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Formation and detection of Majorana modes in quantum spin Hall trenches
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We propose a novel realization for a topologically superconducting phase hosting Majorana zero modes on the
basis of quantum spin Hall systems. Remarkably, our proposal is completely free of ferromagnets. Instead, we
confine helical edge states around a narrow defect line of finite length in a two-dimensional topological insulator.
We demonstrate the formation of a new topological regime, hosting protected Majorana modes in the presence
of s-wave superconductivity and Zeeman coupling. Interestingly, when the system is weakly tunnel coupled to
helical edge state reservoirs, a particular transport signature is associated with the presence of a non-Abelian
Majorana zero mode.
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I. INTRODUCTION

The theoretical prediction [1–3] and experimental real-
ization [4] of two-dimensional (2D) topological insulators
marked the beginning of immense research activities in view
of their functionalities in spintronics [5–10] and topological
quantum computation [11]. In particular, the formation and
detection of topological superconductivity on the basis of
topological systems attracted a lot of attention [12–18] and the
emergence of topologically protected Majorana bound states
came to the forefront of research [19]. The interest in those
excitations is both fundamental and practical, since they obey
non-Abelian statistics [20–22] and, hence, can potentially be
used for topological quantum computation. Regarding the
realization of topologically confined Majoranas using topo-
logical insulators, the possibility of inducing superconducting
pairing [23] is promising. However, most proposals rely on
the coexistence of ferromagnetic ordering [13,24–26], which
turns out to be difficult to achieve in the laboratory.

In parallel, another platform for topological superconduc-
tivity was found by the prediction of Majorana zero modes
in spin-orbit coupled quantum wires [27,28]. Subsequently,
several experimental works were able to confirm some of the
proposed signatures [29–31]. However, the ultimate proof of
the existence of Majoranas is probably still missing.

In this work, we propose a hybrid structure that combines
the features of topological edge states and spin-orbit cou-
pled quantum wires. The system we investigate—a quantum
spin Hall (QSH) antiwire—defines itself through a narrow
slit in a two-dimensional topological insulator (see Fig. 1).
This system shares similarities with QSH quantum point con-
tacts, recently realized in the laboratory [32], for which the
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formation of Kramers pairs of Majorana fermions and other
complex anyons were proposed [33–37]. We demonstrate be-
low that the QSH antiwire, in the presence of s-wave pairing
and Zeeman coupling, possesses a topological phase hosting
Majorana end modes. This phase emerges if the slit is narrow
enough such that the edge states at opposite sides overlap.
This setup offers two interesting features: (i) the emergence
of Majorana modes within a two-dimensional topological in-
sulator makes it straightforward to couple them to topological
edge channels, whose helical nature allows for richer trans-
port signatures than a standard tunneling probe. In particular,
in the multiterminal conductance G1→2 = dI2/dV1, between
contacts 1 and 2 of Fig. 1(a), we identify a qualitative Ma-
jorana signature beyond the well-known zero-bias peak: The
presence of a Majorana-like state at zero energy gives rise to a
negative G1→2, which is otherwise positive. (ii) In addition,
our setup can be easily scaled up by carving several slits
within the same topological insulator. The resulting collection
of localized Majorana modes, which can be manipulated by
tuning their pairwise couplings via top gates, would represent
a convenient playground for topological quantum computa-
tion applications.

The paper is organized as follows. In Sec. II we discuss the
topological properties of narrow QSH trenches. Subsequently,
in Sec. III, we investigate the formation of topologically pro-
tected Majorana modes associated with the topological phase.
This is followed by a discussion of possible transport signa-
tures in Secs. IV, V, and VI. Finally, we conclude in Sec. VII,
where we summarize the results.

II. TOPOLOGICAL PHASE TRANSITION
IN THE ANTIWIRE

The setup we propose is sketched in Fig. 1(a). Its inno-
vative ingredient is a long quantum constriction between two
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FIG. 1. Quantum spin Hall antiwire. (a) Schematic illustration
of the system: A QSH antiwire, covered by a s-wave superconductor
under the influence of a magnetic field weakly coupled to helical
edge states at the boundary of the QSH stripe. (b) Sketch of the QSH
constriction with the appearing scattering terms.

metallic edges of a quantum spin Hall insulator depicted in
Fig. 1(b). To compute its topological properties, we first con-
sider the limit of an infinitely long constriction. The kinetic
energy can be described by the effective Hamiltonian density
(h̄ = 1)

Hp =
∑
ν,σ

ψ̂†
ν,σ (x)(−ivF σν∂x − μ)ψ̂ν,σ (x), (1)

where ψ̂ν,σ (x) are annihilating fermionic fields carrying
spin index σ ∈ {↑,↓} = {+,−} and edge index ν ∈ {1, 2} =
{+,−}; μ acts as a chemical potential and vF is the Fermi
velocity (estimated to be (105–106)m/s for QSH systems
based on Hg(Cd)Te quantum wells [38]). We assume a finite
overlap of wave functions from states at different sides of
the antiwire. In presence of time-reversal (TR) symmetry, two
single-particle terms emerge [35,39–42]

Ht0 = t0
∑

σ

[ψ̂†
1,σ (x)ψ̂2,σ (x) + H.c.], (2)

Htc = tc
∑

ν

[νψ̂
†
ν,↑(x)ψ̂−ν,↓(x) + H.c.]. (3)

While Eq. (2) describes a hybridization of fermionic states
with the same spin associated to different sides of the slit and
does not require further symmetry breaking with respect to
Hp, Eq. (3) is only finite if axial spin symmetry is absent and
takes the role of an effective spin-orbit coupling across the
slit [43]. The spectrum associated with H0 = ∫ +∞

−∞ dx [Hp +
Ht0 + Htc ] is shown in Fig. 2(a). The additional application of
a Zeeman field perpendicular to the x direction opens a partial
gap around k = 0. For concreteness, we consider a field along
the z direction

HB = Bz

∑
ν,σ

σ ψ̂†
ν,σ (x)ψ̂ν,σ (x). (4)

The gyromagnetic factor for the edge states is predicted to be
g ∼ 10 [44] for typical QSH materials. Moreover, the typical
values for the effective electron mass in HgTe quantum wells
[45] indicate that indeed a situation similar to hybrid systems
based on spin-orbit nanowires is met [46]. This implies re-
quired magnetic fields of the order of few mT, compatible
with the presence of superconductivity.

