducting transition-metal dichalcogenide characterized by an indirect band gap,
space inversion symmetry, and high carrier mobility. Strong intrinsic spin-orbit coupling and the possibility to
induce extrinsic spin-orbit fields by gating make PtSe2 attractive for fundamental spin transport studies as well
as for potential spintronics applications. We perform a systematic theoretical study of the spin-orbit coupling and
spin relaxation in this material. Specifically, we employ first-principles methods to obtain the basic orbital and
spin-orbital properties of PtSe2, also in the presence of an external transverse electric field. We calculate the spin
mixing parameters b2 and the spin-orbit fields � for the Bloch states of electrons and holes. This information
allows us to predict the spin lifetimes due to the Elliott-Yafet and D’yakonov-Perel mechanisms. We find that b2

is rather large, on the order of 10−2 and 10−1, while � varies strongly with doping, being about 103–104 ns−1 for
carrier density in the interval 1013–1014 cm−2 at the electric field of 1 V/nm. We estimate the spin lifetimes to be
on the picosecond level.

DOI: 10.1103/PhysRevB.103.125409

I. INTRODUCTION

Transition-metal dichalcogenides (TMDs) have been
investigated—mainly in the bulk form but also as layered
slabs—for many decades [1–5]. The recent revival of interest
in TMDs has been fueled by a broad range of fascinating
electronic, optical, and spin properties of two-dimensional
(2D) samples of TMDs, which are stable in air. The possibility
of controlling physical properties of TMDs by, e.g., stacking
[6–11], doping [12], straining [13,14], or gating [15], demon-
strates their potential for electronic [16], optoelectronic [17],
and valleytronics [18] applications. Moreover, due to strong
spin-orbit coupling and the presence of a semiconducting gap,
TMDs are also well suited for applications in spintronics
[19,20], as they can induce spin-orbit coupling (SOC) into
graphene via a strong proximity effect [21,22].

Recently demonstrated atomically thin PtSe2 [23,24] is
a distinct member of the 2D TMD family. What sharply
distinguishes this material from other TMDs is its high room-
temperature carrier mobility [25], which is close to that of
phosphorene [26]. But in contrast to phosphorene, PtSe2 ex-
hibits good stability when exposed to air [25]. Like other
TMDs, a monolayer of PtSe2 consists of an atomically thin
layer of transition-metal (Pt) within two layers of chalco-
gen (Se) atoms [Figs. 1(a) and 1(b)]. It crystallizes in the
centrosymmetric structure of the P3m̄1 space group being
isomorphic with the D3d point group. While bulk PtSe2 is
metallic, in the monolayer limit it is a semiconductor with a
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sizable indirect gap reported to be in the range of 1.2–2 eV
[10,25,27–29].

Monolayer PtSe2 also holds promise to exhibit rich spin
phenomena. One of the most exciting is the hidden spin
polarization [30] of degenerate bands near the Fermi level,
recently observed in angle-resolved photoemission spec-
troscopy (ARPES) experiments [31]. Its origin is attributed
to the local site dipole fields (local Rashba effect) generating
opposite helical spin textures for spin degenerate states, spa-
tially resolved with respect to different Se layers. The opposite
dipole fields compensate each other, leaving the total crystal
potential inversion symmetric and thus preserving the spin
degeneracy of bands [30]. Another interesting phenomenon
is the defect-induced magnetism, which is reported for mono-
[32,33] and multilayer [11] PtSe2 slabs. In the latter case, a
magnetic phase can be switched between ferro- to antiferro-
magnetic by changing the parity of the number of layers [11].
The interplay of such magnetic effects with spin-orbit cou-
pling could lead to interesting magnetotransport phenomena.

Strong spin-orbit coupling, intrinsic band gap, and high
carrier mobility make PtSe2 a good candidate for building
spintronic devices, such as a spin valve or spin transistor [34].
Essential for these devices is a coherent (ensemble) dynamics
of the electron spin. Such a dynamics is disrupted by spin
dephasing and spin relaxation processes. Thus the question
concerning the electron spin lifetime in monolayer PtSe2 is
of great importance for potential applications of this material
in spintronics. This question has not yet been systematically
addressed theoretically or experimentally.

