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Electrically controllable cyclotron resonance
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Cyclotron resonance (CR) is considered one of the fundamental phenomena in conducting systems. In this
paper, we study CR in a gated two-dimensional (2D) electron system (ES). Namely, we analyze the absorption
of electromagnetic radiation incident normal to the gated 2DES, where a standard dielectric substrate separates
the 2D electron sheet and the metallic steering electrode (“gate”) the whole system is placed in the perpendicular
magnetic field. Our analysis reveals the redshift of the absorption peak frequency compared to the electron
cyclotron frequency. The redshift appears in the low-frequency regime, when the resonant frequency is much
less than the frequency of Fabry-Perot modes in the natural resonator “2D electron sheet – substrate – gate.”
Moreover, we find this shift to be dependent on the electron density of 2DES. Therefore, it can be controlled
by varying the gate voltage. We predict that the shift can be large in realistic gated or back-gated 2DESs. The
obtained controllability of CR in gated 2DES opens the door for exploring new physics and applications of this
phenomenon.
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I. INTRODUCTION

In a classical plasma, an electron exposed to the magnetic
field B rotates in a closed orbit with the cyclotron frequency
ωc = eB/mc, where −e and m are the electron charge and
effective mass, and c is the speed of light in vacuum (we note
that in this paper, we use the Gauss units). The absorption
of an electromagnetic wave by an electron system placed in
the magnetic field, known as cyclotron resonance (CR), has
long been used in fundamental studies and applications of
both nondegenerate gaseous and degenerate condensed-matter
plasmas. In two-dimensional electron systems (2DESs), CR
was observed initially in silicon inversion layers [1,2]. Nowa-
days, it is used extensively to characterize various kinds of
2DESs.

Depending on the presence of a steering electrode (the
gate), all 2DESs can be divided into gated and ungated sys-
tems. Theoretically, the CR in infinite ungated 2DES was
studied in Ref. [3], see also Refs. [4,5]. It was found that
for the 2DES situated between two half spaces with dielectric
permittivities κ1 and κ2, the resonance frequency equals ωc.
At the same time, the half width of the CR line is defined
by the sum of collisional broadening γ = 1/τ , with τ being
the electron relaxation time in 2DES, and collective radiative
broadening �κ = 2�/(

√
κ1 + √

κ2), where

� = 2πe2n

mc
, (1)

and n is the 2D electron concentration. In ungated GaAs
quantum wells, the collective nature of the CR decay rate
�κ has been observed in time-domain experiments [6,7] and
interpreted as the effect of superradiance [8,9].
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However, to the best of our knowledge, the absorption
of electromagnetic radiation by a gated 2DES placed in the
perpendicular magnetic field, i.e., CR in gated 2DESs, has
not been previously studied in detail. The gated 2DES has a
unique feature—a technical possibility to control the electron
density over a wide range through the gate voltage. Thus,
it enables, for example, fine tuning of the electron-electron
interaction parameter.

It should also be noted that gated 2DES is one of the
simplest structures for studying the light-matter coupling
since the metal gate, the dielectric substrate, and the 2DES
form a Fabry-Perot resonator (see Fig. 1) for the photon
modes which interact with the electrons in the 2DES. Over
the past decade, the interaction between the cyclotron mo-
tion of electrons and discrete photon modes in specially
designed microwave or THz resonators has been attracting
great interest having been investigated extensively in vari-
ous independent studies [10–18], for review see Ref. [19].
It has been found that the light-matter coupling leads to the
modification of the response, though, typically, within a finite
range of magnetic fields corresponding to the anticrossing
of the cyclotron frequency and the photon frequency of the
resonator.