FIG. 2. Topological phase diagram of the proximitized antiwire.
(a) Eigenenergy spectrum of H0. The different colors represent states
with orthogonal spin with tc = t0. (b) Phase diagram as function
of μ and Bz (under the choice t0 = tc = 1, �/t0 = 0.3, vF = 1).
(c) Dependence of the topological phase on tc. The different curves
correspond to gap closures for tc/t0 = 0.2, 0.4, 0.6, 0.8, 1.0 (red to
blue), � = 0.3t0, t0 = 1, vF = 1. (d) Dependence of the topological
phase on t0. The curves correspond to to gap closures for t0/tc =
0.2, 0.4, 0.6, 0.8, 1 (red to blue), �/tc = 0.3, tc = 1, vF = 1.

The resulting band structure shares similarities with spin-
orbit nanowires under the influence of magnetic fields. It can
hence be expected that topological physics emerges when s-
wave superconductivity is taken into account via

H� = �
∑

ν

[ψ̂†
ν,↑(x)ψ̂†

ν,↓(x) + H.c.]. (5)

Typical values for the proximity induced superconducting
order parameter � are given by � ∼ 40μeV in HgTe-based
systems [23]. Indeed, the infinitely long antiwire described
by H0 + ∫ +∞

−∞ dx [H� + HB] undergoes a topological phase
transition, indicated by a gap closing and reopening depending
on the control parameters μ and Bz [see Fig. 2(b)]. Since the
coupling strength tc in Eq. (3) effectively takes the role of a
spin-orbit coupling, as long as it is nonzero, it hardly affects
the topological parameter regime [see Fig. 2(c)]. However, it
controls the magnitude of the gaps in the topological regime
and therefore the decay length of possible low-energy bound
states in the presence of boundaries. By contrast, Eq. (2)
has less influence on the magnitude of the gaps, but strongly
affects the shape of the topological regime [Fig. 2(d)]. While
a concrete estimation of the magnitude of t0 is difficult, it is
clear that it can be tuned, up to the magnitude of the bulk gap,
by reducing the width of the slit [47].

III. TOPOLOGICALLY PROTECTED MAJORANAS

To investigate the presence of topological bound states, we
now focus on a slit with a finite length L. It is convenient to
consider the additional Hamiltonian density

HT = T [δ(x)+δ(x−L)]
∑

σ

[ψ̂†
1,σ (x)ψ̂2,σ (x)+H.c.], (6)
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which describes the presence of barriers at x = 0 and x =
L. Indeed, in the limit T → ∞, the Hamiltonian HAW =
limT →∞

∫ L
0 dx [Hp + Ht0 + Htc + HB + H� + HT ] defines

an isolated antiwire in the region x ∈ [0, L], whose fermionic
fields obey the open boundary conditions (BCs) (see also
Appendix A) [48,49]

ψ̂1,↑(x) = iψ̂2,↑(−x),
ψ̂2,↓(x) = iψ̂1,↓(−x),

(7)

where ψ̂ν,σ (x) = ∑
q ψν,σ,q(x)ĉq with annihilation operators

ĉq and the quantization condition q = (π/L)(n − 1/2). We
hence obtain

HAW =
∫ L

−L
dx 	̂†(x)[−ivF ∂x + τzσzBz + τzσ0μ

+ τzσx sign(x)tc]	̂(x)

−
∫ L

−L
dx 	†(x)[τxσy� + i sign(x)t0]	̂(−x), (8)

where τ j , σ j ( j ∈ {x, y, z}) are Pauli matrices acting
on particle hole, spin space, respectively, and 	̂(x) =
(ψ̂1,↑(x), ψ̂2,↓(x), ψ̂†

1,↑(x), ψ̂†
2,↓(x))T . Our goal is to deter-

mine the eigenfunctions Uε (x) of the Hamiltonian density in
Eq. (8). We can overcome its nonlocality with the ansatz

Uε (x) = uε (x)θ (x) + vε (−x)θ (−x), (9)

where uε (x) and vε (x) are spinors in the given basis. From the
continuity of the solutions Uε (x) at x = 0 as well as from the
antiperiodicity of the system with respect to 2L, the solution
needs to obey the BCs uε (0) = vε (0) and uε (L) = −vε (L).
The single-particle problem associated with Eq. (8) becomes
equivalent to the set of equations for the functions uε (x) and
vε (x) and the eigenenergies ε

[−ivF ∂xszτ0σ0 + s0τzσzBz + s0τzσ0μ + szτzσxtc

−sxτxσy� + syτ0σ0t0]χε (x) = εχε (x), (10)

where we define the basis function χε (x) = (uε (x), vε (x))T

and the Pauli matrices s j acting on the space spanned by uε (x)
and vε (x). The general solution of Eq. (10) can be found by
integration

χε (x) = Mε (x, x0)χε (x0), (11)

where

Mε (x, x0 = exp

[ ∫ x

x0

dx′ i

vF
szτ0σ0

(
ε − (s0τzσzBz

+s0τzσ0μ + szτzσxtc − sxτxσy� + syτ0σ0t0)
)]

.

(12)

Not every energy ε is compatible with the BCs. For the topo-
logical phase, however, in the limit L → ∞ there should be a
decaying solution for ε → 0 of the form �(0) = (ζ (0), ζ (0))T

(fulfilling the BCs at x = 0). Thus, in this limit, Eq. (11) turns
into an eigenvalue problem for ζ (0) of the form

lim
L→∞

M0(L, 0)�(0)
!= 0. (13)

FIG. 3. Majorana wave functions at the antiwire ends. (a) λM

(yellow) and δ�λM (blue) as a function of L. (b) |U0(x)|2 according to
Eq. (9) with U0(0) = νλ. (c) Schematic illustration of the probability
distribution in the (folded) antiwire. The parameters of the calcula-
tion are: B/t0 = 0.6, μ/t0 = √

2, �/t0 = 0.3, tc = t0 = 1, vF = 1.

If we further demand the solution to be a Majorana, we require
ζ (0) = ( f (0), g(0), f ∗(0), g∗(0)). Note that demanding a Ma-
jorana from of �(0) implies this form to remain for any other
point x because of the particle-hole symmetry of M0(x, x′).
For finite L, Eq. (13) does not hold anymore. However, we find
that an approximate Majorana solution exists, i.e., M0(L, 0)
possesses an eigenvalue λM ∼ exp(−αL) whose correspond-
ing eigenvector νλM fulfills the BC at x = 0 and deviates
by δ�λM = 1

2 ||s0(1 − τxσ0)Re[νλM ]+s0(1 + τxσ0)Im[νλM ]|| ∼
exp(−βL) (α, β ∈ R) from the Majorana form [see Fig. 3(a)].
The probability density associated to the wave function is
shown in Figs. 3(b) and 3(c).