Here we investigate the problem of the spin relaxation
in monolayer PtSe2 by employing first-principles calcula-
tions and extracting useful information about the spin-orbit
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coupling and spin relaxation. Two mechanisms dominating
spin relaxation in nonmagnetic materials, such as PtSe2, are
considered. Namely, the Elliott-Yafet [35,36] and D’yakonov-
Perel [37,38]. In the Elliott-Yafet mechanism, the intrinsic
SOC mixes opposite spin components of degenerate Bloch
states. In effect, an electron can flip its spin upon momentum
scattering, with the probability given by the so-called spin
mixing parameter b2

k. It is related to spin relaxation time τs,EY

via the formula [35,39,40]

τ−1
s,EY ≈ 4b2τ−1

p , (1)

where τ−1
p is the momentum relaxation rate, and b2 is the

Fermi surface average of b2
k .

Another contribution to the Elliott-Yafet mechanism could
come from heavy impurities, which could easily dominate
spin-flip scattering if they provide strong-enough local SOC
[19]. We do not study such impurities in this paper, as this
would require the knowledge of the specific scatterer. Rather,
we establish what the minimum spin relaxation would be if
scattering is dominated by phonons and/or light impurities.

In the D’yakonov-Perel mechanism spins randomize their
phase via the interaction with the fluctuating Rashba fields �k .
These fields appear due to broken space inversion symmetry
of the structure, e.g., due to a substrate or an external electric
field. The initial phase of spins is completely randomized after
the time τs,DP,

τ−1
s,DP = �2

⊥τp, (2)

where �2
⊥ denotes the Fermi surface average of the squared

spin-orbit field component �2
k⊥ being perpendicular to the

spin orientation. In realistic systems these two mechanisms
usually coexist and compete with each other. Here we show
that for both mechanisms the spin relaxation in PtSe2 is very
fast, up to a few picoseconds for experimentally accessible
momentum scattering time. Thus PtSe2 does not appear to be
the best material for building spintronic devices requiring long
spin lifetimes. However, it should be useful for investigating
spin-orbit-induced transport phenomena.

The paper is organized as follows. In Sec. II we briefly
describe methods and details of calculations. Section III
contains results of our first-principles calculations with a dis-
cussion, including effects of the intrinsic and extrinsic SOC
on the band structure, spin mixing parameter, and spin-orbit
fields. Estimations of spin lifetime due to Elliott-Yafet and
D’yakonov-Perel relaxation mechanisms and comparison are
also included here. Section IV contains final conclusions.

II. METHODS

First-principles calculations were performed using the
QUANTUM ESPRESSO package [41,42]. The norm-conserving
pseudopotential with the Perdew-Burke-Ernzerhof (PBE) [43]
version of the generalized gradient approximation (GGA)
exchange-correlation functional was used. Calculations with
a hybrid functional were done with the Heyd-Scuseria-
Ernzerhof (HSE) [44] functional, with the admixture parame-
ters chosen to fit the recently predicted values of the band gap
[10,45].

(a)

M
K

Se

Pt

(b)

FIG. 1. Sketch of the crystalline structure of monolayer PtSe2.
(a) Top view on the unit cell and the corresponding first Brillouin
zone with indicated high-symmetry points. (b) Side view of the
atomic structure of monolayer PtSe2. The center of inversion is at
the Pt atom, marked red.

The kinetic energy cutoff of the plane-wave basis sets
was 50 Ry for the wave function and 200 Ry for charge den-
sity. These values were found to give converged results also
for spin-related quantities. To avoid spurious interactions be-
tween the copies of PtSe2 monolayer, a vacuum of 20 Å was
introduced and was increased to 21.5 Å when the electric field
was turned on. Calculations with electric field were done with
the dipole correction [46]. Self-consistency was achieved with
21 × 21 × 1 Monkhorst-Pack grid, while for structure opti-
mization a smaller grid 10 × 10 × 1 was chosen. The initial
lattice constant of PtSe2 was taken from experiment [23] and
was later optimized for the chosen pseudopotential using the
variable cell and quasi-Newton schemes as implemented in
the QUANTUM ESPRESO package. During optimization process
all atoms were free to move in all directions to minimize
the internal forces below the threshold 10−4 Ry/bohr. The
calculated lattice constant is a = 3.748 Å, very close to the
experimental value in bulk 3.73 Å [23], and is in good agree-
ment with other calculations [29,32].

The Fermi contour averages of spin mixing parameter b2

and spin-orbit field �2 entering the formulas (1) and (2) were
calculated using the formula

A = 1

ρ(EF )SBZ

∫
FC

Ak

h̄|vF (k)|dk, (3)

where Ak stands for b2
k or �2

k⊥, SBZ is the area of the Fermi
surface, ρ(EF ) is the density of states per spin at the Fermi
level, vF (k) is the Fermi velocity, and the integration takes
over an isoenergy contour.