In the present paper, we report on significant and un-
expected CR “renormalization” in a gated 2DES—namely,
the shift of the resonant frequency away from the cyclotron
frequency ωc and the narrowing of the resonance linewidth.
We emphasize that, surprisingly, it takes place in the low-
frequency regime, when the cyclotron frequency is much less
than the characteristic frequency of the resonator formed by
the 2DES and the metal gate, with a dielectric substrate in
between. Furthermore, we assert that the resultant frequency
shift can be large, even in conventional 2D electron structures
with the back gate. Therefore, it can be rather easily observed
experimentally.
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FIG. 1. Diagram of the system under consideration: 2D electron
sheet (z = 0), a dielectric substrate (−d < z < 0) with permittivity
κ, and the metallic back gate (z � −d) form an analog of the Fabry-
Perot resonator.

We establish the CR in a gated 2DES to be governed by
the retardation parameter A defined as the ratio of the charac-
teristic velocity in a gated 2DES (Vp) to the speed of light in
the dielectric substrate separating the 2DES and the metal gate
(c/

√
κ). Formally, the characteristic velocity equals to that of

plasma waves in the gated 2DES [20]:

Vp =
√

4πne2d

κm
, (2)

where d is the distance between the gate and 2DES. The
retardation parameter can be written in three equivalent forms,
as follows:

A2 = V 2
p κ/c2 = 2d�/c = 4πne2d/(mc2). (3)

We find that the resonant frequency can be expressed in terms
of A through a simple relation:

ωres = ωc/(1 + A2). (4)

It should be stressed that the given retardation parameter (3)
can be easily modified by changing electron concentration by
the chemical doping or with the gate voltage, which enables
the electrical control of the CR in gated 2DESs.

II. APPROACH AND KEY EQUATIONS

To determine the CR frequency and linewidth, we consider
the absorption of the electromagnetic plane wave incident
normally onto the gated 2DES, as depicted in Fig. 1. Let
the δ-thin 2DES and the top surface of an ideal metal gate
be situated, respectively, at z = 0 and z = −d , with dielectric
permittivities of the substrate (−d < z < 0) and the medium
above the 2DES (z > 0) equal κ and unity, accordingly. Also,
consider the system in a constant magnetic field B directed
along the z axis.

To calculate the absorption, we follow the classic approach
based on Maxwell’s equations and Ohm’s law j = σ̂ (ω)E,

with j and σ̂ (ω) denoting, correspondingly, the current den-
sity and the dynamical conductivity tensor of the 2DES and
E being the electric field in the 2DES plane. It should be
mentioned that this is a standard approach that is widely used
to determine the response of different 2D structures, see, for
example, Refs. [3,21–28].

At z > 0 there exist the incident and reflected electromag-
netic waves, which have the forms of E i exp(−iωz/c − iωt )
and Er exp(iωz/c − iωt ). At the same time, within the sub-
strate, for −d < z < 0, there are waves propagating likewise
in the positive and negative directions along the z axis. Ac-
cording to standard boundary conditions for E(z) (which, in
our case, lies in the z = const plane), the electric field vanishes
at the surface of the metal gate z = −d , and is continuous
at the 2DES plane z = 0, whereas the discontinuity in the z
derivative of E(z) can be defined as follows:

∂zE(z)|z=+0
z=−0 = −4π iω

c2
j. (5)

Here, the last condition arises from equations ∂zEy =
−iωHx/c and ∂zEx = iωHy/c, as well as the discontinuity of
the magnetic field components Hx and Hy due to the pres-
ence of 2D current j: Hx(z)|+0

−0 = 4π jy/c and Hy(z)|+0
−0 =

−4π jx/c.
As a matter of convenience, we introduce the “circu-

lar” variables: Ei± = Eix ± iEiy, Er± = Erx ± iEry, and σ± =
σxx ∓ iσxy, where σxx and σxy are, respectively, the dynam-
ical longitudinal and transverse (Hall) conductivities of the
2DES. Then, the 2DES response can be found separately
for each circular polarization. Using the boundary conditions
mentioned above, the amplitude of the reflection coefficient
r± = Er±/Ei± can be expressed as:

r±(ω) = 1 − i
√

κ cot(ω
√

κd/c) − 4πσ±/c

1 + i
√

κ cot(ω
√

κd/c) + 4πσ±/c
, (6)

where “+” and “−” signs correspond to different circular
polarizations of the incident wave.

