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Nagaoka spin-valley ordering in silicene quantum dots
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We study a cluster of quantum dots defined within silicene that hosts confined electron states with spin and
valley degrees of freedom. Atomistic tight-binding and continuum Dirac approximations are applied for a few-
electron system in the quest for spontaneous valley polarization driven by interdot tunneling and an electron-
electron interaction, i.e., a valley counterpart of itinerant Nagaoka ferromagnetic ordering recently identified in
a GaAs square cluster of quantum dots with three excess electrons [J. P. Dehollain et al., Nature (London) 579,
528 (2020)]. We find that for a Hamiltonian without intrinsic spin-orbit coupling the valley polarization in the
ground state can be observed in a range of interdot spacings provided that the spin of the system is frozen by
an external magnetic field. The intervalley scattering effects are negligible for a cluster geometry that supports
the valley-polarized ground state. In the presence of a strong intrinsic spin-orbit coupling that is characteristic to
silicene, no external magnetic field is necessary for the observation of a ground state that is polarized in both the
spin and valley. The effective magnetic field due to the spin-orbit interaction produces a perfect anticorrelation
of the spin and valley isospin components in the low-energy spectrum. Experimental detection of spin-valley
ground-state polarization by a charge response to a potential variation is discussed.

DOI: 10.1103/PhysRevB.103.125306

I. INTRODUCTION

The Hubbard model for a cubic lattice with an on-site
Coulomb interaction dominating over the intersite hopping
produces a spin-polarized ground state near half filling [1]
that is known as Nagaoka ferromagnetism in the theory of
itinerant ferromagnetism [2]. Semiconductor quantum dots
were pointed out as a possible two-dimensional (2D) re-
alization of the Hubbard model and artificial molecules or
clusters formed by multiple quantum dots were studied in the
context of spin polarization driven by interdot tunneling and
an electron-electron interaction [3,4]. A spin-ordered ground
state was recently experimentally identified in electrostatic
quantum dots defined in GaAs [5] in a three-electron system
for quantum dots arranged in a square cluster, a case previ-
ously theoretically studied in Ref. [3].

In graphene [6] and 2D xenes [7] the electron states near
the charge neutrality point are additionally characterized by
a valley isospin due to the presence of two nonequivalent
Dirac points in the Brillouin zone. Electrostatic confinement
in graphene is excluded by the Klein tunneling effect [8].
However, in bilayer graphene [9,10] or buckled silicene [11]
the energy gap and thus electrostatic confinement can be
formed by a perpendicular electric field.

In this paper we look for a counterpart of the Nagaoka
ferromagnetism in the valley degree of freedom in a 2D
system. We focus on the ground-state valley polarization for
a three-electron system in a square cluster of quantum dots
defined in silicene [7], i.e., a counterpart of the case studied
experimentally in a GaAs system [5]. With respect to the
III-V quantum dots the silicene besides the valley degree of
freedom hosts a strong intrinsic spin-orbit coupling [12,13],

which as we show below plays a role in the Nagaoka order-
ing. Without the spin-orbit coupling term the tight-binding
Hamiltonian is identical with the one for monolayer graphene
with a staggered potential [14–16] up to the numerical value
of the interatomic hopping energy. For that reason below we
solve both problems with and without spin-orbit coupling. We
demonstrate that in the absence of spin-orbit coupling the spin
degree of freedom of the three-electron system needs to be
frozen for the valley ordering to be observed. The intrinsic
spin-orbit coupling splits the fourfold degeneracy of the con-
fined single-electron ground state with respect to the spin and
valley forming spin-valley doublets in a manner similar to the
one closely studied for carbon nanotubes [17]. We demon-
strate that in the presence of intrinsic spin-orbit coupling,
Nagaoka ordering in both the valley and spin appears simul-
taneously. We discuss the detection of spin-valley ordering
by an electron charge reaction to the sweep of confinement
potentials in the cluster. Nagaoka ordering of the valley can
be added to the toolbox of valleytronics [18,19].

