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Interplay of fractional Chern insulator and charge density wave phases in twisted bilayer graphene
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We perform an extensive exact diagonalization study of interaction-driven insulators in spin- and valley-
polarized moiré flat bands of twisted bilayer graphene aligned with its hexagonal boron nitride substrate. In
addition to previously reported fractional Chern insulator phases, we provide compelling evidence for competing
charge-density-wave phases at multiple fractional fillings of a realistic single-band model. A thorough analysis
at different interlayer hopping parameters, motivated by experimental variability, and the role of kinetic energy
at various Coulomb interaction strengths highlight the competition between these phases. The interplay of the
single-particle and the interaction-induced hole dispersion with the inherent Berry curvature of the Chern bands
is intuitively understood to be the driving mechanism for the ground-state selection. The resulting phase diagram
features remarkable agreement with experimental findings in a related moiré heterostructure and affirms the
relevance of our results beyond the scope of graphene-based materials.
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I. INTRODUCTION

Over the course of the past three years, twisted bilayer
graphene (TBLG) and related moiré heterostructures have
emerged as promising platforms for the study of interaction
effects in realistic flat band systems. The ability to engineer
bands of minimal bandwidth via two stacked graphene sheets
subject to a relative magic twist angle of about 1.1◦, in combi-
nation with the excellent experimental tunability of the band
filling through electric gates, has lead to a tremendous growth
of interest in the field of graphene-based moiré materials.
Experimental observations of correlated insulators in prox-
imity to potentially unconventional superconductivity [1–4]
have raised hopes that the study of this composite system may
shine light on the long-standing mystery of the mechanism
behind high-temperature superconductivity in cuprates. More
recent experiments point to the possibility that these cor-
related insulators and superconductivity might have distinct
microscopic origins though [5–8]. The nature of the supercon-
ducting phase and its pairing mechanism is generally subject
to hot debates, including exotic proposals involving topologi-
cal solitons—skyrmions—carrying charge 2e [9–15]. Further
experimental signatures include ferromagnetism [16] and a
quantized anomalous Hall effect [17] in TBLG aligned with
the hexagonal boron nitride (hBN) substrate (TBLG/hBN),
which suggests that a Chern insulator may be realized in
TBLG related materials. The incorporation of interactions
naturally leads to the question whether a fractional Chern
insulator may form in TBLG, which has been answered af-
firmatively using exact diagonalizations in Refs. [18,19] and
analytically in Ref. [20]. Studies of TBLG-inspired Hofstadter
models on the honeycomb lattice reiterate the importance
of fractional quantum Hall (FQH) states at fillings ν = 1/3
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FIG. 1. Schematic TBLG/hBN phase diagram of the identified
order tendencies over their observed band filling range ν for the
studied hopping parameters wAB = 90 meV and wAB = 110 meV in
the strongly interacting regime. The classification is based on the
results compiled in Sec. V. We find two fractional Chern insulators
(FCIs), a series of Wigner crystals (WCs) locked at specific fillings,
as well as a charge-density wave (CDW) phase around 1/3 filling,
with a seemingly finite density range extent.

as well as ν = 2/5 [21]. Further exact diagonalization [22]
and DMRG-based [23,24] calculations support the formation
of a Chern insulator as well as the possibility for differ-
ent types of spatial symmetry-breaking charge-density waves
(CDWs) in pure TBLG. The former predictions are corrobo-
rated by the experimental observation of interaction-induced
Chern insulators at multiple integer fillings [25].

Very recently, novel sensing techniques were used to reveal
insulating behavior at fractional single-band fillings ν = 1/2,
2/3, 2/5, 1/3, 1/4, 1/7 of a related moiré heterostructure
based on transition metal dichalcogenides (TMDs), such as
WS2/WSe2 [26,27]. The order mediated by Coulomb interac-
tions is suggested to be of CDW type, realizing generalized
Wigner crystals (WCs) that are locked to certain commen-
surate filling fractions of the moiré lattice and spontaneously
break translational symmetry. This is in accordance with the
possibility to engineer flat bands and the resulting signatures
of collective phases reported in Ref. [28] for twisted bilayers
of WSe2 close to half-band filling.

The intrinsic competition of FQH states with WCs and
CDWs at fractional fillings has a long history and dates back
to early studies of interaction effects in the two-dimensional
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electron gas subject to a magnetic field [29–35]. More recently
the lattice generalization of a topological Laughlin-like state,
the fractional Chern insulator (FCI), has attracted consider-
able interest [36–41]. In graphene-related systems, a CDW as
well as the FCI have been observed experimentally [42,43].
Both types of bulk insulating phases inherently rely on the
presence of strong electron-electron interactions, while the
FCI additionally requires an effective magnetic field, quan-
tified by a finite Chern number of the fractionally filled band.
As the kinetic energy typically weakens such order tenden-
cies, realizations of (nearly) flat bands are typically expected
to be a prerequisite to study the competition of these two
strongly correlated phases.

In our work, using large-scale exact diagonalizations, we
carefully explore to what extent a similar competition is at
work in a realistic spin- and valley-polarized single-band
model for TBLG/hBN. We demonstrate that indeed charge
ordered states are strong contenders for the ground state
at several fractional fillings, including cases where previ-
ous work highlighted the presence of an FCI state [18,19].
Furthermore, the nature of the CDWs is shown to go be-
yond the simple WC type, realizing stable K-CDW order
across a whole range of fillings for suitable band parame-
ters. We show that the quantum geometry, manifest in the
inhomogeneous distribution of the Berry curvature, and also
the nontrivial momentum dependence of the single-particle
dispersion have a strong influence on the FCI/CDW com-
petition beyond the mere presence of a flat Chern band.
This understanding allowed us to uncover another FCI
state at ν = 2/5, akin to the results of Ref. [19]. The ac-
quired intuition in conjunction with the extensive amount
of numerical evidence is condensed in the tentative phase
diagram of Fig. 1. Drawing connections to the experiment,
the agreement of our results in Fig. 1 at wAB = 110 meV
for TBLG/hBN with those of the TMD moiré system in
Ref. [26] suggests a substantial degree of similarity for the
physics at play. The added twist of topological nontrivial-
ity in TBLG/hBN, however, enables more exotic correlated
phases for different band parameters, ensuring again the
diversity of physics contained in graphene-based moiré
structures.

This work is organized as follows: Sec. II introduces the
single-particle model as well as the single-band-projected
many-body Hamiltonian and gives an overview of crucial
quantities that characterize the model for a certain choice of
hopping parameters. We subsequently give a brief overview
of the applied numerical method as well as important ob-
servables that characterize the discussed correlated phases in
Sec. III. The main volume of numerical results is presented
throughout Sec. IV, including solid evidence for CDW/WCs
at multiple filling fractions as well as the identification of
two hierarchy FCI states at ν = 1/3 and ν = 2/5. In Sec. V
the results are condensed into a tentative phase diagram as
a function of the electron filling and important aspects of
the phases’ nature and stability towards the removal or ad-
dition of additional electrons are revealed. This section also
demonstrates the commonalities and differences of the two
distinguished hopping parameter regions at a glance and al-
lows us to draw possible connections to the experiment in
Ref. [26].

