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We theoretically investigate the properties of holes in a SixGe1−x/Ge/SixGe1−x quantum well in a perpendic-
ular magnetic field that make them advantageous as qubits, including a large (>100 meV) intrinsic splitting
between the light and heavy hole bands, a very light (∼0.05 m0) in-plane effective mass, consistent with
higher mobilities and tunnel rates, and larger dot sizes that could ameliorate constraints on device fabrication.
Compared to electrons in quantum dots, hole qubits do not suffer from the presence of nearby quantum levels
(e.g., valley states) that can compete with spins as qubits. The strong spin-orbit coupling in Ge quantum wells
may be harnessed to implement electric-dipole spin resonance, leading to gate times of several nanoseconds
for single-qubit rotations. The microscopic mechanism of this spin-orbit coupling is discussed, along with its
implications for quantum gates based on electric-dipole spin resonance, stressing the importance of coupling
terms that arise from the underlying cubic crystal field. Our results provide a theoretical foundation for recent
experimental advances in Ge hole-spin qubits.
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I. INTRODUCTION

Hole-spin qubits in strained germanium possess favorable
properties for quantum computing, including (1) the absence
of valley degeneracy, which would otherwise compete with
the spin degree of freedom for qubits formed in the conduction
band of Si or Ge [1], (2) the high natural abundance of spin-0
nuclear isotopes in Ge, which may be further purified, (3)
the formation of hole states in p-type atomic orbitals whose
wave function nodes occur at nuclear sites, suppressing un-
wanted hyperfine interactions [2,3], and (4) the very light
in-plane effective mass [4–7], allowing for larger dots and
relaxing constraints on device fabrication. The light mass also
improves carrier mobilities, which can exceed 106 cm2/V s
for two-dimensional (2D) Ge hole gases [4]. Leveraging these
strengths, rapid progress has been made in implementing
high-fidelity one- and two-qubit gate operations [5,8–17].

Several of the most important advantages for qubits, such
as the lifting of level degeneracy at the valence-band edge, the
light effective mass, and access to Rashba spin-orbit coupling
(SOC), which enables fast gate operations, are not available in
the bulk. Rather, they emerge in SiGe/Ge/SiGe quantum wells
due to confinement or strain.

While the main qualitative features of the electronic band
structure of uniaxially strained germanium can be under-
stood from simple k · p theory, the approximation becomes
less accurate with increasing strain and nanoscale con-
finement. A more quantitatively accurate approach requires
treating the strain nonperturbatively, for example, by using
ab initio methods. Both approaches have advantages and are

complementary. For example, k · p theory allows us to ex-
ploit crystalline symmetries to simplify the calculations of
the quantum dot wave functions, and it provides an accessi-
ble scheme for studying nonequilibrium dynamical evolution
during qubit gate operations, such as operations based on
electric-dipole spin resonance (EDSR). Moreover, in many
cases, the results of ab initio methods can be incorporated
directly into k·p theory to obtain more reliable results.

In this work we provide a theoretical foundation for the
emergent physics of Ge quantum wells, and explanations for
recent experimental observations, through detailed ab initio
band-structure calculations. We gain further insight into the
origins of qubit-friendly materials properties by performing
k·p calculations. We place special emphasis on understanding
the Rashba coupling, and the matrix elements connecting dif-
ferent orbital states. Taken together, these ingredients enable
electrically driven spin flips via EDSR, with fast, single-
qubit gate frequencies of order 0.2 GHz. In contrast with
other recent work [15], we propose here to exploit the large
out-of-plane value of the Landé g factor, so that relatively
small external magnetic fields are needed for gate operations,
making the qubit more compatible with superconducting gate
structures, such as microwave resonators. A large g fac-
tor also helps to define the qubit with respect to thermal
broadening.