Now, let us find the shape of the resonance line from the
calculation of the energy absorption coefficient P±(ω) = 1 −
|r±|2. However, to obtain the explicit expression for P±(ω),
one needs to specify the model for the 2DES conductivity
tensor σ̂ (ω). In our further analysis we use a simple Drude
model. Then, in the framework of the model, σxx and σxy can
be expressed as follows:

σxx = e2n

m

γ − iω

(γ − iω)2 + ω2
c

, (7)

σxy = e2n

m

−ωc

(γ − iω)2 + ω2
c

,

where γ = 1/τ is the inverse electron relaxation time, which
is assumed to be constant.

Substituting Eq. (7) into Eq. (6), we find the exact expres-
sion for the energy absorption coefficient P±(ω), given the
circular polarization of the incident wave:

P±(ω) = 8�γ(√
κ(ω ± ωc) cot

(
ωd

√
κ

c

) + 2�
)2 + γ 2

(
κ cot2

(
ωd

√
κ

c

) + 1
) + 4�γ + (ω ± ωc)2

. (8)
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FIG. 2. Absorption in the gated 2DES, calculated from the ex-
act relation (8) as a function of the radiation frequency ω, given
γ /ωc = 0.01, κ = 12.8, and c/(dωc ) = 10. Solid lines correspond
to indicated values of A2 = 0.04, 0.1, 0.2, 0.4, 0.6, 1. Dashed line
designates the asymptotic relation of the absorption in (9) for A = 1
calculated in the limit ωd

√
κ/c � 1.

Importantly, of particular interest to us is the low-frequency
regime ω � c/(d

√
κ), where we can neglect all but the dom-

inant terms in the full expression for P±(ω) (8) to obtain the
simplified relation:

P±(ω) = 4γ A2d/c(
ω±ωc

ω
+ A2

)2 + γ 2

ω2 + 2γ A2d
c + d2(ω±ωc )2

c2

, (9)

which can be used to find the resonant frequency ωres and
linewidth 
ω analytically.

III. RADIATION ABSORPTION ANALYSIS

To be specific, we consider the case of ω > 0 and ωc > 0
to analyze P−(ω), which corresponds to the active circular
polarization of the incident wave. It should be noted that
for the passive polarization, we do not find any resonance
response.

From Eq. (9) we obtain that in classically strong magnetic
field (γ � ωc), the resonant frequency takes the form de-
scribed in (4), i. e., the resonance frequency is shifted from
ωc by the parameter (1 + A2)−1. Also, provided that γ � ωc,
the linewidth of the resonance becomes:


ω = 2
γ + A2ω2

resd/c

1 + A2
. (10)

Here, the total linewidth 
ω is the sum of “renormalized”
collisional broadening 2γ /(1 + A2) and radiative broadening
2A2ω2

resd/c/(1 + A2).
In Fig. 2, we plot the frequency dependence of the absorp-

tion in the gated 2DES, according to the exact formulation
(8), where solid lines denote the set of curves for different
values of A2. For comparison, the dashed curve indicates the
line shape obtained from the asymptotic relation in (9) for
A = 1. Clearly, the asymptotic result is in excellent agreement
with the exact calculation. In addition, Fig. 3 shows the reso-
nance position and linewidth as a function of the retardation
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FIG. 3. Dependence of the position ωres (a) and linewidth 
ω

(b) of the absorption maximum on the parameter A2 (3), computed
for γ /ωc = 0.01, κ = 12.8, and c/(ωcd ) = 10. Green (solid) lines
indicate the exact numerical calculation of ωres and 
ω from Eq. (8);
blue (dashed) lines correspond to the analytical expressions (4)
and (10) for ωres and 
ω, accordingly. The maximum linewidth is
reached at the value of A2

m defined by Eq. (11).