II. MODEL

Our exact diagonalization study is based on the contin-
uum model description of TBLG [44,45] at θ = 1.05◦ (the
(31,1) commensurate superlattice in Ref. [46]). We choose
the nearest-neighbor hopping amplitude t = 2.62 eV from
graphene and additionally include a phenomenological layer
corrugation by using distinct intra- and intersublattice hop-
ping amplitudes wAA and wAB [18,47,48]. Throughout this
article we fix wAA/wAB = 0.7, and wAB is varied between
the realistic values of 90 meV and 110 meV to account
for model variations and the presence of strain or pressure
in samples [18,45,47,49,50]. We assume alignment with the
hBN substrate, which, to lowest order, introduces a staggered
potential that breaks C2 sublattice symmetry and thus gaps
the previously massless Dirac cones at the corners K± of the
moiré Brillouin zone (MBZ) [51]. The resulting flat valence
(conduction) bands of the τ = ± valleys, presented in the top
row of Fig. 2, then acquire a Chern number C = ∓1 (±1).
For a realistic substrate-induced potential of �hBN = 15 meV
[51], the valence and conduction bands are well separated,
such that they may be treated separately for appropriate band-
widths and interaction strengths. Except for an inversion of
the valley-resolved bands along the �-M path and an in-
creased asymmetry of the gaps at K± for lower wAB, the
single-particle dispersions in Fig. 2 are qualitatively similar
for all considered values of wAB. A more profound distinction
is present in the Berry curvature of the valence τ = − band
in the middle row of Fig. 2. The rather uniform distribution
for wAB = 90 meV gradually develops a peak at � upon in-
creasing wAB to 110 meV. The analysis remains valid upon
switching valley or band, as the Berry curvature is almost
identical up to a sign flip or combined sign coordinate inver-
sion. Minor quantitative differences are the consequence of
the slight particle-hole asymmetry of the dispersion. At this
stage, it should be noted that the flatness of the Berry curvature
is controlled by the combined choice of band parameters and
twist angle, enabling a relatively uniform distribution also for
wAB = 110 meV at θ = 1.15◦ in Ref. [19].

We incorporate the Coulomb interaction via the two-
dimensional Fourier transform of a Yukawa potential
V (q) = (e2/4πεε0�)(2π/

√
|q|2 + 1/λ2). Here e and ε0 are

the elementary charge and vacuum dielectric constant, re-
spectively, � denotes the total area of the system, and λ

the screening length. The relative dielectric permittivity ε

effectively scales the interaction strength; however, it is re-
placed in our treatment by a convex combination of the
kinetic and interacting parts of the full Hamiltonian and is
thus set to a sensible value of ε = 2.675. If not mentioned
otherwise, in accordance with previous authors we choose
λ = LM ≈ 13.4 nm to match the moiré period [18,52,53].
Motivated by experimental signatures [16,54–56] and theo-
retical findings [19,48] we assume full flavor polarization,
resulting in an interaction Hamiltonian Hint that acts on spin-
less fermions of a single valley. Because the two valley
flavors of the model are related by time-reversal symmetry,
we choose to study electrons in the τ = − valence band with
Chern number C = 1 at an electron filling ν. To incorporate
this truncation of the band and flavor interaction channels in
the model, we have to project the ordinary density-density
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FIG. 2. Overview of the single-particle band structure εk (top), the Berry curvature F (k) (middle), and the interaction-induced hole
dispersion Eh(k) (bottom) of the τ = − valence band for various wAB = 90 meV to 110 meV, organized into columns (a) to (e). More remote
bands are separated by energetic gaps from the flat band cluster and lie outside the chosen energy window. Common to all wAB is the minimum
(maximum) of the valence (conduction) band dispersion as well as the maximum of −Eh(k) at �. F (k) is redistributed from a relatively
uniform case in (a) to a sharp peak at � in (e).

interaction operator to the band basis. This step has been
detailed in Refs. [18,48,57–59]. The resulting single-band-
projected interaction Hamiltonian then reads

Hint = 1

2

∑
k1, k2, q

V (k1, k2, q)c†
k1

c†
k2

ck2−qck1+q, (1)

where c†
k (ck) denotes the creation (annihilation) operator of

band electrons in an orbital with momentum k ∈ MBZ. The
matrix elements are defined as

V (k1, k2, q) =
∑

G

V (q + G)
q+G
k1



−q−G
k2

,

and 

±q±G
k = 〈u(k)|u(k ± q ± G)〉 (2)

represents form factors that contain overlaps of the band
eigenvectors |u(k)〉 and the summation is over the moiré recip-
rocal lattice vectors G of the continuum model discretization.
In the band diagonal basis, the kinetic term takes the simple
form Hkin = ∑

k εkc†
kck. Although we start by assuming a

completely flat band and thus neglect Hkin, in later sections
we account for a finite dispersion by a convex combination of
the kinetic and interaction Hamiltonians as H = ηHkin + (1 −
η)Hint. This is physically equivalent to altering the permittivity

ε, but leaves the energy scale of the problem approximately
constant. This simplifies the interpretation of spectra and pro-
vides additional numerical stability. An effective dielectric
constant is thus given by ε∗ = εη/(1 − η), which matches
ε at η = 0.5. In the case of pure interactions (η = 0) we
use units of energy (e2/8πεε0LM), whereas for the combined
Hamiltonian we use meV.

Upon performing a particle-hole transformation, the inter-
action Hamiltonian induces a single-hole dispersion [18,40]

Eh(k) = 1

2

∑
k′

Vk′kk′k + Vkk′kk′ − Vkk′k′k − Vk′kkk′ ,

Vk1k2k3k4 = Vk1k2k2−qk1+q ≡ V (k1, k2, q), (3)

which turns out to be a useful characteristic for the intu-
itive understanding of one important aspect of the Coulomb
interaction structure in this system. This (sign-flipped) in-
duced hole dispersion (IHD) is evaluated in the bottom row
of Fig. 2. As wAB varies, the features of −Eh(k) remain
qualitatively similar with a pronounced maximum at �. The
same holds for the situation in the conduction band. The IHD
of wAB = 110 meV differs from the one with wAB = 90 meV
primarily by a larger bandwidth.

125406-3



WILHELM, LANG, AND LÄUCHLI PHYSICAL REVIEW B 103, 125406 (2021)

Figure 2 suggests that the vital differences in the model are
captured in the cases wAB = 90 meV and wAB = 110 meV,
while intermediate values smoothly interpolate between these
scenarios. We thus restrict ourselves to the two representative
cases wAB = 90 meV and 110 meV in our exact diagonaliza-
tion study of the many-body Hamiltonian.

III. NUMERICAL METHOD AND SIGNATURES OF
CORRELATED PHASES

Similarly to Refs. [18,19,22], we use Lanczos-based exact
diagonalization (ED) in momentum space to tackle the many-
body problem of interacting band-fermions. This enables us
to obtain numerically exact ground-state energies as well as
measurements of observables on finite-size clusters with var-
ious geometric features at arbitrary filling fractions. In the
considered spin- and valley-polarized subsector of a single
band, the total Hilbert space dimension for a given number
of electrons Ne on Nk orbitals is the binomial coefficient

(Nk

Ne

)
.

By utilizing the translational symmetry of the system, the
total Hilbert space decomposes into subspaces of Nk center
of mass (COM) momenta kCOM = ∑Ne

i=1 ki. In order to keep
the code applicable to general geometries and Hamiltonians of
potentially reduced symmetry, no point group operations are
exploited in the algorithm. The average linear matrix dimen-
sion is then

(Nk

Ne

)
/Nk , which culminates in about 252 million

states in the study of the cluster 36 at ν = 1/2.
The algorithm provides access to the ground-state wave

function(s) as well as the momentum orbital resolved low-
energy spectrum. This is a key advantage of the ED method,
as many phases have distinct signatures in the structure of the
low-energy spectrum, e.g., in the k-space location and degree
of quasidegenerate ground-state energy levels. To be precise,
it should be noted that exact degeneracy generally holds only
in the thermodynamic limit (TDL), and a finite splitting of
the ground-state manifold is to be expected on finite clusters.
With regard to the phases encountered in the current study, at
a filling of ν = p/q the FCI manifests in the spectrum via a
q-fold degeneracy of orbitals satisfying the generalized Pauli
principle developed in Ref. [39], which was extended to a
heuristics on more general clusters in Ref. [40]. In addition,
the ground-state orbitals of an FCI are expected to exhibit
spectral flow; that is, under the insertion of magnetic flux
quanta like k → k + �i

