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Conductance zeros in complex molecules and lattices from the interference set method
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Destructive quantum interference (DQI) and its effects on electron transport are studied in chemical molecules
and finite physical lattices that can be described by a discrete Hamiltonian. Starting from a bipartite system whose
conductance zeros are known to exist between any two points of a specially designated set, the interference
set, we use the Dyson equation to develop a general algorithm for determining the zero conductance points in
complex systems, which are not necessarily bipartite. We illustrate this procedure as it applies to the fulvene
molecule. The stability of the conductance zeros is analyzed with respect to external perturbations.
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I. INTRODUCTION

Quantum interference effects associated with the electron
propagation in a conductor have long been a subject of interest
in mesoscopic physics. Depending on the phase difference
between the different electron paths, the conductance can
fluctuate as in the Aharonov-Bohm effect [1–3], or it can com-
pletely vanish in various phase coherent systems [4–19]. The
latter situation, associated with a destructive quantum interfer-
ence (DQI), is equivalent to a zero propagation probability for
the electron state, sometimes referred to as “antiresonance”
[20,21]. In electron transport, within the Landauer-Büttiker
formalism, the existence of a DQI between two lattice sites
is equivalent to a conductance zero between the same sites
[22,23].

The DQI has been studied in different physical and chem-
ical systems, such as quantum dots [22,24], graphene-type
structures [25–27], benzene and other carbon based molecules
[28–35], and T-shape conductors [36,37]. Several theoretical
methods have been used to determine if zero conductance
points appear in a noninteracting lattice, such as the wave
functions parity method [22], graph-based selection rules
[38,39], and the unpaired atoms graphical method [40]. Other
approaches involved linear algebra of the molecular Hamilto-
nian in the presence of electrode couplings [41], curly arrows
[42], interference vectors [43], the calculation of the conduc-
tance cancellations using the characteristic polynomials [44],
or the identification of the bipartite sublattice blocks with
well known conductance zeros [23]. A general perspective on
selection rules for destructive quantum interference in single-
molecule electron transport was provided in Ref. [45].

In this paper, we develop an algorithm based on the Dyson
equation to determine the existence of DQIs between pairs
of sites in a noninteracting electron system described by
a discrete Hamiltonian (Hückel or tight-binding). First, we
consider a bipartite system and use its symmetry proper-

ties to determine the pairs of lattice points between which
DQI occurs. The ensemble of these sites defines the inter-
ference set MI . Although MI can be established for any
electron energy E, here, we focus on the midspectrum prop-
agation modes since in bipartite lattices they correspond to
well-defined classes of conductance zeros, such as those in
half-filled graphene [23,25]. The configuration of the MI

set is discussed in Sec. II. This preamble is then used in
Sec. III to formulate the general conditions that assure the
existence of DQI points in complex systems, which are not
necessarily bipartite. The invariance of the conductance zeros
under several different perturbations is analyzed. We illustrate
the application of this algorithm to fulvene, a nonbipartite
molecule in Sec. IV. Finally, we provide our conclusions in
Sec. V.

II. THE INTERFERENCE SET OF A BIPARTITE LATTICE

A bipartite system consists of two sublattices A and B,

whose sets of points Ma and Mb are coupled through hop-
ping matrix elements, hna,nb �= 0, with na ∈ Ma and nb ∈ Mb,
as described in Fig. 1. The Hamiltonian is written as

Hbip =
∑

na,nb

hna,nb |na〉〈nb| + H.c. , (1)

where, for simplicity, the energies hna,nb are usually assumed
to be all equal (and the energy unit, i.e., t = 1). Equation
(1) can describe chemical molecules [38,42], nanostructures
[25,46], or artificial molecules composed of quantum dots
[47,48].

Hbip anticommutes with the chirality operator �,

� =
∑

na

|na〉〈na| −
∑

nb

|nb〉〈nb| , (2)
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FIG. 1. A generic bipartite system with Na = 7 and Nb = 6. The
intersublattice hopping are leading to zero energy states with total
degeneracy g = 3. The sketch of the energy spectrum is on the right.

thus ensuring that the eigenstates of the system satisfy �−ε =
��ε . Consequently,

�±ε =
∑

na

�(na)|na〉 ±
∑

nb

�(nb)|nb〉 , (3)

a property related to the pairing theorem [49] or the electron-
hole symmetry [50–52].