IV. TRANSPORT CHARACTERIZATION

Since the Majorana modes are naturally embedded into a
two-dimensional topological insulator, it is straightforward to
bring them in proximity to other boundaries of the sample.
In particular, as shown in Fig. 1(a), it is possible to develop
a weak tunnel coupling between the ends of the antiwire and
gapless helical edges. The latter, which feature up to μm-size
mean-free paths in high-quality HgTe-based QSH systems
[50], can be used as probes to perform particular transport
measurements, taking advantage of their helical nature. In
order to study the transport, we consider the amplitude T in
Eq. (6) to be finite. The Hamiltonian of the whole system (i.e.,
antiwire and helical probes) thus reads

Hset =
∫ +∞

−∞
dx[Hp+HT ]+

∫ L

0
dx [Ht0 + Htc + H� + HB],

(14)
where the kinetic terms for x < 0 and x > L describe the two
outer helical edges.

We discuss two distinct transport schemes. The first one
aims at obtaining the two-terminal conductance. In this sce-
nario, contact 1 and 2 (3 and 4) of Fig. 1(a) are treated as one
lead, say 12 (34). Then, we have

G2t = dI12

dV12
, (15)
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FIG. 4. Transport measurements. (a) Two-terminal conductance as function of energy ε and Zeeman field Bz. (b)–(c) Multiterminal
conductance between contacts 1 and 2 with respect to Fig. 1(a), as a function of μ and Bz (b), ε and Bz (c), respectively. In (b), all values
G1→2 > 0 are colored in blue. In (c), all values G1→2 < 0 are colored in red. Other parameters of the plots are: L = 20h̄vF /t0, �/t0 = 0.3,
μ/t0 = √

2 [(a) and (c)], ε = 0 (b), t0 = tc = 1 vF = 1. For computational reasons, the delta distribution separating the anti-wire from the
leads is replaced with its step function approximation δa(x) = rect(x/a)/a with a = 0.1. Moreover, T = 1.5 for (a)–(b) and T = 2 for (c).

where I12 is the current exiting terminals 1 and 2 [see Fig. 1(a)]
and V12 is their common bias with respect to the grounded
superconductor. In this scheme, the two terminals and the
helical edge connecting them thus act as a single tunneling
probe. For small bias, we calculate G2t in terms of elements
of the corresponding scattering matrix [51]

G2t = e2

2π

[
2 +

∑
j∈1,2

[∣∣reh
12, j

∣∣2 − ∣∣ree
12, j

∣∣2]]
, (16)

where reν
12, j are normal (ν = e) and Andreev reflection am-

plitudes (ν = h) in lead 12 in edge j. The elements of the
scattering matrix are computed by integration of Hset. Fig-
ure 4(a) shows the two-terminal conductance G2t as a function
of excitation energy ε and applied Zeeman field Bz. Whenever
an antiwire bound state is on resonance, a peak in the two-
terminal conductance emerges. As expected, the Majorana
clearly manifests itself with a strong zero-energy peak, whose
properties have been extensively studied in the literature. Im-
portantly, such a signature is not exclusively associated with
the presence of Majoranas and it is thus not sufficient as a
proof for their existence [52–58].

In order to go beyond the simple zero-bias peak, we devise
a different transport scheme, which exploits the helical nature
of our tunneling probe. In particular, we consider the multiter-
minal conductance between contacts 1 and 2 [see Fig. 1(a)],
which reads

G1→2 = dI2

dV1
= e2

2π

[∣∣t ee
2

∣∣2 − ∣∣t eh
2

∣∣2
]
. (17)

Importantly, G1→2 can either take positive or negative values,
depending on which scattering process dominates: electron
tunneling or crossed Andreev reflection. In the following, we
demonstrate that a negative signal at zero energy can be unam-
biguously associated with the presence of a Majorana bound
state. This statement is supported by Figs. 4(b)–4(c), which
show that, when the antiwire is in the topological phase and
features Majoranas at its ends, the multiterminal conductance
G1→2 at zero energy is indeed negative. Moreover, Fig. 4(c)
shows that the negative signal (highlighted in red) is promi-

nently seen at zero energy. There are, however, also isolated
scattering events at nonzero energy with the same property.
To better understand which additional information about the
system can be deduced from the multiterminal conductance,
with respect to two-terminal transport, we investigate a sim-
pler (toy) model, which still describes the essential physics.
This allows us to properly clarify the meaning of a negative
multiterminal conductance.

V. NEGATIVE MULTITERMINAL CONDUCTANCE AND
THE EXISTENCE OF MAJORANA MODES

Our goal is twofold: (i) We want to prove that the presence
of a Majorana scatterer always leads to a negative multiter-
minal conductance G1→2. (ii) We want to clarify under which
circumstances the measurement of a negative G1→2 represents
an unambiguous signature of the existence of a Majorana
mode.

We consider the simple model sketched in Fig. 5(a). It
consists of a single helical edge described by the Hamiltonian
density

H(ν=1)
p =

∑
σ

ψ̂
†
1,σ (x)(−ivF σ∂x − μ)ψ̂1,σ (x), (18)

FIG. 5. Majorana scatterer on the helical edge. (a) Schematic
illustration of a Majorana mode γ1 side coupled to a helical edge.
(b) Multiterminal conductance as a function of energy ε with vF = 1,
t↑ = 1.2t↓ and t↓ = 0.2 and εd/t↓ = 0, 1 (blue, orange).
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which connects the leads 1 and 2. At x = 0, it is tunnel
coupled with a single Majorana scatterer γ̂1 = d̂ + d̂† via

Hc =
∑

σ

tσ [γ̂1ψ̂1σ (0) + H.c.]. (19)

The spin-dependent coupling constants tσ accounts for the
spin texture of the Majorana mode [59,60]. We consider a
second Majorana mode γ̂2 = id̂ − id̂†, which is not directly
coupled to the helical edge but can (weakly) hybridize with
γ̂1 via Hd = −iεd γ̂1γ̂2. To determine the transport properties
according to Eq. (17), we need to compute the scattering
matrix of the system [61] (see Appendix B). We obtain the
analytical results

t eh
2 = − t2

↑
t2
↑ + t2

↓+ivF
(
ε2

d − ε2
)
/ε

, (20)

t ee
2 = −1 − t eh

2 , (21)

where ε is the energy at which the scattering process takes
place. For ε sufficiently close to ±εd , we find that t↑ > t↓
implies G1→2 < 0. By contrast, we can show that t↑ < t↓
leads to G1→2 > 0 but G2→1 < 0 (see Appendixes B and C).
Hence, as long as the Majorana has a spin texture, which is not
polarized perpendicular to the spin quantization axis z, one of
the two multiterminal conductances G1→2 or G2→1 have to be
negative.