II. THEORY

Below, we study the system with the tight-binding ap-
proach [12,13,20] and with the continuum approximation
[12,21] to the tight-binding Hamiltonian. The two approaches
differ in the description of the valley degree of freedom,
which is intrinsically included in the Hamiltonian only in
the continuum version, that neglects the intervalley scattering
by short-range defects, the edges [22] of the flake, and the
short-range component of the electron-electron interaction
potential [23–25]. The diagonalization of the tight-binding
Hamiltonian for localized states covers the contribution of the
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entire Brillouin zone to the confined states and the valley can
only be resolved a posteriori. The atomistic method intrinsi-
cally accounts for the intervalley scattering. The application
of the two methods allows for a resolution of the intervalley
scattering effects. The continuum method, when applicable,
provides a radical reduction of the numerical complexity with
respect to the tight-binding (TB) approach. The latter takes
in orbitals localized on each atom while the nodes in the
finite element method (FEM) can be separated by much larger
distances than depend only on the long-range wave-function
variation, so that the continuum approach can be applied to
arbitrarily large systems. However, due to the neglect of the
intervalley scattering, the reliability of the FEM needs to be
verified against the atomistic approach.

A. Atomistic tight-binding Hamiltonian

For the TB model we define a flake of buckled sil-
icene [20,26] with ions of the A sublattice at positions rA

k =
k1a1 + k2a2 with the crystal lattice vectors a1 = a( 1

2 ,
√

3
2 , 0),

and a2 = a(1, 0, 0), with a silicene lattice constant a = 3.89
Å. The B sublattice is shifted by a base vector rB

k = rA
k +

(0, d, δ) where d = 2.25 Å is the in-plane nearest-neighbor
distance and the vertical distance is denoted by δ = 0.46
Å. Calculations are performed for a hexagonal flake with
armchair edges and a side length of about 30 nm with approx-
imately 72 000 pz spin orbitals.

We determine the eigenstates of the atomistic TB Hamilto-
nian [12,13,20],

HTB = −t
∑
〈k,l〉

pkl c
†
kcl +

∑
k

Vkc†
kck

+ itSOσz

∑
〈〈k,l〉〉

pklνkl c
†
kcl + gμB

2
�σ · B, (1)

where the first sum describes the nearest-neighbor hop-
ping with the energy t = 1.6 eV [12,13]. In Eq. (1), pkl =
exp (i e

h̄

∫ �rl

�rk
�A · �dl ) stands for the Peierls phase. The integral in

the exponent of pkl accounts for the Aharonov-Bohm phase
shifts that the wave functions acquire from the vector potential
A via hopping. We consider the magnetic field with both
perpendicular Bz and in-plane Bx components B = (Bx, 0, Bz )
with the vector potential A = (−Bzy/2, Bzx/2 − Bxz, 0). Due
to the 2D nature of the material the in-plane component does
not produce noticeable orbital effects. The in-plane field is
introduced in order to manipulate spins of the confined states
via the spin Zeeman effect included in the last term in Eq. (1),
with μB as the Bohr magneton and g = 2 as the Landé factor.
The third sum in Eq. (1) introduces the intrinsic spin-orbit
interaction [27] with the coupling constant tSO = 3.9 meV
[12,13] and νkl = +1 (−1) for the path of the next-nearest-
neighbor hopping from ion l to k via the common neighbor
that turns counterclockwise (clockwise). The second sum in
Eq. (1) introduces the external potential with Vk standing for
the potential on the rk ion.