The paper is organized as follows. In Sec. II we describe
the model system, including the heterostructure and top gates
(Fig. 1). In Sec. III we provide technical details of the theoret-
ical methods used in this work. We summarize the ab initio
simulations of the quantum-well portion of the device and
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FIG. 1. Cartoon depiction of a typical heterostructure and gate
stack of a strained-Ge quantum well used to form hole-spin qubits
in quantum dots. Here a 20 nm strained-Ge quantum well is grown
epitaxially on a strain-relaxed Si0.25Ge0.75 alloy, as consistent with
typical experiments [16]. For this arrangement, the strain in the Ge
layer is ε ≈ −1%, as defined in Eq. (1). In addition to metal depletion
gates (blue) and interspersed oxide layers (yellow), we assume a
global top gate (transparent gray) that can accumulate a 2D hole gas
in the quantum well in the absence of doping. Here z is defined as the
growth direction.

our k·p Hamiltonian. We describe our theoretical approach
for modeling EDSR in two steps. We first outline a model
for hole confinement in the vertical direction (perpendicular
to the plane of the quantum well) and the lateral confinement
of a quantum dot, and use this to obtain the effective Rashba
spin-orbit Hamiltonian for our geometry. We then use this
to determine the EDSR Rabi frequency when applying an
in-plane AC electric field. In Sec. IV we describe the main
results of our calculations, including the band-structure details
obtained by ab initio methods (Fig. 2), the corresponding
in-plane and out-of-plane effective masses as a function of Ge
concentration and strain (Fig. 3), and the energy splittings be-
tween the valence bands (Fig. 4). We then apply k·p methods
to help clarify the origins of energy-level splitting, and the
lifting of degeneracy, by artificially separating the effects of
strain and SOC (Fig. 5). Finally, we use our EDSR analysis to
estimate the expected Rabi frequency for a realistic range of
device parameters (Figs. 6 and 7). In Sec. V we discuss our re-
sults and conclude by reviewing the predominant decoherence
mechanisms for Ge hole qubits.

II. DEVICE STRUCTURE

We consider a typical, electrically gated double-dot de-
vice such as the one schematically depicted in Fig. 1. The
essential features include a SiGe/Ge/SiGe heterostructure, an
optional capping layer, and a set of patterned, nanometer-scale
metal gates that are isolated from the heterostructure by oxide
layer(s). When sandwiched between strain-relaxed, Ge-rich
SiGe alloys, the compressively strained Ge forms a type-I
quantum well that can trap either electrons or holes [18],
although we focus exclusively on holes here. Note that the
details of the gate and oxide layers are unimportant for the
following discussion.

For the heterostructure we specifically consider an
accumulation-mode gating scheme [19–21] with no dopants.

FIG. 2. Electronic band structures for (a) relaxed vs (b) uniax-
ially strained Ge, obtained using DFT. To the left of each plot we
show the corresponding real and reciprocal space crystal structures
(lower and upper diagrams, respectively), with lattice constants (a
and c) and symmetry points (�, X , Z , and L), as indicated. [Note that
the tetragonal deformation is exaggerated in (c), for clarity.] (c) and
(d) Blown-up band structures corresponding to (a) and (b). Here we
focus on the [100] (x) and [001] (z) axes because of their relevance
for quantum dot formation, and we note that [100] and [010] are
equivalent. In (a) and (c) cubic symmetry also makes the X and Z
points equivalent and enforces a degeneracy between the top two hole
bands at the � point. The lowest or “split-off” band is completely
detached from the others. Away from the singular � point, the hole
bands are all doubly degenerate. In (b) and (d) the x-z degeneracy
is lifted and only the x-y degeneracy remains. The resulting band
structure is highly anisotropic.