parameter. Comparing the given numerical and analytical data
likewise makes it evident that calculations based on the exact
expression for P− (8) (green solid lines) perfectly agree with
the asymptotic results from (4) and (10) (blue dashed lines).
We also note that when expressed in terms of A2, the linewidth

ω reaches its maximum value at A2

m defined by:

A2
m =

√
3ω2

c d

γ c
+ ω4

c d2

γ 2c2
− 1 − ω2

c d

γ c
. (11)

Next, let us analyze the absorption at the resonance fre-
quency, P−(ωres), as a function of the retardation parameter,
A ∝ √

n. Considering the extreme cases, we recognize that in
the limit of A → 0, the absorption approaches zero, as 2DES
becomes virtually absent. Similarly, in the limit of A → ∞,
2DES attains infinite conductivity, which also leads to zero
absorption due to full reflection of the incident radiation.
Therefore, at finite values of A, the absorption is expected to
have one or more maxima. Furthermore, we find that under
the condition ω2

c d/(γ c) < 4, i.e., “weak” magnetic field, the
absorption P−(ωres) exhibits a single maximum at A = 1. On
the other hand, given ω2

c d/(γ c) > 4, i.e., “strong” magnetic
field, there occur two local maxima of P−(ωres) at A2

1,2 defined
as follows:

A2
1,2 = −1 + ω2

c d

2γ c
±

√
ω4

c d2

4γ 2c2
− ω2

c d

γ c
, (12)

with the local minimum of P−(ωres) situated between the
maxima, at A = 1.
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IV. EIGENMODES ANALYSIS

As for the qualitative interpretation of the obtained results,
we consider the electrodynamic eigenmodes of the system
under study. The complex-valued frequencies of these modes
are defined by the poles of the reflection (as well as absorp-
tion) coefficient (6), where the real and imaginary parts of
the frequency correspond to oscillations and the decay rate
of the mode. To be specific, we give further consideration
to the poles of r−(ω). Hence, given the conductivity tensor
(7) based on the Drude model, and the Fabry-Perot frequency
ωFP = c/(

√
κd ), the denominator of r−(ω) becomes zero pro-

vided that

(ω − ωc + iγ )(cot(ω/ωFP) − i/
√

κ) = −A2ωFP. (13)

Let us discuss the structure of the obtained equation. The
first bracketed factor on the left-hand side of Eq. (13) goes
to zero at ω = ωc − iγ , which can be interpreted as single-
particle cyclotron motion. The other bracketed factor vanishes
at the frequencies of the Fabry-Perot resonator. Hence, the
retardation parameter A (3) on the right-hand side of Eq. (13)
relates to the interplay of the two families of modes mentioned
above. Increasing A results in the interaction of the cyclotron
motion with the photonic modes of the resonator, leading to
the “shift” of the frequency from ωc − iγ .

Considering a high-quality resonance with Im ω � Re ω

and γ � ωc in the low-frequency limit |ω/ωFP| � 1, from
Eq. (13) we obtain:

ω = ωc

1 + A2
− i

γ

1 + A2
− i

ω2
c A2d/c

(1 + A2)3
. (14)

The real and imaginary parts of the resultant frequency
describe, respectively, the position and broadening of the res-
onance line. As expected, the expressions for the real and
imaginary parts defined by Eq. (14) are identical, accordingly,
to the resonance frequency (4) and the half-width 
ω/2 (10)
obtained from the absorption analysis.

V. DISCUSSION AND CONCLUSIONS

Now, let us compare the absorption of a circular po-
larized electromagnetic wave in gated and ungated 2DESs
exposed to the magnetic field. In the case of the ungated
2DES in vacuum, the absorption maximum appears exactly
at the cyclotron frequency ωc, while the half linewidth of the
resonance equals γ + � [3]. By contrast, in the gated 2DES,
the factor (1 + A2)−1 leads to the shift of the absorption peak
away from ωc, as defined in Eq. (4), as well as the reduc-
tion in the linewidth. In addition, the radiative contribution
to the linewidth becomes significantly suppressed due to the
factor d2ω2

res/c2 � 1, according to Eq. (10). Thus, in the
gated 2DES, one can obtain that when the radiative contri-
bution to the linewidth dominates that of collisional origin,
the linewidth narrows with increasing electron concentration:

ω ∝ A−4 ∝ n−2, which is very much unlike the case of the
ungated 2DES.