III. RESULTS AND DISCUSSION

We first examine the orbital effects. The calculated nonrel-
ativistic and relativistic band structures are shown in Fig. 2(a).
Monolayer PtSe2 is an indirect-gap semiconductor with a
sizable band gap. Without SOC the calculated band gap is
1.38 eV. The valence-band (VB) maximum is located slightly
away (0.15 Å−1) from the Brillouin-zone (BZ) center, while
the conduction-band (CB) minimum lies in the middle of the
�M path. The band edge at the � point is a saddle point
lying 38 meV below the global VB maximum [see the inset
in Fig. 2(a)]. The valence and conduction bands close to the
band gap are formed mainly by d electrons of platinum and
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FIG. 2. (a) Calculated non-relativistic (dashed line) and relativis-
tic (solid line) band structures along high symmetry lines in the
FBZ. The nonrelativistic band structure is misaligned with the Fermi
energy for better transparency. The inset shows a zoom of bands
close to the � point. Purple rectangles depict the range of k points in
(c)–(e). (b) Density of states projected onto atomic orbitals. (c)–(e)
Extracted spin-orbital splittings �m,n

so between the valence bands m
and n, labeled 1,2,3, and 4,5 in (a), calculated as a difference between
interband energy distances with SOC and without SOC.

p electrons of selenium [Fig. 2(b)]. In the valence band up to
1 eV below the Fermi level the dominant contribution comes
from Se p electrons, with significant admixture of d electrons
from Pt. In the conduction band the contributions from Pt and
Se atoms are almost equal.

A. Intrinsic spin-orbit coupling

Spin-orbit splitting. Relativistic effects in PtSe2 are sig-
nificant. Spin-orbit coupling splits the originally twofold
(fourfold with spin) degenerate valence band at the � point
into two (doubly spin degenerate) bands which are separated
by the spin-orbit split-off gap of �so = 350 meV. As a result
the maximum of the VB moves to the BZ center and the
indirect band gap reduces to 1.2 eV, in agreement with earlier
calculations [25,29]. The orbital degeneracy is also removed
at the K point. The energy splitting of the two highest valence
bands [bands 1 and 2 in Fig. 2(a)] is 170 meV. In the conduc-
tion band, the corresponding spin-orbital gaps �so are much
smaller, 59 meV at the � point and 5 meV at the K point.

Away from high-symmetry points, we calculate the energy
shifts �n,m

so (k) = �n,m
rel (k) − �n,m

nrel(k), where �n,m
rel(nrel)(k) is the

energy difference between the bands n and m obtained from
the relativistic (nonrelativistic) calculation. It provides infor-
mation about the shift of the bands upon turning on SOC, with
respect to their initial energy. This can be partially translated
into the strength of the direct spin-orbit interaction between
bands m and n, relative to the total SOC in the band m coming

TABLE I. Spin-orbital energy shifts �n,m
so at high-symmetry

points extracted from first-principles calculations.

k point � (PBE) K (PBE) � (HSE) K (HSE)

�4,5
so [meV] 59 5 113 19

�1,2
so [meV] 350 170 373 58

�2,3
so [meV] –4 –24 –9 41

from all possible couplings. Considering that SOC leads to
band repulsion, positive �n,m

so means that the direct spin-orbit
interaction between the bands n and m is likely dominant (with
respect to couplings to other bands). Analogously, if �n,m

so is
negative, the spin-orbit interaction between the bands n and m
is weak enough to be overcome by couplings to others. Note
that �n,m

so = 0 does not mean 〈ψn|Hso|ψm〉 = 0. Rather, it says
that the direct SOC between bands m and n is of the same
order as their couplings to the other bands, and no change in
energy is observed.

The results for three valence bands and two conduction
bands labeled in Fig. 2(a) respectively 1, 2, 3, and 4, 5, are
shown in Figs. 2(c)–2(e) and in Table 1. We have checked,
by tracing the irreducible representations of the bands and
applying the group theory methods, that for all �n,m

so s shown
in Figs. 2(c)–2(e) the direct SOC between bands n and m
is allowed by the symmetry. For the valence bands 1–3,
�n,m

so (k) is strongly momentum dependent and takes signifi-
cantly larger values than �4,5

so in the conduction band. In the
presented k-points range it varies from -180 meV for �2,3

so (k)
[Fig. 2(e)] up to 350 meV for �1,2

so (k) [Fig. 2(d)]. In com-
parison, max(|�4,5

so |) = 59 meV. The weaker k dependence
of �4,5

so results from strong isolation of the bands 4 and 5,
by ∼1.3 eV from lower and upper manifolds (not shown),
effectively limiting the possible couplings mainly to those two
partners.