In silicene the bias between sublattices opens the energy
gap in the band structure [11] that allows for the formation of
the confinement potential. For the confinement potential we
assume that the bias is independent of the electron position

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Square root of the charge density of the three-electron
ground states as calculated with the TB for a neglected spin-orbit
interaction. The left (right) panels indicate the electron densities
in the A (B) sublattice. The rows of figures from top to bottom
correspond to centers of the quantum dots placed on the corners of a
square with side (a), (b) 8.4 nm, (c), (d) 10 nm, and (e), (f) 11.7 nm.

within the plane,

Vk =
{−Vg

∑4
i=1

[
exp

( − r2
ik/R2

) − 1
]

on A,

−Vg
∑4

i=1

[
exp

( − r2
ik/R2

) + 1
]

on B,
(2)

where the sum over i runs over four quantum dots with centers
gi and rik = |rk − gi|. We take R = 4.2 nm for the dot radius,
and Vg = 0.3 eV for the depth of the potential cavities. In
Eq. (2) the electrostatic potential is lowered on both sub-
lattices near the center of each quantum dot. This type of
potential variation—with nearly equal bias and a minimum
on both sublattices—can be achieved with a pair of flat gate
electrodes with one that contains a circular intrusion near the
quantum dot center [28]. Note that type I quantum dots can
also be produced with flat gates provided that they contain
apertures near the confinement area [29].

Three-electron charge densities for the centers of the quan-
tum dots gi forming a square of side length X are given in
Fig. 1 with the A (B) sublattice placed on the left (right)
column of plots, and the side of the square increasing from
top to bottom.

B. Continuum Hamiltonian

The continuum approximation explicitly resolves the val-
ley degree of freedom. We work with a four-component
wave function spanned on sublattice and spin subspaces ψ =
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(ψA↑ ψB↑ ψA↓ ψB↓)
T

, and the energy operator [12,21]

H =
[

h̄vF (kxτx − ηkyτy) +
(

VA(r) 0
0 VB(r)

)]
⊗ Ispin

+ ηtSOτz ⊗ σz + Isublattice ⊗ gμB

2
�σ · B

−WD∇2τz ⊗ Ispin, (3)

where σ and τ are the Pauli matrices in the spin and sublat-
tice subspaces, respectively. Isublattice and Ispin are the identity
matrices, and the Fermi velocity is vF = 3dt/2h̄. The wave-
vector operators are defined as k = −i∇ + e

h̄ A, and η = ±1
is the valley index.

Hamiltonian (3) is diagonalized by the FEM. The compu-
tational box is divided typically into about 2200 triangular
elements with 18 000 nodes supporting Lagrange interpolat-
ing polynomials of the second degree [30] as shape functions
covering the spin and sublattice spaces. In Eq. (3) the last
expression is an artificial Wilson term [31] that is applied
to remove the spurious states [31–34] due to the fermion
doubling problem from the low-energy spectrum. We take
the Wilson parameter WD = 36 meV nm2 which increases the
energy of the fast oscillating states with a negligible influence
on the actual solutions of the Dirac equation that are smooth
near the charge neutrality point.

C. Calculations for three electrons

The electron-electron interaction for gapless graphene
flakes leads to the generation of electron and hole pairs [35].
In the calculations that follow for the three-electron system
the typical total interaction energy is about 60 meV, i.e., 
20
meV per electron pair, i.e., much lower than the potential bias
between the sublattices. Since the interaction energy is lower
than the field-induced energy gap and the considered quantum
dot does not support the confinement of holes, we neglect the
effects of pair generation by the Coulomb interaction [35] and
assume that the number of conduction band electrons is fixed
[36]. In both the atomistic method and in FEM we diagonalize
the Hamiltonian in the basis of three-electron wave functions
constructed by the lowest-energy 48 confined eigenstates of
the conduction band that produces the basis of 17 296 Slater
determinants.

The Hamiltonian for a system of interacting electrons is

Hi =
∑

i

d†
i diEi + 1

2

∑
i jkl

d†
i d†

j dkdlVi jkl , (4)

where d†
i is the electron creation operator for the energy level

Ei. The two-electron Coulomb matrix elements are

Vi jkl = κ〈ψi(1)ψ j (2)| 1

|r12| |ψk (1)ψl (2)〉, (5)

with κ = e2/(4πεε0). We take ε0 = 4.5 for the dielectric con-
stant, that corresponds to SiO2 or thin layers of Al2O3 [37,38]
applied as a matrix embedding the silicene monolayer.