2π
gk,i they exchange their order without

mixing with excited states. The flow of orbitals into each
other may be hindered if all q ground states coincide in their
COM momentum. Nevertheless, they should remain isolated
from higher lying states, and the original spectrum has to be
restored at �i/2π = q. On the other hand, the degeneracy
of the CDW depends on the specific pattern that is realized,
i.e., in what manner the spatial symmetry is broken. For a
simple WC-like order (with a single orientation) at ν = 1/q,
the ground state is q-fold degenerate, with orbitals separated
by the order vectors {q∗

i }. The possible variants of more
complex patterns need to be counted individually; however,
the spontaneous symmetry-breaking aspect may generally be
analyzed using group theoretical tools in order to predict the
location of ground-state COM orbitals [60]. A particular pat-
tern manifests in the spatial correlations of the charge density,
which can be measured using the charge structure factor. In

the considered single-band-projected setting, we define it as

S(q) ≡ 1

Nk

[∑
k

∣∣
q
k

∣∣2
n(k)

+
∑
k1,k2



q
k1



−q
k2

〈c†
k1

c†
k2

ck2−qck1+q〉
]
, (4)

where n(k) ≡ 〈c†
kck〉 is the orbital occupation. A detailed

derivation may be found in Appendix B.

IV. COMPETITION OF CORRELATED PHASES AT
CANONICAL FILLING FRACTIONS

We start our discussion of numerical results with the
single-band model at ν = 1/3 filling. We find strong evidence
for the manifestation of an FCI for the band parame-
ter wAB = 90 meV, therefore corroborating the findings in
Ref. [18], and a translation symmetry-breaking CDW with
order wave vector q∗ = K± at wAB = 110 meV, which is at
odds with Ref. [18]. We provide an explanation for the un-
derlying order mechanisms and investigate the stability of the
phases against the introduction of kinetic energy. After high-
lighting the differences and commonalities in the conduction
band and for the complementary filling ν = 2/3, we turn to
the investigation of other potentially interesting fractions. We
reveal a series of WCs at commensurate fillings ν < 1/3 as
well as the realization of a second FCI at ν = 2/5, confirm-
ing similar calculations in Ref. [19]. Finally, we present our
numerical results for half filling of the moiré flat band, which,
however, do not allow us to conclusively determine the nature
of the ground state.

A. FCI versus CDW at ν = 1/3

To begin, we consider the pure interaction Hamiltonian of
Eq. (1) and compute the low-lying eigenvalues and eigen-
vectors on various cluster geometries detailed in Appendix
C. Figures 3(a) and 3(b) display the obtained ground-state
energies per orbital over the system size for both con-
sidered interlayer hopping amplitudes. While Fig. 3(a) is
fairly featureless up to a gradual convergence of the ground-
state energy with increasing system size, Fig. 3(b) signals
a pronounced sensitivity to the presence of the K± points,
with the ground-state energy being lower when the K±
points are present. This points to a different phase than an
FCI, whose ground-state energy is expected to be rather
insensitive to the global cluster shape (within reasonable
limits).

The obtained many-body spectra, such as Fig. 3(c), re-
veal an approximate threefold degenerate ground state, where
the COM momentum orbitals in the ground-state mani-
fold are found to be distinct among the two considered
interlayer hopping amplitudes on multiple clusters. While
at wAB = 90 meV they follow the ν = 1/3 FCI heuristics
[39,40], the ground-state momenta at wAB = 110 meV are
separated by the moiré Dirac point momenta K± (on clusters
which feature these points in the MBZ). Upon inserting �1

flux quanta, in Fig. 3(d) we observe that the three ground
states at wAB = 90 meV flow into each other without mixing
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FIG. 3. (a, b) Ground-state energy for various clusters and (c) many-body spectrum on the cluster 36 at ν = 1/3 filling for both band
parameters. At wAB = 110 meV a clear sensitivity to the presence of the K points is observable, while the wAB = 90 meV ground state in
(a) is indifferent to this geometric feature. Clusters with aspect ratios far from 1, like 21B and 27B, violate this pattern. For more geometric
details see Table I. Shaded areas in (c) mark the set of identified ground states, whose locations in the MBZ are marked in the inset for the
respective hopping amplitude. The k-space locations of momenta associated to each orbital index are given in Appendix A. (d) Spectral flow
of ground-state orbitals on the cluster 21A at wAB = 90 meV under the insertion of magnetic flux �1. We incorporated a slight valence band
dispersion via η = 0.3 for better separation from excited states. The general effect of kinetic energy is discussed in Sec. IV B.

with higher excited states. At �1/2π = 3, the original spec-
trum is restored, in accordance with Laughlin-like states at
filling ν = 1/3. It should be noted that we intentionally chose
a cluster with three distinct ground-state momenta in the FCI
phase to enable proper spectral flow, which also features the
K± points.

The spectral analysis and energetic considerations point
towards the possibility of different types of order depending
on the interlayer hopping amplitude wAB. Where the data
at wAB = 90 meV suggest the formation of a topological
fractional Chern insulator, in accordance with the results of
Ref. [18] and Ref. [19], wAB = 110 meV appears to favor
order whose signatures are consistent with CDWs with order
momentum K±. The emergence of CDW order is reflected
most prominently in the charge structure factor of Eq. (4)
in Figs. 4(a) and 4(b): little spatial modulation is present
for 90 meV, where for wAB = 110 meV the hallmark Bragg
peaks of a CDW manifest at momenta K±. The finite-size
extrapolation of the peak height to the TDL in Figs. 4(c)
and 4(d) shows that long-range order is stable, while the
signal off the order momentum vanishes. Although the or-
der parameter in Fig. 4(c) also extrapolates to a nominally
finite value for wAB = 90 meV, it is significantly smaller
than in Fig. 4(d) and will most likely approach zero for
larger clusters, in accordance with the expectations for an FCI
state.

The K-CDW can be imagined in real space as illustrated
in Fig. 5. It is the first in a series of Wigner crystal-like states
that are locked to the underlying moiré triangular lattice and
spontaneously break translational symmetry, thus leading to
an enlargement of the moiré unit cell. At filling ν = 1/3,
the unit cell is tripled, such that each of the three degenerate
ground states corresponds to one realization on the triangular
moiré lattice of Fig. 5(b).

B. Interplay of Berry curvature, induced hole dispersion, and
kinetic energy

What differentiates the situation at wAB = 90 meV from
the one at wAB = 110 meV, such that either the formation of
the FCI or the CDW is favored? We can gain insight into the

FIG. 4. Structure factor distribution over the MBZ of the cluster
36 and extrapolation to the TDL for ν = 1/3 and both wAB. The
dominant peaks in (b) are strong evidence for K-CDW order and
the accompanied tripling of the unit cell, which survives in the TDL
in (d). The CDW signatures at wAB = 90 meV in (a) and (c) are less
pronounced and are expected to vanish in the TDL.
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FIG. 5. (a) Various commensurate enlargements of the original
moiré Wigner-Seitz cell (blue), corresponding to CDW/WCs that
break the real-space LM

1,2 moiré translational symmetry. The re-
spective fillings are ν = 1/3 (red), ν = 1/4 (green), and ν = 1/7
(magenta). The pattern at ν = 1/7 splits into two classes, which
are related by an out-of-plane C2 operation. (b) Illustration of the
characteristic density-density correlation function χ0(r) as well as
the three orthogonal realizations (red, green, blue) of a CDW at
ν = 1/3 (cf. Appendix B for details).

driving mechanism by studying the orbital occupation n(k),
which informs us about the predominant locations of the elec-
trons in the MBZ. In the pure interaction case of Fig. 6(a) and
Fig. 6(b), it tells us that the Coulomb repulsion depletes the re-
gion near � and redistributes the electrons towards the border
of the MBZ, an effect previously discussed in Refs. [18,40].
This can be intuitively understood in the hole picture, where
the IHD in the lowest panels of Fig. 2 encourages holes being
close to �. At a hole filling fraction of νh = 2/3, most of the
inner region of the MBZ is occupied by holes, while electrons
are closer to the boundary. The increased IHD bandwidth
for wAB = 110 meV leads to an amplified interaction-driven

FIG. 6. Orbital occupation at ν = 1/3 for both wAB and two
convex combination factors η. While (a) and (c) indicate a smoothed
redistribution of n(k) with η, (b) and (d) are nearly identical. The
used cluster is 27A.