The degeneracy g of the eigenvalue ε = 0 is determined
by the expansion of the determinant of Hbip. For example, in
Fig. 1, we show a bipartite lattice and its energy spectrum
which in that case corresponds to g = 3. If Hbip is singular,
det Hbip = 0, g �= 0, and there are one or more zero energy
eigenstates �0i with i = 1, · · · , g. For a nonsingular Hbip,
det Hbip �= 0 and there is no ε = 0 eigenstate. The necessary
(but not sufficient) condition for this later situation to occur in
a bipartite lattice is Na = Nb [53].

Using the energy eigenstates and eigenvectors, εα and �α

with α = 1, · · · , N , we calculate the matrix elements of the
the Green’s function operator at a given energy E as

G(E ) = 1

E − Hbip
. (4)

For propagation between points in the same sublattice (say,
sublattice “A”), making use of Eq. (3), we obtain

Gnama (E ) =
∑

α,εα>0

2E

E2 − ε2
α

�α (na)�∗
α (ma)

+
g∑

i=1

�0i(na)�∗
0i(ma)

E
. (5)

In a nonsingular bipartite system, with g = 0 and no energy
levels at midspectrum, Eq. (5) indicates that Gnama (0) = 0.
Therefore, DQIs occur between any of the A points at E = 0,

as previously discussed in the context of conductance can-
cellations in Refs. [22,23,26,44,45]. By using the chirality
property from Eq. (3), the terms with opposite energies from
the spectral decomposition of the Green’s function in Eq. (5)
cancel each other. This is in agreement with the fact that the
GAA zeros can also be explained as destructive interference
in the energy space [20,29]. In the weak-coupling limit, this
is mostly reduced to the tunneling through the two adjacent
energy states [22], HOMO and LUMO in molecules [54].

The points of a molecule/lattice between which the matrix
element of the Green’s function cancels at a given energy, say
Gnm(E = 0) = 0, form the interference set MI . Thus,

Gnm(E ) = 0, ∀ n, m ∈ MI . (6)
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FIG. 2. The hexagon lattice of the benzene molecule described
by a bipartite Hamiltonian has two equivalent sets of interference
points MI = {1, 3, 5} (yellow) and MI = {2, 4, 6}.

The case n = m is necessary to be included since Gnn(E ) = 0
is fulfilled for any n ∈ MI . Within the Landauer-Büttiker
formalism, the cancellation of the bare Green’s functions de-
termines the cancellation of the electrical conductance. This is
obtained by using Eqs. (A1)–(A3) evaluated at a Fermi energy
equal to E . Therefore,

Gnm(E ) = 0, ∀ n, m ∈ MI , (7)

where n and m are the external lead contact points, i.e., source
and drain.

In a bipartite lattice, a set MI is easily found at E = 0
by using the results from Eq. (5). For a nonsingular system
(g = 0 and no ε = 0 state), one identifies two disjoint sets,
composed of all A and all B sublattice points, respectively,
since GAA(0) = 0 and GBB(0) = 0. Therefore, from the defi-
nition (6), one obtains two interference sets

M(1)
I = Ma and M(2)

I = Mb . (8)

If the bipartite Hamiltonian is singular, such that ε = 0 is
an eigenvalue, a more subtle analysis is required to determine
the interference set since in general not all matrix elements
of GAA and GBB cancel. In this case, one calculates the zero
energy states �0i that enter in Eq. (5), to see which of the A
(or B) points can be selected in the MI set.

In addition to the interference sets that contain only one
type of points, A or B, mixed I sets containing both type
of points A and B can be obtained in the case of composite
bipartite systems, i.e., two serial coupled bipartite sublattices
[23].

To illustrate the application of these definitions, we find
the interference points in the hexagon system, related to the
benzene molecule, which is one of the common examples of
DQI in single-molecule electron transport [28–30,32,43,55].
As shown in Fig. 2, this is a bipartite system whose sublattice
sets are Ma = {1, 3, 5} and Mb = {2, 4, 6}. Since the Hamil-
tonian matrix is nonsingular, from Eq. (8) the two interference
sets are M(1)

I = Ma and M(2)
I = Mb.

For MI = Ma, we have Gn,m(0) = 0, (∀)n, m ∈ {1, 3, 5} ,

while for MI = Mb, Gn,m(0) = 0, (∀) n, m ∈ {2, 4, 6} . The
conductance formula from Eq. (7) determines the correspond-
ing transport cancellations.
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FIG. 3. A complex system is built by perturbing the I points from
the set MI or by connecting external points X from the set MX to
the interference points I . The R points are not affected during the
construction of the new system. The larger contour enclosing the two
sets MX and MI defines the invariance set Minv.