1. Coulomb integrals in the continuum approach

For the continuum approach we calculate the Coulomb
matrix elements using the formula

Vi jkl = κδηi,ηk δη j ,ηl

∫∫
dr1dr2

[
ψ

A↑∗
i (r1)ψA↑

k (r1)

+ψ
B↑∗
i (r1)ψB↑

k (r1) + ψ
A↓∗
i (r1)ψA↓

k (r1)

+ ψ
B↓∗
i (r1)ψB↓

k (r1)
] 1

|r12|
[
ψ

A↑∗
j (r2)ψA↑

l (r2)

+ψ
B↑∗
j (r2)ψB↑

l (r2) + ψ
A↓∗
j (r2)ψA↓

l (r2)

+ ψ
B↓∗
j (r2)ψB↓

l (r2)
]
. (6)

The deltas with the valley indices that stand before the integral
imply the neglect of the intervalley scattering effects [23–25]
that are accounted for only in the TB approach.

2. Coulomb integrals in the atomistic approach

In the TB method the single-electron wave functions ψ are
expanded in the basis of 3pz spin orbitals of Si ions,

ψi(ri ) =
∑
k,σk

Ci
k,σk

pk
z (r1). (7)

The Coulomb matrix elements are summed over the ions,

Vi jkl = κ
∑

a, σa; b, σb;
c, σc; d, σd

Ci∗
a,σa

C j∗
b,σb

Ck
c,σc

Cl
d,σd

δσa;σd δσb;σc

× 〈
pa

z (r1)pb
z (r2)

∣∣ 1

|r12|
∣∣pc

z(r1)pd
z (r2)

〉
. (8)

In the two-center approximation [36]
〈pa

z (r1)pb
z (r2)| 1

|r12| |pc
z(r1)pd

z (r2)〉 = 1
rab

δacδbd for a �= b. The
on-site integral (a = b) for 3pz Si atomic orbitals with
pz(r) = Nz(1 − Zr

6 ) exp(−Zr/3), where N stands for the
normalization and Z is the effective screened nucleus charge,
equals 3577

46080 Z . The Slater screening rules for 3p Si orbitals
give Z = 4.15.

III. RESULTS AND DISCUSSION

A. Single-dot, single-electron results

In the absence of a spin-orbit interaction and without an
external magnetic field the single-electron confined ground
state in a single quantum dot is fourfold degenerate with
respect to both spin and valley [Fig. 2(a)]. For Bz = 0 the
valley degeneracy is preserved for the in-plane field Bx and
the energy levels are split only with respect to the spin. In
Fig. 2(b) and in other plots of this work presented as functions
of Bx we apply a residual perpendicular magnetic field for
Bz = 10 mT which lifts the degeneracies of the energy levels
to a thickness of a line.

The intrinsic spin-orbit coupling introduces an effective
magnetic field perpendicular to the plane of confinement with
an orientation that is opposite in the sense of the eigenvalue
sign to the valley isospin η [cf. the term with the tSO coupling
constant in Eq. (3)]. This effective field splits [Fig. 2(c)] the
ground state into a pair of doublets with a splitting energy that
corresponds to the spin Zeeman effect at a magnetic field as
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(a) (b)

(c) (d)

FIG. 2. Low-energy single-electron spectrum of states confined
in a single quantum dot (a), (b) without and (c), (d) with the spin-orbit
interaction. The results in (a) and (c) are obtained for Bx = 0 and in
(b) and (d) for Bz = 10 mT. The subscripts u/d in (a) and (c) cor-
respond to spin-up and spin-down eigenstates of the σz operator. In
(b), l and r subscripts stand for the eigenstates of the σx operator
with negative and positive eigenvalues, respectively. The inset in
(d) shows the average values of the σx and σz operators for the ground
state.

large as ∼34 T. The application of an in-plane magnetic field
[Fig. 2(d)] slowly tilts the spins to the x direction [see the inset
in Fig. 2(d)].