This is confirmed by Fig. 5(b), which shows G1→2 for
t↑ = 1.2t↓. Without hybridization (blue line) the negative sig-
nal is centered around the Majorana energy ε = εd = 0. The
width of the dip is controlled by the magnitude of the coupling
constant. Even in presence of a finite hybridization energy
εd > 0 (orange line), the negative conductance is still present
and centered around ε = ±εd . Importantly, we observe that
in the antiwire, the interplay between the competing Zeeman
field HB and the spin-flipping scattering Htc guarantees that
the Majoranas do not feature a spin texture perpendicular
to the z axis. Therefore, we conclude that the presence of
an isolated Majorana in the antiwire necessarily leads to a
negative multiterminal conductance.

We now discuss the opposite implication, eventually show-
ing that a negative signal at zero energy represents an
unambiguous signature of a Majorana mode. To this end, we
need to consider the coupling of the helical edge with a more
general particle-hole-symmetric system S. The latter, de-
scribed by the Hamiltonian HS , features several single-particle
eigenstates |ζ j〉 with energy ε j . As sketched in Fig. 6(a), we
consider the pointlike tunneling at x = 0 between the edge
and a specific fermionic site of S, which we denote c1. If
we restrict our attention to a specific energy level εα , its
effect on the multiterminal conductance can be computed by
considering the effective system Hamiltonian H (α)

S = εαd†
αdα

and the effective tunneling Hamiltonian

Ht =
∑

σ

tσ
[(

ζ
(e)∗
α,1 d†

α + ζ
(h)
α,1dα

)
ψ1σ (0) + H.c.

]
, (22)

where the coefficient ζ
(e)
α,1 (ζ (h)

α,1) represents the particle (hole)
component of the state |ζα〉 on site c1. As before, the
spin-dependent tunneling amplitudes tσ effectively take into
account the (possible) spin texture of the state |ζα〉. A care-
ful demonstration of the validity of Eq. (22) is provided in

FIG. 6. Generic scatterer on the helical edge. (a) Schematic
illustration of the coupling between the helical edge and the particle-
hole-symmetric system S. (b) Conductance G1→2 for εα = 0, as a
function of ξ and ε. Only negative values of G1→2 are shown. The pa-
rameters are t↑ = 1.2t↓ with t↓ = 0.2. (c) Multiterminal conductance
G1→2 for the coupling to a generic eigenstate of a PHS system on
resonance ε = εα , as a function of ξ . The different lines correspond
to εα/t↑ = 2, 0.2, 0.02, and 0.002 (blue to red). Further parameters
are t↓ = 3/5t↑ with t↑ = 0.5.

Appendix D, where we explicitly consider the system S as a
Kitaev chain. We parametrize

ζ
(e)
α,1 = ϒ1 cos(ξ ) (23)

ζ
(h)
α,1 = ϒ1 sin(ξ ), (24)

neglecting a possible complex phase, which has no effect on
the results. The parameter ϒ1 characterizes which fraction of
the eigenstate |ζα〉 is localized on the site c1 and its only effect
is to renormalize the coupling constants. As for ξ , it controls
whether such a fraction is more electronlike or holelike. In
particular, for ξ = 0, Ht describes the coupling of the helical
edge with an electronic state while, for ξ = π/4, it describes
the coupling with the Majorana considered in Eq. (19).

The multiterminal conductance G1→2 associated with the
effective tunneling Hamiltonian Ht is plotted in Figs. 6(b),
6(c). Close to resonance ε � εα , the multiterminal conduc-
tance is negative provided that ξ is sufficiently close to the
Majorana case, i.e., |ξ − π/4 (mod π )| � ξ̄ . The threshold ξ̄ ,
depends on the detuning (ε − εα )/t↓ as well as on the energy
of the eigenstate εα/t↓. In general, ξ̄ is not particularly small
and the multiterminal conductance can be negative even for
values of ξ , which significantly differ from the Majorana case.
See, for example, the blue lines in Fig. 6(c). This justifies the
presence of isolated red spots in Fig. 4(c) at high energies,
even when the presence of Majorana is not expected. Impor-
tantly, however, for εα = ε → 0, the threshold goes to zero
ξ̄ → 0. In this case, a negative multiterminal conductance
provides a unambiguous signature of the Majorana mode.
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FIG. 7. Conductance G1→2 for the discussed toy models in the
presence of TR breaking backscattering: (a) Schematic of the dis-
cussed system. (b) Comparison between TR invariant (purple) and
TR breaking (blue to green) transport in a helical edge, side coupled
to a Majorana. The TR breaking parameter is given by Bx/t↑ = 1.25,
2.5, 3.75, 6 (blue to green) with μ/t↑ = 5 and εd = 0. Note that
for Bx/t↑ = 6, we have Bx > μ, which implies that no propagating
modes are present for small ε. (c) G1→2 for side coupling a generic
BdG state at energy εα = 0 in dependence of the parametrization
parameter ξ and energy ε. (d) G1→2 on resonance (ε = εα), where
εα/t↑ = 5 × 10−2, 5 × 10−3, 5 × 10−4 (green to blue). Further pa-
rameters of the plot are: xi = −2.5vF /t↑, x f = 5vF /t↑, μ/t↑ = 5,
Bx/t↑ = 2.5 [(c) and (d)], t↓ = 3/5t↑, t↑ = 0.2.

VI. INFLUENCE OF TIME-REVERSAL BREAKING
TERMS AND ROBUSTNESS AGAINST BACKSCATTERING

As the formation of Majorana zero modes in the antiwire
requires the presence of a Zeeman field, let us discuss its
effects on the helical edges that serves as probes for transport
measurements. Importantly, the extension of the Zeeman cou-
pling HB [see Eq. (4)] to the gapless helical regions outside
the antiwire (i.e., for x < 0 and x > L) does not modify the
entries of the scattering matrix. In Appendix B, we explicitly
show this for the scattering amplitudes in Eqs. (20) and (21).

In general, however, the lack of TR symmetry spoils the
topological protection of the edges and can result in the pres-
ence of backscattering, for example caused by a magnetic
field along the x axis or by local impurities. This raises the
question to what extent the existence of backscattering within
the helical edge affects transmission and reflection amplitudes
and questions the universality of the Majorana signature. To
rule out possible detrimental effects due to the breaking of TR,
we investigate a slightly modified version of the toy model,
discussed in the latter section, where the only modification
that we apply is the addition of TR breaking backscattering
terms in the helical edge, which is side coupled to a Majorana,
a generic BdG state, respectively [see Fig. 7(a)]. For this
model, we compute the scattering matrix and, from that, we
obtain the conductance G1→2 (see Appendix E).