For practical purposes, we estimate the retardation pa-
rameter A in 2DES based on a back-gated GaAs/AlGaAs
quantum well, given the following characteristic parameters:
d = 0.4 mm, n = 5 × 1011 cm−2, and m = 0.066m0, where
m0 is the free-electron mass. As a result, we find A ≈ 1, which
in clean samples corresponds to the resonant frequency equal

half the cyclotron frequency ωc. Therefore, the shift in the
resonance frequency of standard back-gated semiconductor
structures can be far from negligible. However, it should be
noted that since our analysis assumes an infinite 2DES, the
lateral size of the actual sample must be large relative to the
distance d to make our calculations practically applicable.

Let us also consider a possible disorder in the boundary be-
tween the metal gate and the dielectric substrate. We believe it
can be simulated by the variation in the dielectric thickness d ,
which implies δA fluctuation since the retardation parameter A
is proportional to the square root of d (3). We maintain that our
results, on the whole, are reasonable, provided that δA � A.
Likely, the resonance linewidth can have an increase by the
parameter δA/A. Concerning standard semiconductor struc-
tures, for example, those based on GaAs/AlGaAs quantum
wells with metal gates, the surface between the dielectric sub-
strate and the gate can be made sufficiently clean and smooth.
Typically, in such structures, d varies from 100 nm to 500 μm,
whereas the fluctuation of d does not exceed 1 nm. Therefore,
we believe that in given experimental structures, the condition
δA � A is satisfied, and the disorder in the boundary has no
significant effect.

Let us analyze the obtained redshift in the resonance fre-
quency in relation to the Kohn’s theorem [29], which can
be interpreted as follows: Electron systems in the magnetic
field cannot have a resonant response at frequencies below
the electron cyclotron frequency. It should be mentioned,
however, that this theorem can be inapplicable under certain
conditions—for example, due to nonparabolic electron disper-
sion [30], polarons [31], ultrasound [32], nonequilibrium and
dynamic effects [33,34], etc. In our case of the gated 2DES,
the electromagnetic retardation effects (that were not taken
into account by the theorem) lead to the redshift of the reso-
nant frequency away from ωc. It follows from Eqs. (3) and (4)
that the frequency shift appears due to A2 = 4πne2d/(mc2).
In the formal nonretarded limiting case of c → ∞, and, there-
fore, A → 0, the resonance occurs at the cyclotron frequency
ωc, in accordance with Kohn’s theorem.

In summary, we have conducted the analytical and numer-
ical investigation of the absorption of electromagnetic wave
incident normally onto the gated or back-gated 2DES in the
presence of a perpendicular magnetic field. Importantly, the
study takes into account the effect of electromagnetic con-
finement in the natural resonator formed by the 2DES and
the metallic back gate, with a dielectric substrate in between.
Unexpectedly, we find the redshift in the resonance frequency
(4) from the cyclotron frequency ωc and narrowing of the
linewidth (10) to occur in the low-frequency regime when
the radiation frequency is much smaller than the Fabry-Perot
frequency of the resonator. We establish that a given effect
is controlled by the retardation parameter (3), which depends
on the electron concentration in the 2DES and, therefore, can
be easily controlled by the gate voltage. We prove that the
retardation parameter can be large enough, even in standard
back-gated samples. As a result, it can lead to a tremen-
dous shift and narrowing of the CR line in a gated 2DES.
Therefore, gated and especially back-gated 2DESs prove very
promising for exploring new physical effects, for instance, the
experimental studies of the extreme regimes of light-matter
coupling.
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