B. Three electrons in a quadruple quantum dot for tSO = 0

For a single circular quantum dot the single-electron
ground state corresponds to an angular momentum quantum
number 0 for the wave-function component on sublattice A
and ±1 on sublattice B [28]. In consequence, the charge den-
sity in a single quantum dot corresponds to a maximum and a
zero of the charge density in the centers of the quantum dots
on the A and B sublattice, respectively. The single-electron
properties are consistent with the charge density distribu-
tion for three interacting electrons with well-separated wave
functions—see Figs. 1(e) and 1(f) for the centers of potential
minima distributed on a square with a side length of X = 11.7
nm. The wave-function component on the B sublattice is less
strongly localized and thus it mediates the interdot tunneling
to a stronger extent.

(a) (b)

(c) (d)

FIG. 3. Three-electron energy levels for the quadruple quantum
dot as calculated within (a), (c) TB and (b), (d) FEM. The results
in (a) and (c) are obtained for Bx = 0 and in (b) and (d) for Bz =
10 mT. The spin-orbit interaction is neglected (tSO = 0). The color
scale in (a), (c) and (b), (d) indicates the z component of the spin and
the valley isospin component, respectively. The centers of the four
quantum dots are placed on the corners of a square with a side length
of X = 11.7 nm.

1. Nagaoka valley ordering

The three-electron spectrum is given in Fig. 3(a) (TB) and
in Fig. 3(b) (FEM). The results of the two approaches agree
very well up to a relative shift of the entire spectra on the
energy scale of a few meV. In the results of the atomistic
approach we plot the energy levels with colors indicating the
total spin z or x component. On the energy levels calculated
with FEM we mark by the color of the lines the total valley
isospin component for the three electrons.

The three-electron ground state at Bz = 0 is fourfold de-
generate. The degenerate energy levels correspond to the
eigenvalue of the Sz = 1

2

∑3
i=1 σ i

z component of the total spin
± 1

2 and the z component of the total valley isospin of �KK ′ =
1
2

∑3
i=1 ηi

z equal to ± 1
2 . The ground state is not polarized in

either the spin or the valley. The first excited state is 16-fold
degenerate. The energy levels that are degenerate at Bz = 0
correspond to the total valley index �KK ′ = − 3

2 ,− 1
2 , 1

2 , 3
2 and

the z components of the spin Sz = − 3
2 ,− 1

2 , 1
2 , 3

2 .
Nagaoka ferromagnetism was observed [5] in a quadru-

ple quantum dot defined in GaAs, with three electrons per
eight available spin orbitals. In the silicene system we have
16 available spin-valley orbitals due to the additional valley
degree of freedom. One can try to eliminate the spin degree of
freedom and reduce the number of equivalent states to eight by
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(a) (b)

FIG. 4. Same as Figs. 3(a) and 3(b) only with an in-plane mag-
netic field Bx = 20 T. (a) shows the TB results and (b) the FEM ones.
The centers of the four quantum dots are placed on the corners of a
square with a side length of X = 11.7 nm and tSO = 0.

applying a strong magnetic field to freeze the spin degree of
freedom. The application of the perpendicular magnetic field
lifts the valley degeneracy [Fig. 2(a)] that would eventually
lead to the valley polarization by the external field. Here, we
want to preserve the valley degeneracy in order to study the
electron-electron interaction triggering the valley polarization.
For that reason we choose to apply the in-plane field that
interacts only with the spin and not the valley of confined
states [Fig. 2(b)]. The results are given in Figs. 3(c) and 3(d)
with a residual Bz = 10 mT applied to slightly split the energy
levels for visualization. The states that are spin polarized in
the −x direction for all valley configurations are promoted to
the lower energy by the Bx field.