Spin mixing. Apart from the spectroscopic features dis-
cussed above, the strength of SOC of inversion-symmetric
crystals is measured by the spin mixing parameter b2

k. Be-
cause b2

k originates from the intrinsic SOC, it constitutes a
good measure of this interaction in the band structure [47].
Exceptions are spin hot spots formed around high-symmetry
and accidental degeneracy points at which the value of b2

k is
strongly enhanced [40,47], and the mixing reaches the value
of one-half (equal probability for spin up and down in a given
state), irrespective of the strength of SOC.

For an arbitrary Bloch state

�
⇑
n,k(r) = [an,k(r)|↑〉 + bn,k(r)|↓〉]eik·r, (4)

where n is the band index, an,k and bn,k are lattice periodic
functions, |σ 〉, σ = {↑,↓} is an eigenstate of spin one-half
operator, and k is the crystal momentum, the spin mixing
parameter is defined as

b2
k =

∫
|bn,k(r)|2dr, (5)

where the integral is taken over the entire unit cell. Here
the amplitudes an,k(r) and bn,k(r) are chosen in a way that
bn,k(r) is the amplitude of the spin component admixed by the
SOC. Such a choice is possible for any spin quantization axis
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FIG. 3. Distribution of the spin mixing parameter b2
k in the first

Brillouin zone of PtSe2 for three spin quantization axes. Left column:
valence band and SQA = X (a), valence band and SQA = Y (c),
valence band and SQA = Z (e). Right column: same as left but for
the conduction band. Blue circles and ellipses encircle wedges of the
BZ corresponding to the carried density up to n = 12 × 1013 cm−2.

(SQA). Because usually |bn,k(r)| 
 |an,k(r)|, the state (4) can
still be called a spin-up state (although it is not an eigenstate of
a Pauli matrix) [19]. For centrosymmetric systems with time-
reversal symmetry, the energy degenerate spin-down partner
of �

⇑
n,k(r) is

�
⇓
n,k(r) = [a∗

n,−k(r)|↓〉 − b∗
n,−k(r)|↑〉]eik·r, (6)

and the same definition of b2
k can be used. It is immediately

seen that for normalized states b2
k ∈ [0; 0.5], where b2

k = 0
means no spin mixing and b2

k = 0.5 for fully spin mixed
states. Alternatively, b2

k can be defined as a deviation of the
spin expectation value from one-half [48].

To quantify anisotropies in the spin relaxation and spin
transport in the crystal, it is instructive to study the spin ad-
mixture parameter for different spin quantization axes, which
correspond to either the direction of an applied magnetic field
or to the orientation of the injected spin in a spin injection
experiment. In Fig. 3 we show b2

k calculated in the first
Brillouin zone (FBZ) for the highest valence and first con-
duction bands, and for three different spin quantization axes
SQA = {X, Y, Z} aligned with the real-space axes shown in
Fig. 1. A strong anisotropy of b2 is evident. In the valence
band and for SQA = X/Y [Figs. 3(a) and 3(c)] the region

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 2 4 6 8 10 12

(b)

b2
[1

0
2 ]

n [1013cm 2]

10 6

10 5

10 4

10 3

10 2

10 1

100

0 2 4 6 8 10 12

(a)

b2

n [1013cm 2]

X
Y
Z

20

15

10

5

0

5

10

15

0 20 40 60 80 100 120

n 
[1

013
cm

2 ]

EF [meV]

(c)

valence band

conduction band

FIG. 4. Calculated Fermi-surface-averaged spin mixing parame-
ter b2 vs carrier density n for the valence (a) and for the conduction
band (b). (c) Carrier density vs position of the Fermi level given with
respect to valence-band maximum and conduction-band minimum.

around the BZ center is a spin hot region where b2
k is close

to one-half. This region is very wide and extends towards the
M points, in a different way for SQA = X and SQA = Y. At
the � point spins are fully mixed, b2

k ≈ 0.5; this is a witness
to the lifting of the orbital degeneracy by SOC. For SQA =
Z [Fig. 3(e)], the entire FBZ is a spin hot region with the
value of b2

k ∼ 10−2−10−1. An exception is a small circular
wedge in the center of BZ corresponding to the vicinity of
the valence-band maximum [see Fig. 2(a)]. In this wedge b2

k
varies from 10−5 in the center to 10−2 at the edge.