The bottom SiGe barrier is grown with the same composition
as the underlying SiGe virtual substrate, which is assumed
to be strain relaxed and dislocation free. Next, a pure Ge
quantum well is grown, epitaxially, atop the SiGe barriers,
followed by another SiGe barrier layer, with the same com-
position as the bottom barrier. The resulting quantum well is
engineered to be compressively strained, with sharp Ge/SiGe
interfaces on both sides [4,5,22]. The Si concentration in
the SiGe barriers should be high enough to form a quantum
well. For example, a strain-relaxed Si0.25Ge0.75 barrier yields
a valence-band offset of ∼170 meV [18], which is ample for
trapping holes. The width of the well should be less than the
critical thickness for forming additional dislocations; how-
ever, this is not typically a problem for Ge-rich alloys. For
example, the critical Ge thickness of a Si0.25Ge0.75 barrier is
∼30 nm [23]. Finally, we note that Ge forms unstable oxides
[24] (similar problems also occur for SiGe alloys [25]); it may
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FIG. 3. Effective masses for the top three valence bands, in units
of the free-electron rest mass m0, obtained using DFT. Here we con-
sider a thin Ge well grown epitaxially on a relaxed SiGe alloy. The
resulting strain is uniaxial and compressive, and can be as large as 1%
along the growth axis. For a [001] growth axis, the effective masses
mz and mx are inequivalent. While mz is found to vary smoothly with
substrate composition, mx changes abruptly near x ≈ 0, indicating an
inversion of the band character: the top band becomes lighter than the
second band, as consistent with Fig. 2(d), due to band hybridization.
Such behavior can be explained by k·p theory [35]. Since the top
two bands are no longer strictly light or heavy, we refer to them here
as “top” (or first) band and “second” band.

therefore be beneficial to include a silicon capping layer, with
a carefully chosen thickness [26].

III. METHODS

We investigate the electronic band structure of a strained
Ge quantum well by considering two complementary theo-
retical approaches. We first compute the bulk properties of
strained Ge using density functional theory (DFT). From these
band structure calculations, we extract the relevant parameters
for the k·p approximation, which is also used to construct
a Luttinger-Kohn-Bir-Pikus Hamiltonian (LKBP). The LKBP
Hamiltonian incorporates the symmetries of the Bloch states
and is used to characterize the spin-orbit structure of the hole
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FIG. 4. Energy differences between the hole bands at the � point
as a function of the Si concentration in the substrate x obtained us-
ing DFT. Upward-pointing blue triangles correspond to the splitting
between the top of the valence band and the split-off band, while
downward-pointing teal triangles show the splitting between the first
and second bands.

bands. We also use it to characterize EDSR, which enables
rotations of the spin qubits.

A. Density functional theory

Realistic, quantitative predictions for the band structure of
strained Ge are key for assessing the viability of hole-spin
qubits. In this work we compute the band structure using
self-consistent, ab initio density functional theory (DFT),
including spin-orbit interactions. The calculations assume pe-
riodic boundary conditions, and therefore provide information
about the bulk properties of strained Ge. We may then take
into account effects associated with the quantum well and
electrostatic confinement of the dot using simpler, semiem-
pirical approaches, such as effective mass theory.

The calculations are performed using the full-potential
linearized augmented plane wave method (FP-LAPW), as im-
plemented in the Wien2k package [27]. Using the augmented
plane wave plus local orbital (APW + lo) basis set [28–30],
the wave functions are expanded in spherical harmonics in-
side nonoverlapping atomic spheres, with “muffin-tin” radii
RMT, and in plane waves for the rest of the unit cell (the
interstitial region). In the present calculations we adopt RMT =
0.95 Å for Ge, and use 405 k points in the irreducible wedge
of the Brillouin zone. For the spherical-harmonic expan-
sion, the maximum orbital angular momentum is taken to
be lmax = 10, while the plane-wave expansion in the inter-
stitial region is extended to kmax = 9.0/RMT = 9.47 Å−1, and
the charge density is Fourier expanded up to Gmax = 12 Ry.
(These simulation parameters were all checked and found to
yield numerical convergence.) Electron-electron interactions
are described using the modified Becke-Johnson exchange
potential + local density approximation (LDA) correlations
[31,32], which is known to yield accurate calculations of band
gaps in semiconductors.