FIG. 7. (a) The FCI reaches a stability maximum near η � 0.5,
accompanied by a suppression of S(q = K±). The stable CDW is
degraded with η until its signatures vanish close to η � 0.8 − 0.9.
The used cluster is 27A.

reallocation of electrons to the outer orbitals when compared
to wAB = 90 meV.

The crucial difference between the two cases is, how-
ever, that for wAB = 110 meV, most of the Berry curvature
in Fig. 2(e) is concentrated close to �, while the electrons
arrange at the border of the MBZ. Thus they do not experience
a significant effective magnetic field, which would otherwise
encourage the formation of a FQH-like state, and charge or-
der by a tripling of the unit cell is the energetically most
favourable option, with the appealing real-space interpretation
of minimizing the Coulomb interactions by maximizing the
distance between the electrons. The large gap in the spectrum
to the COM orbitals dictated by the FCI heuristics in Fig. 3(c)
as well as Fig. 7(b) affirms the robustness of the K-CDW. In
contrast to the authors of Ref. [18] who proposed an FCI for
wAB = 110 meV at a reduced screening length of λ = LM/6,
we observe, for the same parameter set, clear signatures of
CDW order in spectra such as Fig. 16 in Appendix A, as
well as the structure factor on various clusters. Although the
pure interaction orbital occupation is practically the same as
for wAB = 90 meV, the Berry curvature in the latter case is
distributed more uniformly as shown in Fig. 2(a).

The rather small excitation energies to COM orbitals corre-
sponding to the CDW and the poor degeneracy of FCI ground
states in Fig. 3(c) and Fig. 7(a) suggest a close competition
between these phases on lattices that geometrically support
the K-CDW.

We have established that for a completely flat band an
FCI is the most likely ground state for wAB = 90 meV, while
the wAB = 110 meV configuration favors CDW order. The
effect of a finite kinetic energy bandwidth is now to be
discussed by including the continuum model valence band
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dispersion via Hkin. As described in Sec. II, this is done
by a convex combination of Hkin and Hint controlled by the
parameter η ∈ [0, 1]. The pure interaction case is obtained
for η = 0, while η = 1 leads to a noninteracting Hamilto-
nian containing only the kinetic energy. In Fig. 7 we observe
the behavior of both the spectrum and the CDW order pa-
rameter while varying η from 0 to 1. The inspection of
Fig. 7(b) and Fig. 7(d) suggests that the long-range CDW
order is gradually penalized by the kinetic energy until the
spectral gap and the dominance of S(q = K+) vanish around
η = 0.8–0.9. This corresponds to an effective relative per-
mittivity of ε∗ = 2.675 × η/(1 − η) � 10–24, which is above
experimental estimates for bilayer graphene interfaces at
ε∗ = 6 ± 2 (η � 0.6–0.75) [61]. A picture that might seem
peculiar at first glance emerges from Fig. 7(a). Here the single-
particle dispersion does not appear to immediately weaken the
FCI, but the ratio of the excitation gap to the ground-state
splitting improves until η = 0.4–0.5. This is at odds with the
canonical view that a general interaction-driven phase profits
from a band that is as flat as possible. The origin of this
curious feature may be understood in terms of the role of the
single-particle dispersion in the previously developed mecha-
nism for the manifestation of FCI or CDW states. The crucial
aspect of the valence band is the minimum at �, while the
outer momenta remain higher in energy. In a noninteracting
setting, the lowest orbitals in the trough would be successively
filled to accommodate all Ne electrons and consequently form
a Fermi surface. Turning on the Coulomb repulsion, the IHD
shifts the electron density towards the border of the MBZ and
thus, in the valence band, acts opposite to the preference of the
single-particle dispersion. Such a scenario generates a sweet
spot, where electrons are almost uniformly distributed across
the MBZ. What is more, the electrons in the FCI state can
now take advantage of the effective magnetic field, that is, the
Berry curvature of Fig. 2(a), across the whole MBZ.

Increasing η past 0.5 degrades the FCI and leads to an
almost degenerate situation of FCI and CDW momentum
orbitals near η = 0.75, from which onward the orbital occu-
pation distribution appears to be dictated by the band structure
alone. In principle, such a sweet spot may also be present
in Fig. 7(b), yet upon closer inspection of the situation at
η � 0.8, no clear signature of an FCI was observed. The
reason might be that the optimal η is quite far below the value
at which Hkin perturbs the CDW enough for the FCI to com-
pete. Interestingly for the CDW, as indicated by Fig. 6(d) and
Fig. 7(d), n(k) and also S(q = K+) are practically unaffected
by an increase of η until the start of the breakdown of CDW
order at η = 0.75. This suggests a high degree of stability of
the K-CDW wave function across a large interval of kinetic
energy strengths.

C. Conduction band physics and complementary filling

We now investigate the similarities and differences when
switching to the conduction band (ν = 1 + 1/3) and upon
adding twice the amount of electrons to a single (valence or
conduction) band (ν = 2/3). The effective reflection about
zero energy results in the observed energetic peak of the
conduction band at � in Fig. 2, which falls off towards the
MBZ border. The Berry curvature in the conduction band of

FIG. 8. (a) Increasing η in the conduction band at ν = 1 + 1/3
leads to a suppression of the FCI for wAB = 90 meV, stabilizing the
CDW according to (c) up until η � 0.7. The data in (b) and (d) at
wAB = 110 meV qualitatively replicate the situation of Figs. 7(b) and
7(d), albeit the CDW order is slightly more stable. The used cluster
is 27A.