Figure 7 shows the resulting G1→2 for both scenarios. No-
tably, finite TR breaking backscattering does not qualitatively
modify the negative G1→2, which represents the universal
signature of a Majorana zero mode [Fig. 7(b)]. Moreover,
also for the more generic case of coupling to a general BdG

FIG. 8. Coupling of six antiwires using gate potentials applied to
the embedding quantum spin Hall insulator (orange regions).

state, addition of TR breaking backscattering terms does not
lead to qualitative different signatures in G1→2 as compared
to the case without backscattering [compare Figs. 7(c)–7(d)
and Figs. 6(b)–6(c)]. This is reasonable as backscattering acts
in the same way to holelike states as it does for electronlike
states. In fact, any imperfection with this property is not ex-
pected to degrade the universality of the proposed signature.
Note also that we choose an asymmetric configuration: By
defining the points xi and x f as the points where the volt-
age drop and the current are assessed in the computation of
the scattering matrix, we here consider |xi| = |x f | to leave the
system with no other symmetry than particle-hole. Despite
small quantitative changes, the results do not depend much
on the explicit ratio of xi/x f , which is indeed very reasonable
along the lines of the above discussion.

VII. DISCUSSION

The requirements to construct isolated Majorana bound
states at the helical edge, without the use of ferromagnetic
barriers, are hence two pairs of helical edge modes brought
into proximity with a connection in two points. As helical
edge modes develop in two-dimensional topological insula-
tors at boundaries between topological and trivial regimes,
there are two ways of constructing such a system. First, cutting
narrow slits in an elsewhere homogeneous two-dimensional
topological insulator (Fig. 8). This results in what has been
coined antiwire so far and has the advantage that, once it is
possible to construct a single slit, the positioning of many slits
is straightforward. Therefore, the system possesses a natural
scalability, that could be of importance when it comes to
quantum computations. Since different antiwires emerge from
the same underlying two-dimensional system, it is possible to
tune their coupling via external gate voltages applied between
two antiwires (Fig. 8). Hence, the link between the two anti-
wires might be changed from insulating (chemical potential
inside the bulk gap of the 2D TI) to conducting (chemical
potential position in conduction band). Thereby, we resemble
a setup along the lines of Ref. [62]. A second possibility
to design a topologically superconducting phase is based on
quantum constrictions. This setup can be obtained from the
antiwire by interchanging topological and trivial regime.
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To summarize our findings, we have proposed a novel
topological phase transition taking place in quantum spin Hall
systems without the need of ferromagnets. This topological
phase hosts topologically protected Majorana modes localized
at the two ends of the antiwire. The system we propose,
being naturally hosted in a two-dimensional environment,
is flexible towards scalability. Moreover, the straightforward
employment of helical probes allows for more in-depth anal-
yses of the transport properties of the system. In particular, it
makes it possible to identify a novel and qualitative Majorana
signature, which goes beyond the standard observation of a
(quantized) zero-bias peak: (i) the multiterminal conductance
in the given setup carries a qualitative information based
on its sign, which is (ii) not expected to be influenced by
particle-hole-symmetric imperfections, such as backscattering
processes, that are indeed detrimental for zero-bias peaks. The
experimental realization of our proposal comes with some
potential challenges, in particular the realization of trenches
narrow enough to allow a significant interedge tunneling and
the coexistence of proximity-induced superconductivity with
external magnetic field. However, given the recent technolog-
ical developments in both directions, we believe our system to
be within experimental reach.
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APPENDIX

In this Appendix, we present further analysis of the calcu-
lations related to our proposal of a QSH antiwire as a novel
Majorana platform. In particular, in Appendix A, we derive
the boundary conditions of the antiwire; in Appendix B we
compute the scattering matrix of the toy model, introduced in
the main text; in Appendix C, we compare the toy model with
the numerical results. In Appendix D, we justify the form of
the coupling Hamiltonian used in the main text and compare
our results numerically with an extended toy model on the
basis of coupling to a Kitaev chain. Finally, in Appendix E,
we evaluate the scattering matrix of the toy model including
TR breaking terms.

APPENDIX A: DERIVATION OF THE BOUNDARY
CONDITIONS FOR THE QSH ANTIWIRE

The kinetic Hamiltonian including impurity scattering at
x = 0 and x = L can be written as

H̃p =
∫

dx
∑
ν,σ

ψ̂†
ν,σ (x)(−ivF σν∂x )ψ̂ν,σ (x)

+ T
∫

dx[δ(x)+δ(x−L)]
∑

σ

[ψ̂†
1,σ (x)ψ̂2,σ (x)+H.c.]

(A1)

with the fermionic fields ψ̂ν,σ (x) annihilating a ν, σ fermion
at position x. We can formally diagonalize the Hamiltonian
(A1) with eigenfunctions from the associated single-particle
problem

h̃p(x)�(x) = E�(x), (A2)

where h̃p(x) = −ivF ηzσz∂x + T [δ(x) + δ(x − L)]ηxσ0

with Pauli matrices η j , σ j ( j ∈ {x, y, z}) acting on
edge space, spin space, respectively, and �(x) =
(ψ1,↑(x), ψ1,↓(x), ψ2,↑(x), ψ2,↓(x))T . In vicinity δx close
to the impurities with δx → 0, Eq. (A2) is solved by [63]

�(−δx) = e
T
vF

ηyσz�(δx), �(L+δx) = e− T
vF

ηyσz�(L−δx).
(A3)

In the limit T → ∞, this results in the boundary conditions

ψ1,↑(0) = iψ2,↑(0), ψ1,↑(L) = −iψ2,↑(L),

ψ2,↓(0) = iψ1,↓(0), ψ2,↑(L) = −iψ1,↓(L). (A4)

Note that in our notation the functions ψ1,↑(x) and ψ2,↓(x)
(and as well ψ1,↓(x) and ψ2,↑(x)) describe states of the same
chirality. Thus, we find that they obey

ψ1,↑,q(x) = iψ2,↑,q(−x),

ψ2,↓,q(x) = iψ1,↓,q(−x) (A5)

with the plane waves ψν,σ,q(x) = (1/
√

L) exp[iνσqx] [ν =
(1, 2) = (+,−) and σ = (↑,↓) = (+,−)] with quantized
momenta q = (π/L)(n − 1/2). By applying an expansion of
the fermionic fields in terms of the functions ψν,σ,q(x), namely
ψ̂ν,σ (x) = ∑

q ψν,σ,q(x)ĉq, we obtain the boundary condition
for the fields

ψ̂1,↑(x) = iψ̂2,↑(−x),

ψ̂2,↓(x) = iψ̂1,↓(−x). (A6)

Clearly, from the quantization of q, the fields need to be
antiperiodic with respect to 2L

ψ̂ν,σ (L) = −ψ̂ν,σ (−L). (A7)

Equation (A6) is stated in the main text as Eq. (7).