III. GENERAL ALGORITHM

We start from a bipartite lattice with a known interference
set MI . The complete set of lattice points M is therefore
decomposed in the reunion of two disjoint subsets,

M = MI ∪ MR , (9)

where MR = M − MI is by definition the rigid set.
This situation is illustrated in Fig. 3, where the Ma sub-

lattice is chosen to be the interference I set (yellow circles)
and the remaining Mb sublattice is chosen as the rigid R set
(empty circles). While it is not mathematically necessary that
the I set is identical to Ma, such a choice is indicated if
one wants to maximize the number of conductance cancela-
tions that are found. The full lines between I and R points
correspond to the nonzero hopping energies of the bipartite
Hamiltonian.

For the selected I and R lattice points, the Hamiltonian of
the bipartite lattice is consequently re-expressed as

H = H (I, R) . (10)

The Green’s function matrix for the MI subspace states GII

is zero,

GII (E ) = 0 , (11)

in agreement with Eq. (6). H is perturbed by two additional
Hamiltonians, H1(I ) which describes the nonzero hopping
probabilities among interference points (including onsite new
energy terms) and H2(I, X ) that contains the hopping ele-
ments between the interference points and a set of external
points MX , as well as any additional X -set related terms.
The new terms correspond to the dashed lines or to the onsite
energies, such as εi and εx in Fig. 3. The resulting Hamiltonian
H ′ is

H ′(I, R, X ) = H (I, R) + H1(I ) + H2(I, X ) . (12)

The associated lattice M′ described by the Hamiltonian H ′ is
the reunion of the three disjoint subsets,

M′ = MI ∪ MR ∪ MX , (13)

as illustrated in Fig. 3. The original lattice can be grown by
adding new points X, such that a conductance cancellation
occurs between any point in the X set and any point in the
I set. Thus, the conductance cancellations in the enhanced lat-
tice are known apriori by construction, once the interference
set is established.

We determine the DQI processes in the complex system
H ′(I, R, X ) by evaluating the matrix elements of the Green’s
function operator G′. It is assumed that they have no singulari-
ties at energy E . The Dyson equations satisfied by the matrices
G′

II and G′
IX are written in terms of the matrix GII as

G′
II = GII + GII hII G

′
II + GII hIX G′

XI , (14)

G′
IX = GII hII G

′
IX + GII hIX G′

XX , (15)

where hII is the matrix that contains the hopping energies
between I sites given by Hamiltonian H1(I ) from Eq. (12) and
hIX is the matrix that contains the hopping energies between
I and X points introduced by the Hamiltonian H2(I, X ). We
note that the unperturbed Green’s function GIX is zero since
the MI and MX sets are initially uncoupled.

With GII (E ) = 0 from Eq. (11), Eqs. (14) and (15)
generate

G′
II (E ) = 0 , (16)

G′
IX (E ) = 0 . (17)

Equation (16) indicates that MI is a proper interference
set for H ′ in agreement with the definition from (6). All the
DQI process between the I points are common to both systems
described by H and H ′, as shown in Eqs. (11) and (16). The
supplementary cancellations in Eq. (17) exhibit the appear-
ance of new DQI processes in the output system between I
and X points of the lattice.

The stability of the DQIs is studied with the invariance set,

Minv = MI ∪ MX . (18)

The interference points I and the Green’s function zeros, G′
II

and G′
IX , are not changed by any deformation of H ′ related to

Minv points,

H ′ → H ′ +
∑

n,m∈Minv

hnm|n〉〈m| . (19)

In Fig. 3, the transformation (19) could represent the mod-
ification of hopping energies related to the dashed lines, to
the modification of the onsite energies εi of I points or εx

of X sites. H ′ becomes an effective Hamiltonian when non-
Hermitian terms, that are introduced to simulate the presence
of the external leads attached to the I or X points, are added
[51,56,57]. In the figure, the Minv set is shown by the larger
contour enclosing I and X points.

From the Green’s functions zeros Eqs. (16), (17) for the
new molecule or physical system, we are able to easily predict
its conductance zeros when the transport measurements are
performed. By connecting the external leads to sites in MI ,
from Eq. (16), one obtains the conductance zeros GII = 0.
When the leads are connected to a pair of points, one from MI

and the other from MX , from Eq. (17) one obtains GIX = 0.
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Any system modification according to transformation (19)
leaves these conductance zeros unchanged.