The structure of the low-energy spectrum spin polarized
by a strong Bx field is revealed once a weak Bz field is ad-
ditionally applied. In Fig. 4 we set Bx = 20 T and calculate
the energy levels as functions of Bz. In the applied range of
Bz � 0.3 T the spins remain nearly perfectly polarized in the
−x direction. The ground state at Bz = 0 is fourfold degen-
erate with the valley isospin component that takes values − 3

2 ,
− 1

2 , 1
2 , and 3

2 . This structure of the ground-state energy level is
a valley-ordered counterpart of a spin-polarized three-electron
state with a total spin quantum number S = 3

2 . In the excited
part of the spectrum in Fig. 4 we find a number of valley
nonpolarized states forming doublets at Bz = 0 with the valley
isospin equal to ± 1

2 . By analogy to the spin degree of freedom
we attribute the total valley isospin quantum number V = 3

2
to the fourfold-degenerate state with the isospin component
�KK ′ changing from −V to V with steps of 1. The doublets
thus correspond to V = 1

2 with the components �KK ′ = ± 1
2 .

The Nagaoka polarization of the ground state appears due
to the interdot electron tunneling and thus it is determined by
the system geometry. In order to study the valley polarization
we kept Bx = 20 T and varied the positions of the centers of
the dots. We define �E31 as the energy difference between the
lowest valley-polarized state with V = 3

2 and the lowest non-
polarized state with a V = 1

2 state. �E31 < 0 corresponds to
the Nagaoka ordered valley in the ground state. The black line
in Fig. 5 shows the result as a function of X—the side length of
the square on which the centers of the dots are placed (Fig. 1).

0

 100

 200

 300

V A
 (m

eV
)

FIG. 5. The black lines show the energy difference (FEM) be-
tween the lowest valley-polarized and nonpolarized states for Bx =
20 T and tSO = 0 as a function of the side length of a square on
which the centers of the four quantum dots are placed. The red line
shows the results obtained for X = 11.7 nm, which corresponds to
the most stable valley-polarized ground state as a function of a shift
�x of the y position of the quantum dot localized in the first quadrant
of the Cartesian coordinate. The insets show the potential on the
A sublattice for X = 11.7 nm and �X = 0 (left) and �X = 4 nm
(right). The same scale for VA is applied for both sublattices. The
frame in the insets has a length of 60 nm.

The valley-polarized ground state is found for X � 10.5 nm.
The polarized ground state is most stable for X = 11.7 nm
that was selected for plots in Figs. 1(e), 1(f) 3, and 4. For
low values of X the four quantum dots become more strongly
tunnel coupled and they eventually are transformed to a single
quantum dot for which the ground state is not polarized. In the
limit of large X the interdot tunneling is negligible. Once the
electrons are separated and their hopping between the dots is
removed, the valley isospin has no influence on the energy for
Bz = 0, hence the degeneracy of V = 3

2 and V = 1
2 states at

large X .
Reference [5] found that the ground-state spin ordering

vanishes when the array of dots is deformed to approach
the limit of a quantum dot chain. For a chain of dots [39]
the Lieb-Mattis theorem [40,41] excludes spin polarization
of the ground state. Here, we looked for a similar effect in
the valley degree of freedom. We fixed the value of X to
11.7 nm and moved the quantum dot localized in the first
quadrant of the coordinate system (x > 0, y > 0, see the insets
in Fig. 5), shifting its center by �X in the y direction. The
results are displayed in Fig. 5 by the red line. The shift by
�X 
 0.75 nm makes the valley-polarized and nonpolarized
states degenerate. For �X � 2.1 nm the value of �E31 is more
or less inverted from the �X = 0 case.

2. Intervalley scattering effects

The intervalley scattering can appear as (i) a single-
electron effect triggered by the armchair edge [22] of the
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(a) (b) (c)

FIG. 6. Enlarged low-energy part of the spectra for parameters
of Fig. 4 for the side length of the hexagonal silicene flake of length
(a) 20.5 nm, (b) 23 nm, and (c) 25 nm as calculated with the atomistic
method.

flake and (ii) as an interaction effect due to the short-range
component of the Coulomb potential [23–25].