the same valley is related by a sign and coordinate flip to the
one in the valence band (up to a slight particle-hole asymme-
try). Thus the ones displayed in Fig. 2 properly represent the
magnitude at the center and the border of the MBZ, which
suffices for our discussion. The IHD is almost identical up to
a reflection about a �-K path and thus has the same qualitative
effect as in the valence band. In our numerical results, we
first compare the data for η = 0 in Fig. 8 to the same set of
points in Fig. 7. The results (FCI at wAB = 90 meV, CDW at
wAB = 110 meV) almost exactly coincide, which is the con-
sequence of the time-reversal and particle-hole relations for
bands from different valleys. More remarkable behavior that
distinguishes the two bands is revealed when tuning η > 0.
While for wAB = 110 meV we arrive at results that are remi-
niscent of Fig. 7(b) and Fig. 7(d), depicting an even slightly
more stable K-CDW that is slowly disfavored by the kinetic
energy, Fig. 8(a) and Fig. 8(c) show no signs of a further
stabilization of the FCI. On the contrary, both, the spectra and
the order parameter S(q) signal that the CDW profits from
increasing η until about 0.7. Therefore, although the ground
state for pure interactions appears to be an FCI, it is quickly
suppressed near η = 0.1, which corresponds to ε∗ � 0.3, and
the CDW stabilizes throughout an interval η ∈ (0.1, 0.7]. In-
tuition is gained by realizing that the only crucial qualitative
modification to the valence band situation is an essentially
flipped single-particle dispersion, which favors electrons at
the MBZ boundary instead of the center. It thus reinforces the
effect of the IHD on the orbital occupation, and no FCI sweet
spot can occur as the electrons are driven away from the Berry
curvature at � more vigorously.
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Finally, we elaborate on the ν = 2/3 (1 + 2/3) filling of
the valence (conduction) band in the developed framework of
the interplay between kinetic energy, Berry curvature, and in-
duced hole dispersion. In order to keep this article condensed,
we do not display separate results for these configurations.
We find that the situation is qualitatively very similar to the
filling of ν = 1/3; albeit the FCI in the valence band at
wAB = 90 meV features a larger excitation gap at η = 0, it is
again stabilized by the kinetic energy compared to the CDW.
The conduction band results suggest the onset of a transition
from the FCI towards the CDW order upon increasing the
strength of the kinetic energy. However, no clear separation
as in Fig. 8(a) is present in the limited data for this config-
uration. Up to a reduction of the robustness, we find clear
evidence for CDW order in both bands at wAB = 110 meV. An
increase of η again gradually closes the excitation gap until
it vanishes near η = 0.7. Nearly all of the observed features
in the ν = 2/3 data are explainable akin to the situation at
1/3 (1 + 1/3) filling. Where for low η, electrons were almost
exclusively located at the border of the MBZ, by the fermionic
exclusion principle now twice as much weight has to be ac-
commodated. This leads to an initially more stable FCI and a
weakened CDW because more of the overall Berry curvature
is experienced by the collective electron wave function. Con-
sequently, the CDW order is destroyed faster but the general
dependence on η is smoothed because a lower fraction of the
total weight of the wave function can be redistributed into a
specific region of the MBZ.

D. Evidence for charge order at lower filling

Motivated by our findings of robust CDW order at
ν = 1/3, we analyze the possibility of states with even larger
interaction-induced unit cells. Figure 5 visualizes the next
larger four- and sevenfold extensions of the moiré unit cell,
corresponding to band fillings of ν = 1/4 and ν = 1/7, re-
spectively. The pattern at ν = 1/4 translates exactly along the
doubled moiré lattice vectors, which would imply a charge
order vector of q∗ = Mi, where the index i denotes the
possibility of three inequivalent M points in the MBZ. We
thus dub this order the M-WC. The WC at ν = 1/7 extends
even further, such that seven individual moiré sites are con-
tained within the WC unit cell of Fig. 5. A peculiarity here
are the two possible, inequivalent realizations of this spatial
modulation on the triangular lattice, which are related by
an out-of-plane C2 operation along a moiré lattice vector.
Because the real-space translation vector of the order is even
larger in magnitude than for ν = 1/3 or ν = 1/4, the corre-
sponding order momenta have to be located inside the MBZ.
We would expect the charge order parameter S(q) to develop
substantial peaks at six momenta q∗ for each realization of
the WC pattern. On clusters with C6 symmetry, only one
pattern may be realized while a D6 symmetric cluster supports
superpositions of both WC orientations, which makes a total
of 12 potential order momenta and a 14-fold ground-state
degeneracy instead of the expected sevenfold. The order mo-
menta and ground-state orbitals then fall into two classes,
where within each the nonzero orbital and order momenta
are related by a C6 operation. This type of WC is henceforth
referred to as the C6-WC. Because we arrive at qualitatively

the same results for both considered values of wAB, we discuss
only the more pronounced situation at wAB = 110 meV. In
Appendix A, the many-body spectra for both hopping am-
plitudes and fillings are displayed in Fig. 17, Fig. 18(a), and
Fig. 18(b).

We now take a look at the data presented in Fig. 9. Starting
with the filling ν = 1/4, a slight energetic advantage appears
to be present in Fig. 9(a) for clusters that realize all three
inequivalent M points rather than only one. In addition to
the geometric ground-state energy signature, the momentum
separation of its degenerate ground-state total momenta is
exactly given by the momenta Mi. In any case, a more reliable
hallmark of the M-WC is found in Fig. 9(b), where clear, dis-
tinctive Bragg peaks in the charge structure factor are present
for all three order momenta Mi. The finite-size extrapolation
in Fig. 9(c) ensures the prevalence of the M-WC in the TDL.

Considering the smaller filling of ν = 1/7, we focus on
the geometric property of C6 rotational symmetry. Figure 9(d)
highlights the lowered energy of larger clusters that are at
least C6 symmetric. On such lattices, the momentum-space
spectrum shown in Appendix A in Fig. 18(a) or Fig. 18(b)
displays a 14- or sevenfold ground-state degeneracy of or-
bitals separated by the six WC momenta of each C6-WC class.
The structure factor in Fig. 9(e) again exhibits the pronounced
pattern of a C6-WC, albeit the peak values of the two WC
orientations on the cluster 49 are slightly different in mag-
nitude. This reflects the lack of a microscopic C2 symmetry
due to the hBN substrate, consistent with the minor energetic
splitting of the ground states depicted in the inset of Fig. 18(a).
Finally, we average the order parameters at all q∗ realizations
to account for the splitting into two groups of peaks on the
D6 symmetric grid and perform a finite-size extrapolation.
Although the small number of data points demands the final
value of the regression to be taken with a grain of salt, the
remnant normalized C6-WC structure factor in the TDL is of
the same order as for the M-WC and the K-CDW.

E. Second hierarchy FCI at ν = 2/5

With regard to valence band fillings above ν = 1/3, a po-
tentially interesting filling fraction to study in more detail is
ν = 2/5 as it is not only a candidate for the realization of
a hierarchy FCI state [40,62] but was also found to exhibit
insulating behavior in related TMD moiré heterostructures
[26]. A first look at the low-energy spectra, presented in
Figs. 10(a) and 10(b), reveals manifest differences between
the two considered hopping parameter values. While the five
ground states at wAB = 90 meV agree with the ν = 2/5 FCI
heuristics, the distribution of eigenvalues at wAB = 110 meV
is less obvious in its interpretation. The density correla-
tion measurements of Figs. 10(c) and 10(d) suggest that the
charge order tendency is once more increasingly pronounced
at wAB = 110 meV as opposed to wAB = 90 meV, although
the sharpness of the peaks in S(q) is significantly reduced
compared to the results at ν = 1/3. Making use of the un-
derstanding acquired in Sec. IV B, we can further probe the
nature of the ground state via the introduction of the va-
lence band dispersion. In accordance with preceding findings,
we observe that the potential FCI ground-state manifold is
stabilized by Hkin via an increase of the excitation gap to
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FIG. 9. Evidence for an M-WC at ν = 1/4 (a–c) and a C6-WC at ν = 1/7 (d–f) for wAB = 110 meV. Although the signatures are less
pronounced than for ν = 1/3, they are clearly visible in (b) and (e). The finite-size data in (c) and (f) suggest the order will prevail in the TDL.
The displayed discretizations in (b) and (e) are 36 and 49, respectively. For more details on the used clusters, refer to Table I.

ground-state splitting ratio until η � 0.5, whereas the
spectrum at wAB = 110 meV collapses monotonically (not
shown). We use the optimal convex combination for the FCI
to perform the insertion of magnetic flux quanta in Fig. 10(e)
and find that the ground states exhibit the required spec-
tral flow until �1/2π = 5. On the other hand, if we flip
the single-particle dispersion and thus mimic the situation
in the conduction band, at wAB = 110 meV a series of 15
states separates from energetically higher states until η � 0.7.
This profit of Berry curvature avoidance is consistent with
a tendency for charge order, and what is more, the develop-
ing 15-fold degeneracy matches the expected degree for the

charge pattern proposed in Ref. [26] to explain the ν = 2/5
insulating state. Nevertheless, the precise real-space pattern
could not be confirmed within the scope of this work, not least
due to the lack of a numerically accessible larger symmetric
cluster that supports the suggested pattern. Simulations on less
symmetric discretizations with Nk = 30, 35, 40 could not be
found to clarify the situation at wAB = 110 meV, while they
did affirm the prevalence of the FCI at wAB = 90 meV. We
also analyzed the situation at ν = 1/5 towards the possibility
of FQH-like order; however, despite some promising signa-
tures in the location and degeneracy of ground-state orbitals,
the evidence did not sustain across multiple cluster sizes.