The algorithm discussed here can be applied to vari-
ous physical or chemical systems that contain embedded
subsystems with known interference sets that undergo the
decomposition from Eq. (12) or Fig. 3.

We now discuss the case of a bipartite system for which it
is a priory known that ε = 0 is not an eigenvalue. For such
systems, any of the sublattices A or B can be selected as the
MI set of points with Green’s function (and conductance)
cancellations for any pair of sites between them, including
pair of identical sites, as discussed in Sec. II. Such examples
are the circular systems with an even number of atoms, which
is not a multiple of four, and the linear chains with an even
number of sites. For the circular molecules, we remind that
those with 4N atoms have a pair of degenerate levels at ε = 0,
which are absent in all other cases [52]. The chain property is
trivial [34].

For the hexagonal system in Fig. 2, the general algo-
rithm described above starts by identifying the interference
sets. According to Eqs. (8), this bipartite system has two
interference sets M(1)

I = {1, 3, 5} and M(2)
I = {2, 4, 6}. The

corresponding rigid points sets from Eq. (9) are given by
M − MI . The two sets are disjointed, so if one is picked as
the interference set, by default the other one becomes the rigid
set. For M(1)

I = {1, 3, 5}, M(1)
R = {2, 4, 6} and the invariance

set from Eq. (18) is obtained to be M(1)
inv = {1, 3, 5} since in

this case no external sites were added. Following our theory,
diagonal or hopping energies can be added to the M(1)

inv sites
without destroying the I points.

The conductance cancellations follow from the GII zeros
of the Green’s function. For M(1)

I = {1, 3, 5}, these conduc-
tance zeros are G13, G15, and G35 for the meta-contacted
benzene [29,38], and G11 = 0, G33 = 0, and G55 = 0 when
the two leads are connected to the same point as discussed
for the ipso-contacted benzene in [38]. All of these zeros
have the invariance set M(1)

inv = {1, 3, 5}. For instance, the in-
variance of G15 at the site 3 perturbation proves the robustness
of the meta-contacted benzene when a heteroatom substitution
is performed for real value of ε3 [58] or when a third external
lead is attached, in this case ε3 energy having a complex
value [57]. On this line, our results may provide support
to understand the conductance invariance when heteroatom
substitutions in some molecules are performed [54,58–61].

We emphasize that not all lattices have interference sets,
even when they have conductance cancellations (i.e., even if
the conductance between n and m is zero, they do not form
an interference set unless the conductance is also zero when
both leads are connected to n and also when both leads are
connected to m). The property that a system has an interfer-
ence set is therefore not trivial, but rather an exception met,
for instance, in bipartite lattices.

IV. EXTENSION OF THE FORMALISM TO
NONBIPARTITE LATTICES—THE FULVENE MOLECULE

In this section, we present a complete analysis of the con-
ductance zeros in fulvene, thus augmenting the results of Ref.
[44], which reviewed several such instances.
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FIG. 4. Interference points in fulvene molecule and the decom-
position of its lattice sites M = MI ∪ MR ∪ MX . I ∈ MI and
R ∈ MR are the interference and rigid points of the starting bipartite
molecule Hbip with the lattice points set Mbip = MI ∪ MR. In (a)-
(f) the dashed lines correspond to the new hopping energies, while
the X circles in (d)-(f) designate the new external sites MX added to
the initial bipartite molecule (composed of I and R sites).

To apply the algorithm described in the previous section,
we first determine the interference points sets MI , as shown
in Fig. 4. First, we determine a smaller bipartite system with
Hamiltonian H that can provide a set of I points, such that
H = H (I, R) is the input Hamiltonian in Eq. (10). Then, the
remaining sites and hoppings are added to the I points, gen-
erating Hadd(I, X ), such that in the end the complete fulvene
Hamiltonian is written as in Eq. (12).

We consider a finite chain of six sites, whose Hamiltonian
is H = ∑ |n〉〈n + 1| + H.c. with n = 1, · · · , 5 (hopping en-
ergy is set to unity) depicted by the straight lines in Fig. 4(a).
This chain is bipartite with A points in the set {2, 4, 6} and
B points in the set {1, 3, 5}. H is nonsingular and satisfies the
criteria leading to Eq. (8). We choose A as the interference set,
marked with I in Fig. 4(a). Consequently, the set B contains
the rigid points, marked with R. To transform the linear chain
into the fulvene molecule, a new term that links the I points 2
and 6 is added to the Hamiltonian, Hadd = |2〉〈6| + H.c..