In the conduction band [Figs. 3(b), 3(d), and 3(f)] we ob-
serve a much smaller variation of spin mixing parameter than
for the valence band. The value of b2

k is of the order of 10−2

within the whole BZ, except for several spin hot spot regions
localized around high symmetry and accidental degeneracy
points.

According to Elliott [35], the spin mixing parameter can
be translated into the spin relaxation rate, provided we know
the momentum relaxation time. The latter strongly depends
on temperature, concentration of defects and dopants, and
for a given sample can be determined from transport exper-
iments. Here we calculate the intrinsic, sample-independent
property of PtSe2 required to estimate spin lifetime—the
Fermi-surface-averaged spin mixing parameter b2. It is shown
in Figs. 4(a) and 4(b) as a function of carrier density n, plotted
versus Fermi energy in Fig. 4(c). As can be seen, b2 in the
valence band displays a qualitatively different behavior for
in-plane and out-of-plane SQA [Fig. 4(a)]. For SQA = Z it
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is growing exponentially from b2 ≈ 10−5 to b2 = 10−1 when
the hole density is increasing. For in-plane spin polarization b2

slowly decreases from the value of about 0.5 with increasing
n but never gets below 10−1. Similar doping dependence of b2

was observed in stanene, bismuthene, and antimonene [47].
This unusually large value of b2 is due to the very broad spin
hot region close to the VB maximum. In this case the perturba-
tive Elliott’s approach to τs is not valid, and the spin relaxation
rate is essentially the same as momentum relaxation. There-
fore if the momentum relaxation anisotropy (in the plane) is
not very large, one should expect a giant, doping-dependent
anisotropy of the spin relaxation in PtSe2 for holes.

In contrast, the spin relaxation anisotropy is predicted to
be rather weak for conduction electrons. Indeed, as seen in
Fig. 4(b), b2 in the conduction band varies very little with n,
similarly to what was observed in phosphorene, antimonene,
or arsenene [47,49]. Its value is of the order of 10−2, meaning
that out of all momentum scattering events about 1% consti-
tute a spin flip. Moreover, there is a very weak dependence of
the spin mixing probability on SQAs. The spin relaxation rate
for out-of-plane spins is expected to be somewhat slower than
for in-plane spins. Also, spin lifetimes of electrons should be
1–2 orders longer than for holes, for in-plane spins.

B. Extrinsic spin-orbit coupling

In realistic situations monolayers are often encapsulated
in protective layers, sit on a substrate, or are studied in
a gating electric field. In any of these configurations the
space inversion symmetry is broken, leading to lowering
of symmetry—D3d → C3v in the case of monolayer PtSe2.
The spin degeneracy εk,↑ = εk,↓ is lifted, except at the
time-reversal points � and M, giving nonzero Rashba spin
splitting �R

so(k) = εk,↑ − εk,↓. The emerging spin-orbit fields
�k enable the D’yakonov-Perel mechanism of spin relax-
ation, which coexists with the Elliott-Yafet spin-flip scattering
mechanism.

Encapsulating PtSe2 by hBN is perhaps ideal to study the
extrinsic effects, as the proximity-induced SOC from it is
expected to be weak. A recent calculation of graphene/hBN
finds the induced couplings to be on the order of 10 μeV [50],
which is much below the meV scale for PtSe2. Thus one can
really explore the spin physics in hBN encapsulated PtSe2,
with top and back gates providing both doping and electric
field tuning.

We model the effects of space inversion symmetry break-
ing by applying a uniform external electric field E in the
direction perpendicular to the PtSe2 sheet. In this approach the
spin-orbit field depends on both the momentum and electric
field and is related to the spin splitting as

Hsoc(k) = h̄

2
�k(E ) · σ, (7)

where h̄ is the Planck constant, and σ is the vector of Pauli
matrices.