The effect (i) can be observed for a smaller flake, when
the tails of quantum-dot-confined wave functions tunnel to
the armchair edge that induces intervalley mixing. Figure 6
shows a zoom of the low part of the spectra for parameters
applied in Fig. 4 with the side length of the flake of 20.5 nm
[Fig. 6(a)], 23 nm [Fig. 6(b)], and 25 nm [Fig. 6(c)]. The
valley mixing due to the edge effect lifts the degeneracy at
Bz = 0 and opens avoided crossings between energy levels
that in the continuum approach correspond to different valley
isospin quantum numbers [compare with Fig. 4(b)]. For strong
intervalley mixing the dependence of the energy levels of Bz

deviates from linear, in particular near Bz = 0.
The effect (ii) is not triggered when the electrons occupy

separate quantum dots. In this case only the long-range tail of
the Coulomb potential is resolved by carriers.

In Fig. 7 we plotted the results for quantum dot centers
placed at the corners of the square of side length X = 10
nm. For these parameters the valley ordering is no longer
observed in the ground state (see Fig. 5). In Fig. 7 we can see
that the agreement between the two methods is no longer as
perfect as above. In particular, the valley-ordered quadruplet is
found here only by the continuum approach but in the TB the

(a) (b)

FIG. 7. Same as Fig. 4 only with the interdot distance decreased
to X = 10 nm.

(a) (b)

FIG. 8. Same as Fig. 4 only with tSO = 3.9 meV, Bx = 0. The
color scale in (a) now shows the z component of the spin.

quadruplet is split into two doublets. The two-electron levels
splitting by the intervalley scattering due to the electron-
electron interaction was discussed in detail in Ref. [28] for
an electron pair in a single quantum dot [see Figs. 4(a) and
4(b) in Ref. [28]].

We conclude that, in the parameter range where Nagaoka
ordering is found, the intervalley scattering by the Coulomb
interaction is negligible or missing for a system geometry for
which Nagaoka valley ordering appears.

C. Nagaoka polarization in the presence of a spin-orbit
interaction

Figure 8 shows the spectra for X = 11.7 nm and tSO =
3.9 meV in the absence of an in-plane field Bx = 0. The
pattern of energy levels is similar to the one found in Fig. 4
for tSO = 0 and Bx = 20 T. For tSO = 3.9 meV and B = 0 a
single dot hosts a twofold-degenerate ground state [Figs. 2(c)
and 2(d)] with opposite spin and valley isospin components
ησz = −1. This pattern of energy levels replaces the valley-
degenerate ground state with η = ±1 found for tSO = 0, Bz =
0, and a strong in-plane field that freezes the spin found for
Fig. 2(b). In these two above cases the Coulomb integrals
between the single-electron states in the low-energy part of
the spectrum are similar, hence the agreement of the three-
electron spectra in Figs. 8 and 4. In the presence of an intrinsic
spin-orbit interaction there is a perfect anticorrelation between
the Sz and �KK ′ quantum numbers [Figs. 8(a) and 8(b)]. All
the information on the eigenstates is therefore redundantly
included in the spin and valley sets of quantum numbers.

D. Detection of polarized states

The confined spectra including the low-energy excited
states can be studied with the transport spectroscopy that was
developed for GaAas quantum dots [42] and more recently
applied to graphene quantum dots [43,44] or carbon nanotubes
[17,45]. The spin-valley structure of the spectrum can be ex-
tracted from the degeneracy and slopes of the energy levels
[17,46] in an external magnetic field that can be measured
with a precision of several μeV [46]. Besides the energy level
dependence on the external magnetic field, the detection of
the ground-state spin polarization is performed in experiments
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on multiple quantum dots using the confinement potential
variation [5,47,48]. The confinement potential is first fixed
for a time long enough for the electron system to relax to the
ground state. Next, the potential undergoes a change [5,47,48]
such that after the sweep the ground state corresponds to two
electrons in one of the dots. The change is applied diabatically,
i.e., faster than the spin or valley relaxation time. The ground
state with a double occupancy of a quantum dot can only be
occupied provided that initially the electrons are not polar-
ized, otherwise the double occupancy is forbidden by Pauli
exclusion (valley-spin blockade [45]). The charge of the dots
is monitored by on-chip charge sensors [5,47,48].