APPENDIX B: DERIVATION OF THE SCATTERING
MATRIX

The system for which we aim to construct the scattering
matrix is sketched in Fig. 5(a) of the main text. It is composed
of three parts. The helical edge passing by the antiwire (h̄ =
1) is described by

Hp =
∫

dx
∑

σ

ψ̂†
σ (x)(−ivF σ∂x − μ)ψ̂σ (x), (B1)

where ψ̂σ (x) are annihilating fermionic fields carrying an in-
dex σ ∈ {↑,↓} = {+,−} and μ is a chemical potential. Since
the formation of Majorana zero modes in the antiwire requires
the presence of Zeeman fields, it is a reasonable assumption
to also include it in the nearby helical edge states

HB =
∫

dxBz

∑
σ

σ ψ̂†
σ (x)ψ̂σ (x). (B2)
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Further, we assume a pointlike coupling of the fields ψ̂σ (x) to
a Majorana mode γ̂1 of the antiwire

Hc =
∫

dx δ(x)γ̂1

∑
σ

tσ [ψ̂σ (x) − ψ̂†
σ (x)] (B3)

with coupling constant tσ that might depend on σ . Since TR
symmetry is absent in the antiwire, the coupling does not obey
corresponding symmetry constraints. Moreover, even though
hybridization of the Majoranas is exponentially suppressed

in the length of the antiwire, they might acquire a small
hybridization energy

Hd = −iεd γ̂1γ̂2. (B4)

The two Majoranas γ̂1 and γ̂2 can be rewritten in terms of
fermionic operators d̂ and d̂† with

γ̂1 = d̂ + d̂†,

γ̂2 = id̂ − id̂†.
(B5)

Using (B5), H = Hp + HB + Hc + Hd can also be represented
as

H = 1

2

∫
dx�̃†(x)

⎛
⎜⎜⎜⎜⎜⎝

−ivF ∂x −μ+Bz 0 0 0 t↑(x) t↑(x)
0 +ivF ∂x −μ−Bz 0 0 t↓(x) t↓(x)
0 0 −ivF ∂x +μ−Bz 0 −t↑(x) −t↑(x)
0 0 0 +ivF ∂x +μ+Bz −t↓(x) −t↓(x)

t↑(x) t↓(x) −t↑(x) −t↓(x) εd 0
t↑(x) t↓(x) −t↑(x) −t↓(x) 0 −εd

⎞
⎟⎟⎟⎟⎟⎠�̃(x) (B6)

with �̃(x) = (ψ̂↑(x), ψ̂↓(x), ψ̂†
↑(x), ψ̂†

↓(x), d̂, d̂†)
T

and
tσ (x) = tσ δ(x). To diagonalize Eq. (B6), we expand �̃(x) in
eigenfunctions of the Hamiltonian density

�̃(x) =
∑
k,d

Uk,d (x)χ̂k,d (B7)

with matrices Uk,d (x) and fermionic annihilation operators
χ̂k,d = (Ĉk, Ĉd )T with Ĉk = (ĉ↑,k, ĉ↓,k, ĉ†

↑,k, ĉ†
↓,k ) and Ĉd =

(ĉd , ĉ†
d ). Inserting Eq. (B7) in (B6), this yields

H = 1

2

∑
k,k′,d,d ′

χ̂k′,d ′

∫
dx U †

k′,d ′ (x)�(x)Uk,d (x)χ̂k,d , (B8)

where we defined

�(x) =
(

A(x) ηδ(x)
η†δ(x) εdσz

)
(B9)

with

A(x) = −ivF ∂xτ0σz − μτzσ0 + Bzτzσz (B10)

and

η =
(

t↑ t↓ −t↑ −t↓
t↑ t↓ −t↑ −t↓

)T

. (B11)

When the columns of Uk,d (x) are formed by orthogonal eigen-
functions of �(x) the problem becomes diagonal. Hence, we
need to search for functions (	k (x),	d ), such that(

A(x)	k (x) + ηδ(x)	d

η†	k (0) + εdσz	d

)
= ε

(
	k (x)
	d

)
, (B12)

where in the second row, we performed the integration of
Eq. (B6) right away as it contains no differential forms. From
Eq. (B12), we obtain an equation for the solutions 	k (x) by
solving the second row for 	d and inserting the result in the
first one

A(x)	k (x)+δ(x)η

( 1
ε−εd

0
0 1

ε+εd

)
η†	k (0) = ε	k (x).

(B13)

This equation might be solved in the following way [61].
When x = 0 the equation reduces to A(x)	k (x) = ε	k (x),
which is solved by plane waves. Moreover, the δ distribution
implies a discontinuous jump of the solutions at x = 0. Hence,
for x > 0, x < 0 and x = 0, the solution takes different values.
This can be incorporated by the ansatz

	k (x) = (
	e

k (x),	h
k (x)

)
(B14)

with

	e
k (x) =

(
(φ̄e

↑ + sign(x)δφe
↑)ei(k+Bz−μ)x

(φ̄e
↓ + sign(x)δφe

↓)e−i(k+Bz+μ)x

)
(B15)

	h
k (x) =

(
(φ̄h

↑ + sign(x)δφh
↑)ei(k−Bz+μ)x

(φ̄h
↓ + sign(x)δφh

↓)e−i(k−Bz−μ)x

)
, (B16)

where

φ̄
e/h
↑/↓ = (φe/h

↑/↓,− + φ
e/h
↑/↓,+)/2, (B17)

δφ
e/h
↑/↓ = (φe/h

↑/↓,+ − φ
e/h
↑/↓,−)/2. (B18)

Integration of Eq. (B13) using Eqs. (B14)–(B18), this results
in

−ivF

(
σz 0
0 σz

)
⎛
⎜⎜⎜⎝

φe
↑,+ − φe

↑,−
φe

↓,+ − φe
↓,−

φh
↑,+ − φh

↑,−
φh

↓,+ − φh
↓,−

⎞
⎟⎟⎟⎠ + 1

2
η

( 1
ε−εd

0
0 1

ε+εd

)

× η†

⎛
⎜⎜⎜⎝

φe
↑,+ + φe

↑,−
φe

↓,+ + φe
↓,−

φh
↑,+ + φh

↑,−
φh

↓,+ + φh
↓,−

⎞
⎟⎟⎟⎠ = 0. (B19)
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Equation (B19) can be reorganized such that we obtain the
scattering matrix S⎛

⎜⎜⎜⎝
φe

↓,−
φh

↓,−
φe

↑,+
φh

↑,+

⎞
⎟⎟⎟⎠ = S

⎛
⎜⎜⎜⎝

φe
↑,−

φh
↑,−

φe
↓,+

φh
↓,+

⎞
⎟⎟⎟⎠ (B20)

with

S =
(

R−− T+−
T−+ R++

)
(B21)

and

R−− =
(

ree
−− rhe

−−
reh
−− rhh

−−

)
, R++ =

(
ree
++ rhe

++
reh
++ rhh

++

)
,

T+− =
(

t ee
+− t he

+−
t eh
+− t hh

+−

)
, T−+ =

(
t ee
−+ t he

−+
t eh
−+ t hh

−+

)
. (B22)