In Figs. 5(a) and 5(b) we show �R
so(k) close to the va-

lence and conduction band edges, respectively. In the VB
it displays a strong nonlinear dependence on crystal mo-
mentum. We found that close to the � point �R

so(k) ≈
0.196 |k|3E meV/V nm−1, where E is the amplitude of the
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FIG. 5. Extrinsic SOC in PtSe2: (a) spin splitting along the high-
symmetry lines (K� and �M) close to the valence-band maximum;
(b) spin splitting along the �M line close to the conduction-band
minimum. The values of k are given with respect to the VB maxi-
mum (CB minimum). The gray filled parabola sketches VB and CB
close to the band gap with the band maximum/minimum centered
at k = 0.

electric field. The spin splitting close to the CB minimum
is of order of single meV and is not as much momentum
dependent as in the VB. Interestingly, the maximum of �R

so(k)
does not coincide with the CB minimum [Fig. 5(b)]. Instead, it
is shifted towards the � point and coincides with the position
of anticrossings of bands marked 1 and 2 in Fig. 2 where the
direct band gap has a global minimum (a similar shift towards
the � point was observed for b2

k, not shown here). The average
spin splitting in PtSe2 is of meV range and varies between 0.1
and 50 meV, depending on E and carrier density (see Fig. 1 in
[51]). Thus it is unlikely that electric filed can be used to con-
trol the semiconductor-to-metal transition in PtSe2. In fact, for
E = 6 V/nm the gap decreases by only 6 meV from the initial
value 1.2 eV (see Fig. 2 in the Supplemental Material [51]).

In Figs. 6(a) and 6(b) we show spin textures of the upper
spin split valence band and for the lower spin split conduc-
tion band, respectively, and for the external electric field E
= 1 V/nm. The in-plane spin components (arrows) display
a Rashba-like helical pattern, while the out-of-plane compo-
nents (color) show the spin-valley locking effect [52]. Similar
spin textures have been reported to exist as a result of hid-
den spin polarization of spin degenerate bands in PtSe2 [31].
In contrast to layer-resolved spin textures picturing a local
Rashba effect [31], Figs. 6(a) and 6(b) show a global spin
texture of the entire crystal structure. The presented spin
textures can be reproduced by the C3v Rashba Hamiltonian
containing linear and cubic terms [53], the latter being dom-
inant. However, within the two-band model we were able to
get only qualitative agreement with the DFT data. A quanti-
tative agreement would probably require a formulation of the
multiband model, taking into account all peculiarities of the
band structure and the interband couplings discussed above.

To answer the question about the origin of the presented
spin textures we performed calculations at an infinitesimal
(numerically) electric field E = 10−6 V/nm in order to break
space inversion symmetry but still approximately preserve
the spin degeneracy. The obtained textures (Fig. 3 in the
Supplemental Material [51]) resemble similar features as
those shown in Figs. 6(a) and 6(b). This indicates that such
a texture is intrinsic to the PtSe2 crystalline structure and
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FIG. 6. Extrinsic SOC in PtSe2. (a) In-plane spin texture (arrows)
and out-of-plane spin component (color) of one spin subband of the
topmost valence band plotted in the whole FBZ. (b) Same as (a) but
for the bottom-most conduction band. (c) The distribution of the
spin-orbit field �k in the FBZ for the valence band for the electric
field E = 1 V/nm. (d) Same as (c) but for the conduction band. Black
circle and ellipses encircle wedges of the BZ corresponding to the
carried density up to n = 12 × 1013 cm−2.

appears immediately once the space inversion symmetry is
broken.

Let us now discuss the spin-orbit field �k. In Figs. 6(c)
and 6(d) and Fig. 7 we show the k-point resolved (�k) and
Fermi-surface-averaged (�) spin-orbit fields, respectively. In
the valence band the overall value of �k in the FBZ is greater
than in the conduction band. This can be seen by comparing
the amount of the red shaded area in Figs. 6(c) and 6(d). A
very characteristic hexagonal structure is formed close to the
BZ center, with corners pointing towards the M points. In
this region, and also along the paths �M and around the K
points, the spin splitting for E = 1 V/nm is less than 4 meV
(the maximal value in the valence band and E = 1 V/nm is
14 meV). This gives �k ∼ 5 × 103 ns−1, which is roughly the
value of � for n between 8 × 1013 cm−2 and 12 × 1013 cm−2

[see the red line in Fig. 7(a)]. Within the full doping range
(without the first 0.5 × 1013 cm−2), � in the VB varies by an
order of magnitude.

In the conduction band the extrinsic SOC is weaker than in
the VB, resulting in smaller values of �k [Fig. 6(d)]. For the
same level of doping, e.g., n = 1014 cm−2, the ratio of � in
the VB to � in the CB, �VB/�CB ≈ 3.