Consequently, the fulvene lattice has the interference set
M(a)

I = {2, 4, 6}, the rigid set M(a)
R = {1, 3, 5}, while the ex-

ternal set from Eq. (13) is empty, M(a)
X = ∅. Figures 4(b) and

4(c) are variants of this scenario without any X points added.
Different decompositions of the total Hamiltonian is pre-

sented in Figs. 4(d), 4(e), and 4(f) where external points
are considered. In Fig. 4(d), the bipartite system is chosen
as H = ∑ |n〉〈n + 1| + H.c. with n = 1, · · · , 3, with {2, 4}
as A points and {1, 3} as B points. In this case, H is not
singular and Eq. (8) is applied. Therefore, we choose the I
points to be A and the R points to be B, marked by I and R
circles. To recover the full fulvene lattice, two fresh points
X = {5, 6} are added, with new hopping energies represented
by dashed lines. Hadd contains terms that relate the I points
to X points, |2〉〈6| + |4〉〈5| + H.c., as well as the hopping
between the two X points, |5〉〈6| + H.c.. The Hadd is of the
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TABLE I. Fulvene special points: interference points I , rigid
points R, and external points X . I ∈ MI , R ∈ MR, and X ∈ MX .
The robustness of every interference set MI is dictated by the invari-
ance set Minv = MI ∪ MX .

Figure Interference Rigid External
points I points R points X

4(a) 2, 4, 6 1, 3, 5
4(b) 2, 3, 5 1, 4, 6
4(c) 2, 4, 5 1, 3, 6
4(d) 2, 4 1, 3 5, 6
4(e) 2, 5 1, 6 3, 4
4(f) 2 1 3, 4, 5, 6

type H2 in Eq. (12). With this, and following the previous
results, we obtain that the interference set is M(d )

I = {2, 4},
M(d )

R = {1, 3}, and M(d )
X = {5, 6}. Figures 4(e) and 4(f) also

represent new decompositions having X points added.
In Table I, we provide the full list of the six sets of the

special points I , R, and X obtained from the fulvene lattice.
The table encodes all the DQI processes with E = 0 that
exist in the lattice and the corresponding figures (column 1)
explain how they originate from a destructive interference in
a bipartite system.

Different choices of the initial set of interference points
lead to different predictions of zeros of conductances and to
various invariance sets. It is therefore important that one finds
all the possible zeros together with there invariance sets, as
summarized in Table II.

We mention that when compared with all the other con-
ductance zeros that are associated with a single invariance set,
the G45 zero is associated with two. From Figs. 4(c), 4(d), and
4(e), or from the corresponding lines of the Table I, we note
that G45 is a GII zero in (c) and a GIX zero in (d) and (e).
The three invariance sets of G45 zero are, M(c)

inv = {2, 4, 5},
M(d )

inv = {2, 4, 5, 6} and M(e)
inv = {2, 3, 4, 5}. The set M(c)

inv can
be ignored as it is included in the others two sets and one
retains only two invariance sets, M(d )

inv and M(e)
inv.

Another matter of interest is to say not only which pertur-
bations keep the conductance zeros invariant but also which
ones lift them leading to nonzero current through a given

TABLE II. The twelve DQI processes at E = 0 for the fulvene
lattice and their invariance sets.

Green’s function Invariance
zeros at Minv

G22, G23, G24, M( f )
inv = {2, 3, 4, 5, 6}

G25, G26

G44, G46 M(d )
inv = {2, 4, 5, 6}

G55, G35 M(e)
inv = {2, 3, 4, 5}

G33 M(b)
inv = {2, 3, 5}

G66 M(a)
inv = {2, 4, 6}

G45 M(d )
inv = {2, 4, 5, 6}

M(e)
inv = {2, 3, 4, 5}

molecular device [35,57,62]. Since we have shown that the
conductance zeros are invariant under the I and X sites per-
turbations, it can be assumed that they may be destroyed by
means of R sites. This, however, has to be investigated for
every particular case.