FIG. 10. Many-body spectrum at ν = 2/5 for (a) wAB = 90 meV and (b) wAB = 110 meV. (c, d) The charge structure factor for both band
parameters at ν = 2/5 as well as (e) spectral flow of the wAB = 90 meV ground states, consistent with an FCI. In (e) η = 0.5 is used for clearer
separation of the ground-state manifold. Symbols have been omitted for clarity. The used cluster is 25.
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FIG. 11. (a) Many-body spectrum at ν = 1/2 of the cluster 36 with ground-state orbitals marked in the inset MBZ. The quasi–sixfold-
degenerate ground-state manifold of (a) at wAB = 90 meV is stabilized by the single-particle dispersion in (b), as indicated by the increased
gap to ground-state splitting ratio �E5,6/�E0,5. The ground states at η = 0 are marked in violet, red, and blue, while the next higher set
of states is green, yellow, and orange. (c–f) The measurement of S(q) again signals an increased charge order tendency at wAB = 110 meV,
although no universal order momentum could be identified and the peaks are less pronounced than for ν � 1/3.

F. Numerical results for half filling

Finally, we present results at half filling ν = 1/2. This
is of particular interest in the FQH context since the in-
vestigation of a spin-polarized half-filled Landau levels has
produced a number of exciting theoretical proposals, such as
the composite fermion Fermi sea [63], or the Moore-Read
FQH state which hosts non-Abelian Ising anyons [64], or
variants of charge ordered phases [32]. Let us note that here
our numerical results turn out to be more ambiguous than the
previously discussed fillings, and the conclusive identification
of the ground-state nature needs to be left to future work.

The most intriguing signatures in our data are the im-
minent double degeneracies of three momentum orbitals on
clusters 36 and 28A at wAB = 90 meV in Fig. 11(a) as well
as Fig. 15 in Appendix A, which are reminiscent of the six-
fold degenerate ν = 1/2 Pfaffian state [65]. Similar to the
FCI, such a FQH-like state intimately relies on the Chern
character of the band in order to facilitate the formation of
what is understood to be pairs of composite fermions [66].
We attempted an analysis of the Pfaffian orbital heuristics
demanding two particles in four consecutive orbitals [39,67–
71], but we obtained inconclusive results. While the ground-
state COM orbitals on the cluster 28A at wAB = 90 meV are
consistent with the patterns “1010” and “0101” being real-
ized in both momentum-loop directions, the same does not
apply on 36. The observed cross-cluster variability of spectral
features may be related to the differences in their topological
extent, which was found to have a profound impact on the
ground-state splitting of FCIs in Ref. [40] and might be the
reason why certain orbital patterns are a priori suppressed.
Also, the pure two-body nature of the interaction may be
insufficient to stabilize a Pfaffian phase in this model.

Concerning the possibility a Fermi-liquid-like state driven
by the IHD, an analysis of the generated Fermi surface yields a
threefold degeneracy for both clusters 28A and 36, with COM
orbitals at the M points, except for 36 at wAB = 90 meV,

where they are located slightly off the border of the MBZ.
However, apart from the (partial) lack of agreement with the
ground-state COM orbitals calculated by ED, the relatively
miniscule energetic advantage of these configurations in the
purely IHD-driven picture in conjunction with the absence
of a clear Fermi surface in the orbital occupation n(k) over
−Eh(k) at this filling, discussed in Ref. [18], suggests more in-
volved interaction effects beyond mere energetic preferences
of the induced single-hole dispersion. The structure factor in
Figs. 11(c)–11(f) as well as the orbital occupations presented
in Fig. 12 reveal comparable features to the ν = 1/3 case. The
distribution of n(k) is shifted towards the border of the MBZ,
where the situation at 90 meV is once more smoother than
at 110 meV. Similarly, signatures in S(q) signal an increased
charge order tendency for 110 meV while such indications

FIG. 12. Ground-state orbital occupation of the clusters 36 and
28A at ν = 1/2. Similarly to Fig. 6, wAB = 90 meV leads to a more
uniform occupation across the whole MBZ.
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FIG. 13. Introduction of a finite single-particle dispersion on the
cluster 28A at ν = 1/2. The lowest two states at each of the M points
are marked in violet, red, and blue, while the energetically minimal
one at � is orange.

are suppressed at 90 meV. Both of these observables were
measured for the energetically lower and the higher lying
state at the ground-state COM momenta. The results coincide
qualitatively and quantitatively up to order O(10−2). Although
we find peaks in the structure factors at or in proximity to
the M and K points for multiple clusters, the high degree of
variability for this filling prohibits a stable finite-size extrapo-
lation.

Similar to Sec. IV E, we once more make use of the ac-
quired understanding that a finite valence band dispersion
supports effects from the inhomogeneous Berry curvature
in order to investigate the nature of the sixfold degener-
acy at wAB = 90 meV and contrast it with the behavior at
wAB = 110 meV. According to the top panel of Fig. 11(b),
the effect of Hkin at 90 meV is not as apparent as for ν = 1/3.
Although the ground-state splitting (�E0,5) decreases until
η = 0.3–0.5, the gap to the first excited state (�E5,6) also
decreases. By comparing the two quantities, the bottom panel
of Fig. 11(b) demonstrates a substantial improvement of the
excitation gap on the energy scale of the ground-state man-
ifold. This observation is corroborated by Fig. 13, where
the quality of the ground-state manifold is once more en-
hanced at wAB = 90 meV up to η = 0.5, while the order
at wAB = 110 meV is disfavored by the kinetic terms of
the Hamiltonian. What is more, Fig. 13(b) at η = 0.7 sug-
gests the realization of a situation akin to wAB = 90 meV for
wAB = 110 meV, where the three M orbitals become almost
doubly degenerate.

The fact that a similar stabilization procedure to the 1/3-
and 2/5-FCI applies for this configuration hints at the quan-
tum Hall-like nature of the phase at wAB = 90 meV. In ad-
dition, the appearance of such signatures at wAB = 110 meV
with an increased valence band dispersion is compatible with
the pronounced peak of the Berry curvature at � for this
hopping parameter. At the same time, the stabilization with η

provides further evidence against a Fermi liquid driven by the
IHD, since the valence Hkin acts opposite to the preferences of
−Eh(k).

At a filling fraction of 1/2, another well-known contender
for the ground-state phase in a Landau level setting is the com-

FIG. 14. Structure factor sharpness R and identified regions of
correlated phases over the scanned filling range ν for both interlayer
hopping amplitudes. The appearance of significant signals only at
the commensurate fillings ν = 1/12, 1/9, 1/7, 1/4 suggests WC-
type order (green) for both wAB, whereas the extended region near
ν = 1/3 supports the formation of a more robust K-CDW (blue) at
wAB = 110 meV. Evidence for the FCI (red) at wAB = 90 meV was
found for ν = 1/3 as well as ν = 2/5. Data points below R = 0.25
are marked in gray. Different symbols represent data from specific
clusters. More details on the used clusters is found in Table I.

posite fermion liquid [63,72]. Since this is a metallic state, its
Fermi surface may be responsible for the variable degeneracy
of the ground states on different clusters, and, additionally, it
may also profit from an increased importance of the Chern
character of the band by altering η. Nevertheless, the impact
of broken time-reversal and particle-hole symmetries in this
model remains to be understood prior to a discussion on a
more rigorous level. To sum up, although the designation of
definitive ground-state orders for half filling would be too
speculative based on the available data, our results contain
crucial indications of the phases’ nature.