For the study of charge redistribution we take the system
considered in the preceding section and generalize the poten-
tial of Eq. (2) in order to cover the confinement variation,

Vk (rk ) =
{−Vg

∑4
i=1

[
exp

( − r2
ik/R2

) − 1
]
/αi on A,

−Vg
∑4

i=1

[
exp

( − r2
ik/R2

) + 1
]
/αi on B,

(9)

where we take αi = α for the three dots localized at x < 0 or
y < 0 leaving αi = 1 for the dot of the first quadrant.

The charge localized in each quadrant for the lowest-
energy spin-valley-polarized state and the lowest-energy
unpolarized state for B = 0 are displayed in Fig. 9(a) as a
function of α. The square of the charge density is plotted in
Fig. 9(b). For α = 1 we have 3/4 electron charge per quantum
dot in both polarized and unpolarized states. A difference in
the charge distribution can only appear when the potential
symmetry is lifted. As α is increased from 1, the dots on the
left-hand and lower side of the cluster are made shallower.
The reaction of the charge in both the states is at first similar
as α is increased from 1. The upper-right-hand dot captures
an entire electron charge at the expense of the other dots.
Moreover, the unpolarized state becomes the ground state
for α � 1.028. Polarization removal from the ground state is
consistent with the results for the deformed cluster of dots (see
Fig. 5). As α is increased further in the unpolarized state, a
second electron starts to occupy the dot of the first quadrant
and simultaneously the charge of the opposite dot is increased
to minimize the interdot electron-electron interaction energy.
A double occupancy of the dot is forbidden for the polarized
state and its charge distribution does not change much when α

is increased above 1.1. In order to detect the initial spin-valley
polarization one needs to diabatically sweep α from 1 to, i.e.,
2.5, and next measure the charge localized in the dot of the
first quadrant. The procedure should also be useful for the
determination of the spin and valley relaxation times.

IV. SUMMARY AND CONCLUSIONS

We studied a system of three electrons in a square cluster
of quantum dots defined within a material that provides a
valley degree of freedom to the confined single-electron states
using the continuum approach that allows for identification
of the valley isospin in the atomistic TB spectra. We found
that the Nagaoka-type polarization of the valley in a system
without intrinsic spin-orbit coupling is found in conditions
when the spin degree of freedom is frozen by an in-plane
magnetic field. A nonpolarized ground state is promoted when
the spatial symmetry of the cluster is lifted by a shift of

(a)

(b)

FIG. 9. (a) Charge localized in the upper-right-hand (x > 0, y >

0) quadrant (Q + +), the lower-left-hand (x < 0, y < 0) quadrant
Q − −, and in the other quadrants Q± (x < 0, y > 0) or (x > 0, y <

0), as a function of the divisor α which lowers the confinement
potential in the left and lower quadrants x < 0 or y < 0 [see Eq. (2)
for the lowest-energy spin-valley-polarized state (red lines) and the
lowest-energy unpolarized state (black lines)]. The blue line shows
the energy (FEM) difference between the polarized and unpolarized
levels (�E31 right axis). (b) Square root of the charge density for the
lowest polarized and unpolarized energy levels. The side of the each
square plot is 34 nm long. Parameters are the same as in Sec. III C.

one of the quantum dots that transforms the cluster toward
a chain of quantum dots. In the presence of intrinsic spin-
orbit coupling the spin-valley polarization is observed along
with the perfect anticorrelation of the spin and valley isospin
components already in the absence of an external magnetic
field. The pattern of the energy levels near the ground state for
systems with and without spin-orbit coupling is very similar
provided that a strong in-plane magnetic field is applied to the
latter. The spontaneous ground-state valley polarization in the
system can be harnessed for studies of valley manipulation in
multiple quantum dots. The Nagaoka valley polarization can
be detected by charge conversion using the Pauli blockade of
the double occupancy of a quantum dot.
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