For the scattering amplitudes we find

R−− = R++ (B23)

with

ree
−− = rhh

−− = −reh
−− = −rhe

−−

= t↑t↓ε

ε(t2
↑ + t2

↓ − ivF ε) + ivF ε2
d

, (B24)

t ee
−+ = t hh

−+ = t2
↑ε

ε(t2
↑ + t2

↓ − ivF ε) + ivF ε2
d

− 1, (B25)

t eh
−+ = t he

−+ = − t2
↑ε

ε(t2
↑ + t2

↓ − ivF ε) + ivF ε2
d

, (B26)

t ee
+− = t hh

+− = t2
↓ε

ε(t2
↑ + t2

↓ − ivF ε) + ivF ε2
d

− 1, (B27)

t eh
+− = t he

+− = − t2
↓ε

ε(t2
↑ + t2

↓ − ivF ε) + ivF ε2
d

. (B28)

With Eqs. (B24)–(B28), it is easy to check that the scattering
matrix of Eq. (B21) is unitary. The elements of Eqs. (B25) and
(B26) are used in the main text. For ease of notation, in the
main text, we set T−+ ≡ T2 (and accordingly for its elements).

The results for the scattering amplitudes in Eqs. (B24)–
(B28) are independent of the values of μ and Bz as both
parameters do not open spectral gaps within the helical edge
states passing by the antiwire and the δ scatterer discards
any dependence on the momentum of incident particles. Note
that when the scatterer is modeled with a finite width w, for
instance by replacing the δ with a Gaussian, a momentum de-
pendence is indeed expected. Yet, this will only be significant
on energy scales vF /w. Thus, for small w (i.e., large vF /w)
we expect no change in the low-energy physics of our model.

In the presence of Bz, the symmetry protection against
impurity scattering is lost as the Zeeman term breaks TR
symmetry. This, however, does not influence the universality
of our result as impurity scattering should affect electronic
states in the same way as holelike states. Hence, even though
the transmission amplitudes might be reduced due to impurity
scattering, the ratio |t ee

ν̄ν |/|t eh
ν̄ν | is expected to be (on average)

constant. Hence, also the multiterminal conductance G1→2 =

FIG. 9. Multiterminal conductances G1→2 (a) and G2→1 (b) as a
function of energy ε and Bz. The parameters are the same as given in
Fig. 4 of the main text. All negative values are colored in red.

e2

2π
(|t ee

−+|2 − |t eh
−+|2), defined in the main text, is not expected

to loose its qualitative information (based on its sign) in the
presence of impurity scattering. Moreover, long mean-free
path have been reported in the new generation of QSH sys-
tems [50]. This implies a low level of impurity scattering. We
consolidate this statement more in Appendix E.

APPENDIX C: NUMERICAL VALIDATION
OF THE TOY MODEL

As discussed in the main text, for t↓ > t↑ in the above
model, we find a multiterminal conductance G1→2 < 0. Like-
wise, the conductance G2→1 is then expected to satisfy
G2→1 > 0. We can test the full model against the latter
statement by numerically computing the multiterminal con-
ductances G1→2 and G2→1 using the Hamiltonian Hopen,
defined in the main text. The results are shown in Fig. 9. While
for G1→2 there is a dominant negative signal around ε = 0,
for G2→1 no such signal is obtained, but instead G2→1 > 0.
This confirms the validity of the employed toy model for low
energies.

APPENDIX D: COUPLING TO A P-WAVE
SUPERCONDUCTOR

The toy model can also be extended for higher energies,
when we do not only couple to an isolated Majorana, but to
a spinless p-wave superconductor, which, in the 1D case, can
be modeled by a Kitaev chain [19]

Hd =
N∑

j=1

μĉ†
j ĉ j +

N−1∑
j=1

[(−t )ĉ†
j ĉ j+1 + �ĉ†

j ĉ
†
j+1 + H.c. ]

(D1)
with fermionic fields c j , (ĉ†

j ) annihilating (creating) a fermion
at site j. The corresponding tunneling Hamiltonian can be
written as

Hc =
∫

dx
∑

σ=↑,↓
tσ δ(x)ψ̂†

σ (x)ĉ1 + H.c., (D2)

where the fermions of the helical edge couple to the first site
of the p-wave superconductor. Repeating the calculations of
Appendix B, with Eqs. (D1) and (D2) instead of Eq. (B3)
and (B4), this results in an equation for the eigenstates of the
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FIG. 10. (a) Multiterminal conductance G1→2 for a Kitaev chain,
side coupled to a helical edge as a function of the chains chemical
potential μ and energy ε. Negative values are colored red. (b) Eigen-
states of the Kitaev chain as a function of the system parameter μ

and ε. The color code represents the absolute difference of electronic
(ζ (e)

α,1) and holelike wave function (ζ (h)
α,1) at the first site of the chain

normalized to the maximum value reached for all eigenstates indexed
by α. Further parameters of the plots are: t = � = 0.5, the number
of sites is N = 15.

helical edge

−ivF

(
σz 0
0 σz

)⎛⎜⎜⎜⎝
φe

↑,+ − φe
↑,−

φe
↓,+ − φe

↓,−
φh

↑,+ − φh
↑,−

φh
↓,+ − φh

↓,−

⎞
⎟⎟⎟⎠+ 1

2
�G�†

⎛
⎜⎜⎜⎝

φe
↑,+ + φe

↑,−
φe

↓,+ + φe
↓,−

φh
↑,+ + φh

↑,−
φh

↓,+ + φh
↓,−

⎞
⎟⎟⎟⎠=0,

(D3)

where G = [ε − Hd ]−1. � is the Hamiltonian density of the
coupling Hamiltonian Hc, which can be written as

Hc =
∫

dxδ(x)
(
ψ̂

†
↑(x), ψ̂†

↓(x), ψ̂↑(x), ψ̂↓(x)
)
�

⎛
⎜⎜⎜⎝

ĉ1

ĉ†
1
...

ĉ†
N

⎞
⎟⎟⎟⎠ (D4)

with

� =

⎛
⎜⎜⎜⎝

t↑ 0 0 . . . . . . 0

t↓ 0 0 . . . 0

0 −t↑ 0 . . . 0
0 −t↓ 0 . . . . . . 0

⎞
⎟⎟⎟⎠. (D5)

From Eq. (D3), we can compute the scattering matrix for the
modes φ

e/h
↑/↓,±, from which we obtain the conductance G1→2.

The results are depicted in Fig. 10(a). In accordance with
the main text and the toy model of Appendix B, we find for
the topological regime μ < 2|t | a prominent negative signal
around ε = 0, signaling the presence of the Majorana. How-
ever, even higher-energy states (in particular close to μ = 0)
can return a negative signal.