V. DRAFTING OF A TENTATIVE PHASE DIAGRAM

The abundance of data presented throughout Sec. IV calls
for a more condensed graphical representation of the con-
clusive findings. Furthermore, the robustness of the different
charge order patterns against a density deviation from their
nominal filling has not been explored yet. In order to ad-
dress both of these issues, we plot the structure factor ratio
R = S(q∗)/[S̄(q∗ + δq)Nk] normalized to the system size for
multiple clusters at fillings ranging 2 � Ne � Nk/2 and over-
lay it with the unambiguously identified correlated phases in
Fig. 14. Here S̄(q∗ + δq) denotes the average contribution of
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momenta closest to q∗, which are not related to q∗ by a C6

symmetry operation. In order to counteract band-projection
artifacts and for added robustness in degenerate situations, we
average all C6-related contributions prior to the computation
of R. As R measures the sharpness of the peak in the structure
factor, it is related to the correlation length of the charge
density in real space. Large R suggest pronounced long-range
order, whereas small values of R argue against the presence
of a distinct real-space order pattern. We choose to restrict
to the pure interaction case of η = 0 in order to avoid any
bias on the charge order signatures stemming from the effects
discussed in Sec. IV B and to keep the results applicable to
the conduction band. Comparing Fig. 14(a) with Fig. 14(b),
we can immediately tell that the two parameter values appear
to result in similar physics at low fillings ν � 1/4, while
they differ substantially for a larger number of electrons per
orbital ν � 1/3. The series of WC-like charge order contin-
ues to even smaller fillings of ν = 1/9 and ν = 1/12, with
appropriate spectral features but also substantial peaks in R.
Similar to the ones at ν = 1/4, 1/7, the abrupt reduction of
their respective charge density correlation signature indicates
that these charge orders manifest only at their corresponding
commensurate filling fraction, highlighting their crystalline
character. On the other hand, the K-CDW near ν � 1/3 at
wAB = 110 meV appears to be robust against the introduc-
tion or removal of a few additional electrons, making it the
preferred order tendency across a whole range of fillings,
featuring true CDW character. Despite the composition of
data from multiple clusters with different prime factorizations,
the lack of pronounced charge order peaks slightly off the
commensurate fillings ν = 1/4, 1/7, 1/9, 1/12 may also be
rooted in the relatively coarse resolution of Fig. 14, or the
chosen metric R and a more CDW-like character may emerge
in larger clusters. In addition to the symmetry-breaking WC
phases at low electron densities, the wAB = 90 meV system
also features topological FCI states at fillings ν = 1/3 as
well as ν = 2/5. The absence of such states at ν � 1/4, e.g.,
at ν = 1/7, 1/9, affirms the intuition gathered throughout
Sec. IV B, where the Coulomb interaction structure is found
to generally prefer the arrangement of electrons at the border
of the MBZ. At small fillings the electrons hence almost
completely avoid the Berry curvature, rendering the situa-
tion qualitatively identical to wAB = 110 meV. Concerning
the (partially) inconclusive filling fractions of ν = 2/5 and
ν = 1/2, Fig. 14 attenuates the role of charge order in com-
parison to other, more pronounced situations.

A comparison of Fig. 14(b) with very recent experimen-
tal results for the TMD-based moiré system in Ref. [26]
suggests remarkable similarities with the TBLG/hBN struc-
ture discussed here. At wAB = 110 meV, where the Chern
character of the TBLG/hBN flat band is found to be sub-
ordinate, the experimental findings and proposed real-space
order patterns at ν = 1/7, 1/4 and ν = 1/3 coincide with our
theoretical predictions.

VI. CONCLUSION

We performed an extensive exact diagonalization study of
the single-band-projected TBLG/hBN many-body model at
fractional fillings in the momentum-space basis. For a band

filling of ν = 1/3, we showed that the screened Coulomb
interaction between electrons enables the formation of both
a topological FCI but also a geometry-sensitive CDW state.
For wAB = 90 meV and upon neglecting the single-particle
dispersion, we agree with Ref. [18] and Ref. [19] on the
FCI nature of the ground state in the valence and conduc-
tion bands. However, as the interlayer hopping amplitude
is increased to 110 meV, we obtained solid evidence for a
CDW with Dirac point order momentum that spontaneously
breaks moiré translational symmetry and triples the unit
cell. Signatures in the spectra and the structure factor point
to the competition of these correlated insulating phases at
wAB = 90 meV, while wAB = 110 meV clearly favors the K-
CDW, even for a fraction of the original screening length. This
competition is further highlighted upon including the realis-
tic kinetic energy contribution. While the opposing energetic
preferences of the single-particle and the interaction-induced
hole dispersion in the valence band at wAB = 90 meV lead to
an FCI sweet spot where the electron density is smoothed
across the MBZ, the flipped dispersion of the conduction
band instead reinforces the tendency to occupy orbitals at
the boundary and thus suppresses the FCI state in favor of
the CDW. At wAB = 110 meV, the kinetic energy gradually
penalizes the CDW state energetically until Hkin becomes the
dominant energy scale for the ground state. The behavior at
the complementary ν = 2/3 filling can be well explained by
the situation at filling 1/3 with twice the amount of elec-
trons to accommodate in the MBZ. Further investigations
of possible charge order at the next smaller commensurate
fillings ν = 1/4, 1/7, corresponding to a four- or sevenfold
extension of the unit cell, lead to the conclusion that such
a symmetry-breaking correlated insulator may quite generi-
cally form in this model. Apart from the evidence for the
formation of WCs, we corroborate the analogy to Landau
levels beyond the ν = 1/3 state by demonstrating convincing
signatures of a ν = 2/5-FCI at wAB = 90 meV. The situation
at half filling turned out to be much more involved and could
not be resolved unambiguously on the available cluster sizes.
Nevertheless, we found qualitative similarities in the observ-
ables compared to other filling fractions, which together might
contribute to a more comprehensive understanding in the fu-
ture. The wealth of conclusive results is finally condensed
and put into perspective in a tentative phase diagram for
the filling dependence of order tendencies in TBLG/hBN,
which, among other things reveals the K-CDW character near
ν = 1/3, while charge order throughout the commensurate
density series ν = 1/4, 1/7, 1/9, 1/12 is of WC-type, i.e.,
locked to the lattice at the corresponding commensurate den-
sities.

We furthermore developed intuition on what microscopic
mechanism drives the (de-) stabilization of the two phases: the
interplay of the induced hole dispersion and kinetic energy,
which essentially determine the electron density distribution,
with the effective magnetic field due to the Berry curvature
appears to be the fundamental reason the system favors one
correlated phase over the other for very similar band parame-
ters.

Our results thus promote the translational symmetry-
breaking charge-density wave to a probable order tendency
for the real moiré system. Our findings highlight the system’s
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sensitivity to microscopic model parameters even in the ide-
alized situation of our treatment. This is in accordance with
the issue of strong sample-to-sample dependence in experi-
ments, where twist angle homogeneity, strain, or pressure can
directly affect the degree of interlayer orbital overlap. The
recent evidence for K- and (stripe) M-CDWs in Ref. [22] for
unaligned TBLG, at an electron filling roughly corresponding
to ν = 1/4 in our flavor-polarized model, affirms the rele-
vance of our results that charge order represents a general
order tendency across multiple filling fractions to the physics
of pure TBLG. The implications of our work are further
extended by the agreement with recent experimental findings
for a TMD-based heterostructure in Ref. [26], suggesting a
remarkable resemblance of these moiré systems for certain
parameter regions.
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APPENDIX A: ADDITIONAL MANY-BODY SPECTRA

This section provides an overview of exemplary many-
body spectra encountered in the ED study but not included
in the main text. The identified ground-state manifolds are
shaded in the color of the respective symbols. The displayed
results include further quasi–double degeneracies at half fill-
ing in Fig. 15 on the cluster 28A as well as the evidence
for stable K-CDW order at ν = 1/3 with the shorter screen-
ing length of λ = LM/6 in Fig. 16. The degeneracy and
orbital separation in Fig. 17 clearly indicate an M-WC for
both considered values of wAB. Figure 18(a) highlights the
possibility for two classes of a C6-WC on clusters with D6

symmetry like 49, leading to an approximate 14-fold ground-
state degeneracy with a minor energetic splitting due to the
substrate-induced breaking of C2. On the other hand, C6 sym-

FIG. 15. Spectrum and location of ground-state orbitals for the
cluster 28A at ν = 1/2 filling.