Similarly to b2, � in the conduction band shows weaker
doping dependence than in the VB [Fig. 7(b)]. For E =
1 V/nm it is of the order of 103 ns−1 and grows approximately
with a step 1.5 × 103 ns−1 per 1 V/nm.

C. Spin lifetime

To estimate spin lifetimes τs,EY and τs,DP we need to know
the momentum relaxation time τp. Taking the experimen-
tal value of the mobility for electrons μ = 400 cm2 V−1 s−1

3
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FIG. 7. Spin-orbit fields in PtSe2. (a) Fermi-surface-averaged
spin-orbit field � vs carrier density n and for several values of electric
field for the valence band. (b) Same as (a) but for the conduction
band. (c, d) Components of �2 for E = 2 V/nm for VB and CB,
respectively.

(100 K) and effective mass m∗ = 0.37me [25], we estimate,
using the Drude formula τp = μe/m∗, τp ≈ 80 fs, similar to
other TMDs [54]. The formula (1) for the Elliott-Yafet spin
relaxation rate is valid under the assumption that b2 can be
treated as a small parameter, b2 
 1 [35]. For valence elec-
trons being polarized in plane with the PtSe2 sheet (SQA =
X/Y), b2 is of the order of 1 [Fig. 4], and thus Eq. (1) cannot
be applied. In such a case, due to very strong spin mixing,
spin lifetime should be limited by the momentum relaxation
time, i.e., τs,EY ≈ τp ≈ 80 fs. For spins of valence electrons
being polarized out of plane (SQA = Z) and for conduction
electrons, b2 ≈ 10−2, within the perturbative limit. The corre-
sponding spin lifetime estimated from Eq. (1) is τs,EY ≈ 1 ps.

Two different regimes of spin relaxation apply also for
the D’yakonov-Perel mechanism. For E � 3 V/nm and n �
3 × 1013 cm−2 for the VB and for E � 3 V/nm for the CB
we are in the motional narrowing regime, i.e., τp� 
 1. In
this case the ith component of magnetization decays propor-
tionally to �2

⊥,i = �2 − �2
i [see Eq. (2)] [19]. We extract the

components �i, i = x, y, z of the spin-orbit field according to
the formula

�k,i = �so

h̄

si

|s| , (8)
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FIG. 8. D’yakonov-Perel spin lifetime anisotropy. Isotropic mo-
mentum relaxation time τp has been assumed.

where si, i = {x, y, z} is the expectation value of spin one-half
operator at a given k point. In Figs. 7(c) and 7(d) we show �2

⊥,i
for E = 2 V/nm for the VB and CB, respectively. A qualitative
difference between the spin-orbit field in the VB and CB is
evident. In the former, �z has the major contribution to �

and thus �2
⊥,z is much smaller, even ten times, than �2

⊥,x and
�2

⊥,y (see also Fig. 4(a) in the Supplemental Material [51]).
This is consistent with the spin texture shown in Fig. 6(a):
the in-plane spin components around the BZ center are very
small compared to the out-of-plane ones, indicating that elec-
tron states are mainly sz polarized. As a consequence, τs,DP

is strongly anisotropic and the in-plane spins are expected
to relax much faster than the out-of-plane ones [Fig. 8(a)],
similar to the Elliott-Yafet mechanism. Taking τp = 80 fs we
get, for E = 2 V/nm and n ≈ 2 × 1013 cm−2, τ z

s,DP ≈ 40 ps

and for the in-plane spins τ
x/y
s,DP ≈ 12 ps.

Since τs,EY and τs,DP are anisotropic, the Elliott-Yafet and
D’yakonov-Perel mechanisms can be experimentally distin-
guished from spin scattering by random magnetic impurities,
which leads to isotropic spin relaxation [55,56]. In the CB
the situation is reversed: �2

⊥,x and �2
⊥,x are roughly twice as

big as �2
⊥,z, and so is the spin relaxation rate [see Fig. 8(b)

in the main text and Fig. 4(b) in the Supplemental Ma-
terial [51]]. For the same electric field and doping as for
the VB, we estimate τ z

s,DP ≈ 1 ps and τ
x/y
s,DP ≈ 2.5 ps. For

high electric fields, when � ≈ 104 ns−1, the condition for
motional narrowing breaks down, and the irreversible spin
randomization occurs in the time scale given by the momen-
tum relaxation, τes,DP ≈ τp ≈ 80 fs [19], irrespective of spin
polarization.