To understand this result, we investigate again Eq. (B6),
which, for the present case, takes the form

H = 1

2

∫
dx�̃†(x)

(
hp �δ(x)

�†δ(x) hd

)
�̃(x) (D6)

with hp and hd the Hamiltonian density of the
helical edge and the Kitaev chain and �̃(x) =
(ψ̂↑(x), ψ̂↓(x), ψ̂†

↑(x), ψ̂†
↓(x), ĉ1, ĉ†

1, . . . , ĉ†
N )

T
[64]. We

can now apply a unitary transformation to Eq. (D6) that

diagonalizes hd

F =
(

1 0
0 Ud

)
. (D7)

Then, Eq. (D6) becomes

H = 1

2

∫
dx�̃†(x)F

(
hp �Udδ(x)

U †
d �†δ(x) U †

d hdUd

)
F †�̃(x).

(D8)
Since Ud diagonalizes hd , it is formed from the eigenstates of
hd

Ud = (ζ1, ζ2, . . . ζ2N ), (D9)

where ζα = (ζ (e)
α,1, ζ

(h)
α,1, . . . , ζ

(e)
α,N , ζ

(h)
α,N )T are column vectors

with the property hdζα = εαζα . The transformed coupling
Hamiltonian thus contains the elements of the eigenfunctions
at the first site. Consequently, in a low-energy approximation
around an eigenenergy εα of hd , the coupling only happens to
the first site of the corresponding eigenstate ζα . If we want to
preserve particle-hole symmetry, it also has to connect to its
particle-hole partner at −εα , P̂ζα with the particle-hole opera-
tor P̂ = 1N×N ⊗ σxK̂ , where K̂ denotes complex conjugation.
The effective Hamiltonian thus reads

Hα = 1

2

∫
dx�̃†

α (x)

(
hp �αδ(x)

�αδ(x) εασz

)
�̃α (x) (D10)

with the basis �̃α = (ψ̂↑(x), ψ̂↓(x), ψ̂†
↑(x), ψ̂†

↓(x), d̂α, d̂†
α )

T

where d̂†
α creates a fermion at energy εα . The coupling matrix

�α is given by

�α=
(

t↑ζ
(e)
α,1 t↓ζ

(e)
α,1 −t↑ζ

(h)
α,1 −t↓ζ

(h)
α,1

t↑ζ
(h)∗
α,1 t↓ζ

(h)∗
α,1 −t↑ζ

(e)∗
α,1 −t↓ζ

(e)∗
α,1

)T

. (D11)

As discussed in the main text, this effectively corresponds to
the coupling to a particle χ† = ζ

(e)∗
α,1 d†

α + ζ
(h)
α,1d̂α . In particular,

for ζ
(e)
α,1 ≡ ζ

(h)
α,1 = 1, it corresponds to the toy model of Ap-

pendix B. On the basis of the effective model of Eq. (D10) we
find (as discussed in the main text) two main results: (i) away
from zero energy a negative signal in the multiterminal con-
ductance G1→2 is reached whenever the form of the particle χ

deviates less than a threshold ξ̄ from the Majorana from, i.e.,
whenever δζ = ||ζ (e)

α,1| − |ζ (h)
α,1|| � ξ̄ and, more importantly,

(ii) as εα → 0 also the threshold ξ̄ → 0.
We can numerically confirm our analysis when analyzing

the situation of the side-coupled Kitaev chain. Figure 10(b)
visualizes the (numerically) obtained values of δζ for each
eigenstate (on the first site). At μ = 0, each eigenstate of the
Kiteav chain satisfies the Majorana condition at the first site.
Hence, we expect to find a negative multiterminal conduc-
tance for all eigenstates, which coincides with the numerical
results in Fig. 10(a). Away from μ = 0, eigenstates at ε = 0
successively lose the Majorana condition and the dominant
negative signal in the multiterminal conductance is as well lost
for those states. At zero energy, however, the Majorana form
is kept throughout the whole topological phase and likewise
also the negative signal persists.
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APPENDIX E: STABILITY AGAINST TIME-REVERSAL
BREAKING SCATTERING

In Appendix B, we have already seen that a TR symmetry
breaking Zeeman field Bz does not influence the universality
of the obtained conductance signature (i.e., negative G1→2 in
the presence of the Majorana at zero energy). This suggests
that TR symmetry is not among the determinative symmetries
to eventually obtain negative G1→2. Yet, one may wonder if
this stems from the observation that Bz does not induce TR
breaking backscattering. To rule out this possibility, we now
discuss the influence of such backscattering terms.

The model we analyze is given by Eq. (B13), i.e.,

Ã(x)	k (x)+δ(x)η

( 1
ε−εd

0
0 1

ε+εd

)
η†	k (0) = ε	k (x), (E1)

where Ã(x) = −ivF τ0σz∂x − μτzσ0 + τzσxBx now contains
TR breaking backscattering contributions Bx. Away from
x = 0, Eq. (E1) is solved by integration

	k (xb)= TB(xb, xa)	k (xa), (E2)

where

TB(xb, xa) =exp

[
i

vF

∫ xb

xa

dx τ0σz(ε − (Bxτzσx − μτzσ0))

]
.

(E3)

The δ scattering event at x = 0 requires more care. As the
eigenfunctions are not expected to always possess a pure
plane-wave character, the ansatz of Eq. (B14) might no longer

be valid. Still, integration from x = −ε to x = ε and taking
the limit ε → 0 yields a defining equation for scattering at the
δ barrier, given by

−ivF τ0σz[	k (0+) − 	k (0−)] + ηGdη
†	k (0) = 0, (E4)

where we introduced the shorthand notation

Gd =
( 1

ε−εd
0

0 1
ε+εd

)
. (E5)

Similar to Eq. (B14), Eq. (E4) can be solved with a symmetric
ansatz 	k (0) = 1/2(	k (0+) + 	k (0−)). This automatically
leads to the transfer matrix, associated with the δ barrier

	k (0+) = Tδ	k (0−), (E6)

where

Tδ =
[
−ivF τ0σz + 1

2
ηGdη

†

]−1[
−ivF τ0σz − 1

2
ηGdη

†

]
.

(E7)

The transmission in a helical edge from xi < 0 to x f > 0,
including backscattering by Bx, side coupled to a Majorana,
is then described by the compiled transfer matrix

T (x f , xi ) = TB(x f , 0)TδTB(0, xi ). (E8)

From T (x f , xi ), it is straightforward to compute the associated
scattering matrix and, subsequently, the conductance G1→2.
Moreover, it is straightforward to generalize Eq. (E8) to the
generic case just by replacing η → �α .
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