It is straightforward to show that in the case of a small
molecule, like fulvene, the conductance zeros can be
individually predicted by alternative approaches, such as
the four graphs nullities investigation [38], determinant
algorithm [40,45], or by direct calculation from the power
series expansion of the Green’s function [44]. We believe that
our method becomes more practical when large molecules or
large lattices are involved. Then, once at least one bipartite
subsystem is found, conductance zeros can be predicted in
group rather than individually, along with their robustness
under perturbations.

V. CONCLUSIONS

In this paper, we develop a method for determining the
conductance zeros that result from destructive electron state
interference in complex systems. The method starts by find-
ing a smaller system that includes an interference set, whose
points are such that any pair of them is associated with zero
conductance (GII = 0, including the diagonal terms, when
both leads are connected to the same site). The remaining
points from this initial system, outside the interference set, are
called rigid points R. A complex system is then obtained by
connecting new, external points X, to the I points (but never
to the R points) or by adding any onsite or hopping energies
related to the I points. We prove that the new system obtained
in this way retains all the initial conductance cancellations
between the I points (GII = 0) and, in addition, exhibits new
zeros between points I and points X (GIX = 0).

Bipartite systems are known to have such sets of interfer-
ence points at zero energy, provided ε = 0 is not an eigenvalue
of the system (i.e., Hamiltonian is nonsingular), and they are
used as starting blocks in our derivations. In such a case, the
sets of I points can be identified with the sublattices points A
or B. Among the simplest examples of bipartite systems with
nonsingular Hamiltonians, we mention the linear chains with
2N sites and circular molecules with 4N + 2 sites.

The Dyson expansion is used to prove the conduc-
tance cancelations as well as their invariance properties.
The zeros are robust against perturbations applied on
the I and X points, while the R points should not be
perturbed.

In the case of the nonbipartite fulvene molecule, it is shown
that, by choosing in different ways the initial set of I points,
one can obtain all the conductance zeros and study their per-
sistence under the effect of different perturbations.

Our study contributes to the understanding of the de-
structive interferences and their invariance properties for an
appropriate class of physical systems that have bipartite lat-
tices or contain subsystems with bipartite lattices. They can
be relevant for transport experiments on molecules, nanos-
tructures, and various finite lattices, for designing of logical
gates or for projection of quantum interference transistors at
the nanoscale.
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APPENDIX: CONDUCTANCE CALCULATION

In this section, we briefly remind how the Green’s function
cancellations also reflect in the conductance, should the sys-
tem no longer be isolated, but connected to external leads. Let
us consider, for this, a two-terminal conductor, such as a tight-
binding lattice connected at two semi-infinite leads called
Lout and Lin. They are coupled at two sites of the involved
lattice i and j, respectively. Transport coefficients are given
in terms of the effective Green’s function of the Hamiltonian
H eff = H + τi|i〉〈i| + τ j | j〉〈 j|. This is evaluated as in Refs.
[51,56] for a wavevector k and Fermi energy E = 2τl cos k
as a function of τl , the hopping energy on the leads, and τc,
the hopping energy between the leads and the discrete system.
Therefore,

Geff
i j (E ) = Gi j (E )

1 − τ jG j j − τiGii − τ jτiGi jG ji + τ jτiGiiG j j
,

with τi, j = τ 2
c

τl
e−ik . (A1)

In the Landauer-Büttiker approach [63–65], the tunnel-
ing amplitude from the lead Lin into the lead Lout gives
the scattered wave function in the lead Lout, |�Lout 〉 =
tout,in

∑
nl ∈Lout

e−iknl |nl〉. The tunneling amplitude from Lin to
Lout is

tout,in(E ) = 2i
τ 2

c

τl
sin k Geff

i j (E ) . (A2)

The electric conductance Gi j or transmittance Ti j are

Gi j (E ) = e2

h
Ti j (E ) = e2

h
|tout,in(E )|2 . (A3)

Straightforwardly, the effective Green’s function Geff
i j (E )

and, of course, the conductance Gi j (E ) cancel whenever the
Green’s function of the isolated sample Gi j (E ) is equal to
zero.

We also point out again that the Green’s function cancella-
tions obtained in Eqs. (16) and (17) are proved for nonsingular
H ′ such that G′ Green’s functions in Dyson expansions from
Eqs. (14) and (15) have no singularities at energy E . Oth-
erwise, supplementary calculations have to be carried out,
by using for instance effective Hamiltonian depicted here,
to directly prove the conductance cancellations. With some
exception (as the square Hamiltonian in [31]), H eff is nonsin-
gular because of the non-Hermitian terms added to the contact
points.
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