Let us briefly compare PtSe2 with other TMDs. Due to
different symmetry, D3h [52] instead of D3d, the spin dynamics
in 2H-type monolayer TMDs, such as WS2, MoS2, or WSe2,
is qualitatively different from than in 1T-PtSe2. First, the in-
plane mirror symmetry of the 2H crystalline structure allows
only the sz component of spin, similar to the case of flat
graphene [47,57]. Second, the broken space inversion symme-
try leads to the splitting of the spin states, which have opposite
spin polarization at K and K’ valleys due to time-reversal sym-
metry [52]. In effect, elastic momentum scattering–assisted
spin flip is suppressed by the spin-valley coupling because
the intervalley process requires a large crystal momentum
variation [52,54,58–60]. The intervalley process can be ac-
companied by the intravalley spin scattering, in which the

electron-phonon [60] or electron-electron interactions play
important roles [59,61,62]. For both types of processes, the
D’yakonov-Perel mechanisms are more prominent than the
Elliott-Yafet [59,61,62]. Depending on material, doping, and
measurement technique, spins in monolayer 2H-TMDs can
live from picoseconds up to hundreds of nanoseconds [54,58–
65]. Due to the intrinsic sz polarization of bands [58,61]
the out-of-plane spin polarization relaxes significantly slower
than the in-plane ones [61].

On the contrary, in monolayer PtSe2 valleys remain spin-
unpolarized and are excluded from the low-energy physics
near the band gap due to the large (∼1 eV) energy distance to
the band edges. Thus the intervalley scattering is absent here,
and only spin relaxation mechanisms referred to as intravalley
in the case of 2H-TMDs are present in PtSe2. Additionally,
the spin degeneracy induces strong interband spin mixing (be-
tween the degenerate bands), which makes the Elliott-Yafet
spin relaxation as important as the D’yakonov-Perel mecha-
nism, contrary to, e.g., MoS2 [61]. Finally, none of the spin
components in PtSe2 is protected by symmetry; out-of-plane
spins are not extra protected. This explains why the predicted
D’yakonov-Perel spin lifetime anisotropy in PtSe2 shown in
Fig. 8 is much smaller than in the 2H-TMDs [61].

D. Comparison of PBE and HSE exchange-correlation
functionals

Since the GW [45] and experimental [10] band gaps are
reported to be over 2 eV, we performed calculations using
hybrid HSE [44] functional to check to what extent increasing
the band gap influences the spin properties of PtSe2. The
calculated band structure and values of �n,m

so are shown in
Table 1 and in Fig. 5 in the Supplemental Material [51]. Al-
though the increase of the band gap is substantial, from 1.2 eV
(PBE) to 2.18 eV (HSE) there are no dramatic changes to the
overall topology of the band structure and to the character
and strength of SOC. The spin-orbital splittings in the valence
band are slightly weaker for the HSE than for the PBE func-
tional, while for the conduction band the situation is opposite
(Figs. 1(b)–1(d) in the Supplemental Material [51]). We ob-
served similar trends for the spin mixing parameter b2

k (Fig. 6
in the Supplemental Material [51]). Nevertheless, the differ-
ences in b2 are up to a factor of 2, and thus the results obtained
for the HSE and PBE functionals allow the same conclusions.

IV. CONCLUSIONS

We have investigated the intrinsic and extrinsic spin-orbit
couplings and their influence on the electronic properties spin
relaxation in monolayer PtSe2 using first-principles calcula-
tions. We found that the intrinsic SOC is very strong and
leads to a significant mixing of the spin states. The extrinsic
SOC, characterized by spin-orbit fields �, is also expected
to be large, on the order of the intrinsic one. Their interplay
is manifested in comparable contributions of the Elliott-Yafet
and D’yakonov-Perel mechanisms to spin relaxation. Spin
lifetime in PtSe2 is predicted to be short, on the picosecond
time scale, and to a large extent is governed by the momen-
tum relaxation time, especially at spin hot spots where the
spins are fully mixed. In this context monolayer PtSe2 is
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very different from 2H TMDs, for which much longer spin
lifetimes were observed. Although pristine monolayer PtSe2

does not seem to be the perfect candidate for application in
spintronic devices requiring long spin lifetimes, line defects
may considerably improve spin coherence in this material
[66]. On the other hand, the strong spin-orbit coupling should
be manifested prominently in spin transport and spin control
phenomena.
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