FIG. 16. Spectrum and location of ground-state orbitals for the
cluster 36 at ν = 1/3 filling with λ = LM/6.

metric clusters similar to 28A in Fig. 18(b) can realize only
a single variant of the translation symmetry-breaking WC.
The momenta of a given cluster are addressed by integers k1,
k2, such that k = k1gk,1 + k2gk,2. The number of steps along
gk,2 until the origin is reencountered is denoted by N2 and is
related to the topological length of Ref. [40]. For the displayed
clusters 25, 36, 49, 28A we obtain N2 = 5, 6, 7, 14.

APPENDIX B: DERIVATION OF THE BAND-PROJECTED
STRUCTURE FACTOR

The structure factor is generally defined as the Fourier
transform of the static density-density correlation function

χ0(ri, r j ) = 〈ρ(ri )ρ(r j )〉

= 1

Nk

∑
q̃

eiq̃(r j−ri )S(q̃), (B1)

with S(q̃) = 1
Nk

〈ρ(q̃)ρ(−q̃)〉 for general fermionic

momentum-space density operators ρ(q̃) = ∑
k̃ f †

k̃
f
k̃+q̃

.

In our notation, the momenta k̃ and q̃ are located inside the
Brillouin zone of ordinary graphene and thus have to be folded
back onto k, q ∈ MBZ via k̃ = k + G and q̃ = q + G. Since
we are interested in the dominant correlations on the moiré
scale, we restrict to the measurement of S(q). This means

FIG. 17. Spectrum and location of ground-state orbitals for the
cluster 36 at ν = 1/4 filling.
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FIG. 18. Spectrum and location of ground-state orbitals for the
cluster (a) 49 and (b) 28A at ν = 1/7 filling. The inset in (a) high-
lights the substrate-induced splitting of the ground-state manifold
into two C6-related sets of orbitals.

we consider only momentum transfers q in the original MBZ
and effectively drop the sum over G, which would otherwise
be introduced by the transformation to the band basis [see
Eq. (2)]. In the continuum model, the graphene second
quantized operators are indexed by valley τ , sublattice X , and
momentum k̃, which in the moiré band basis transforms to τ ,
band n and k as

f
τ,X,k+G =

∑
n

uτ,n;G,X (k)c
τ,n,k. (B2)

The eigenvector components uτ,n;G,X (k) are obtained from
solving the single-particle eigenproblem and introduce addi-

tional form factors into the expression for the structure factor.
Here it should be noted that the truncation to G = 0 may give
rise to slight quantitative discrepancies in the measurement,
mostly for large q at the border of the MBZ, depending on
what contributions at the boundary of the MBZ are taken into
account. Nevertheless, these are only minor effects, and what
is more, the inclusion of G = 0 contributions was found to
reproduce the qualitative aspects of the results. As we consider
only spinless fermions of a single band and valley and thus
neglect band indices in Eq. (B3) from line 2 onward, the
transformation reads

S(q) = 1

Nk

〈∑
X1,k̃1

f †
X1,k̃1

f
X1,k̃1+q

∑
X2,k̃2

f †
X2,k̃2

f
X2,k̃2−q

〉

= 1

Nk

∑
k1,k2



q
k1



−q
k2

〈c†
k1

ck1+qc†
k2

ck2−q〉

= 1

Nk

∑
k1,k2



q
k1



−q
k2

[δk1+q,k2〈c†
k1

ck2−q〉

− 〈c†
k1

c†
k2

ck1+qck2−q〉]

= 1

Nk

[∑
k

∣∣
q
k

∣∣2
n(k)

+
∑
k1,k2



q
k1



−q
k2

〈c†
k1

c†
k2

ck2−qck1+q〉
]
, (B3)

with 

q
k again denoting the form factors introduced in Eq. (2).

APPENDIX C: USED CLUSTER GEOMETRIES

Table I gives an overview of all the clusters used for per-
forming ED. Each one has a distinct identification, which it
is referred to by in the main text. The geometric properties
of aspect ratio, number of realizations of high-symmetry mo-
menta, and the point group are the basis for choosing a viable
cluster in the first place but also guide the interpretation of nu-
merical results. The torus spans the real-space simulation cell
like T1 = aLM

1 + bLM
2 and T2 = cLM

1 + dLM
2 , where LM

i are
the moiré lattice vectors. The momentum-space discretization
gk,i may then be derived as usual by finding the respective
reciprocal vectors.
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TABLE I. Overview of the cluster geometries used in this work. Depending on their realizations of high-symmetry momenta K±, M and
point symmetry group they may support different types of charge order.

Number of

Torus Aspect
ID Nk [[a, b], [c, d]] ratio K± M Point group

12A 12 [[2, 2], [2, −4]] 1.00 1 3 D6

12B 12 [[3,0],[0,4]] 1.33 0 1 C2

15A 15 [[1, 3], [4, −3]] 1.00 0 0 D2

15B 15 [[3,0],[0,5]] 1.67 0 0 C2

16 16 [[4,0],[0,4]] 1.00 0 3 D6

18 18 [[3, 0], [0, 6]] 2.00 1 1 D2

20A 20 [[2, 2], [4,−6]] 1.53 0 3 D2

20B 20 [[2, −4], [3, 4]] 1.76 0 1 D2

21A 21 [[1, 4], [5, −1]] 1.00 1 0 C6

21B 21 [[3, 0], [0, 7]] 2.33 0 0 C2

24A 24 [[1, 4], [5, −4]] 1.00 1 1 D2

24B 24 [[2, 2], [6,−6]] 1.73 1 3 D2

24C 24 [[4, 0], [0, 6]] 1.50 0 3 C2

25 25 [[5, 0], [0, 5]] 1.00 0 0 D6

27A 27 [[3, 3], [3, −6]] 1.00 1 0 D6

27B 27 [[3, 0], [0, 9]] 3.00 1 0 D2

28A 28 [[2, 4], [6,−2]] 1.00 0 3 C6

28B 28 [[4, 0], [0, 7]] 1.75 0 0 C2

30A 30 [[3, 3], [5, −5]] 1.04 0 1 D2

30B 30 [[5, 0], [0, 6]] 1.20 0 1 C2

32 32 [[2, 4], [6,−4]] 1.00 0 3 D2

35A 35 [[1, 5], [5, −10]] 1.56 0 0 D2

35B 35 [[5, 0], [0, 7]] 1.40 0 0 C2

36 36 [[6, 0], [0, 6]] 1.00 1 3 D6

39 39 [[2, −7], [5, 2]] 1.00 1 0 C6

40A 40 [[3,−7], [4, 4]] 1.14 0 1 D2

40B 40 [[2, 4], [8,−4]] 1.31 0 3 C2

42A 42 [[3,−6], [4, 6]] 1.68 0 1 D2

42B 42 [[6, 0], [0, 7]] 1.17 0 0 C2

49 49 [[7, 0], [0, 7]] 1.00 0 0 D6

56 56 [[7, 0], [0, 8]] 1.14 0 1 C2
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