The primitive Bravais lattice used in our simulations is
body-centered tetragonal with a two-atom basis consistent
with the diamond structure. Details of the real and recipro-
cal lattice structure are depicted in the insets of Figs. 2(a)
and 2(b). For unstrained Ge, the tetragonal lattice parameters
are given by a = b = 4.0008 Å in the plane of the quantum
well, and c = √

2a = 5.6580 Å in the growth direction. For a
SixGe1−x alloy with concentration x, the lattice constant a(x)
is modified, and if the quantum well is grown pseudomor-
phically, the same lattice constant is also imposed upon the
strained Ge. We define the compressive strain as

ε(x) = [a(x) − a(0)]/a(0) < 0. (1)

For the SiGe alloy, Vegard’s law then gives ε(x) = −0.04x,
while Poisson’s ratio for germanium gives ν = 0.27 =
−[c(x) − c(0)]/[a(x) − a(0)] [33]. Combining these formu-
las yields an analytical expression for c(x).

The main results of our DFT calculations are reported in
Sec. IV A. To simplify the calculations we do not explic-
itly consider a quantum-well geometry. Instead, we adopt
a range of strain parameters consistent with a strained Ge
quantum well sandwiched between strain-relaxed SixGe1−x

for the range x ∈ [0, 0.25]. From the previous discussion, this
corresponds to compressive strains in the range ε ∈ [−1, 0]
percent.
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FIG. 5. Energy levels calculated at the � point, using the k·p method, at zero magnetic field, which allows us to artificially decouple the
effects of SOC (represented by the split-off band gap � of bulk Ge) and strain (ε). The five panels show results when these two parameters
are independently varied between zero and their final values, corresponding to a strained quantum well with x = 0.25. Level degeneracies
are indicated by color: black for sixfold, blue for fourfold, and red for twofold. The point symmetry groups and corresponding irreducible
representations for the hole states are indicated in each case. The center panel represents the case with no SOC and no strain, in which the px ,
py, and pz orbitals and both spin states are degenerate. Moving to the right, the strain is increased without including SOC, yielding a fourfold
degenerate band spanned by px and py, and a twofold degenerate pz band. Including SOC, the p orbitals hybridize, creating states with different
combinations of orbitals (represented now as tori) and spins, resulting in three doublets. Moving from the center panel to the left, including
SOC but no strain yields a split-off, doubly degenerate j = 1/2 band and a fourfold degenerate j = 3/2 band, as consistent with bulk, relaxed
Ge at the � point. We represent these states in a classical picture as having orbital angular momenta and spins either parallel (upper quadruplet)
or antiparallel (lower doublet). The different values of orbital angular momenta are represented by the colors of the orbital (darker tones for
lower mj) and by the inclination of the green vectors in relation to the vertical direction. Including strain, the bands hybridize slightly such that
j and mj are no longer a good quantum number. Here the fully strained spectrum is identical to the far right-hand side of the figure.

B. k·p theory for strained germanium

Since quantum dots are large in comparison to the lattice
parameter and are typically operated at low densities (ideally
at the single-hole level), their localized wave functions can be
expressed as superpositions of Bloch states centered near the
� point k = 0. In this regime, it is common, and beneficial,
to complement the DFT analysis with k·p theory, a semiem-
pirical approximation that describes the band structure near
the high-symmetry � point. This approach provides physical
intuition about the symmetries of the hole states and allows
us to perform analytic calculations of the hole wave functions
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FIG. 6. Color map of the EDSR Rabi frequency fR as a function
of both the vertical electric field Fz and the effective dot radius a0,
with magnetic field Bz = 0.06 T, quantum well width d = 20 nm,
and microwave driving amplitude [50] EAC = 0.1 MV/m. All mate-
rials parameters assume a Si concentration of x = 0.25 in the barrier
alloy.

and dynamics. Of particular interest for our work, it gives in-
sights into energy-splitting mechanisms associated with SOC
and strain for the upper valence bands. On the other hand,
k·p theory requires inputs from either first-principles DFT
calculations or experimental measurements. We now describe
the details of our k·p band-structure calculations. The main
results of these calculations are presented in Sec. IV B.

A 6×6 k·p Hamiltonian describing the valence band states
of a bulk, diamond-structure semiconductor was derived in
Ref. [34] by expanding a periodic electronic Hamiltonian
in powers of the wave-vector components k = (kx, ky, kz )

(a)

(b)

FIG. 7. Calculated values of (a) the EDSR Rabi frequency fR and
(b) the corresponding X2π gate time τR = 1/ fR as a function of the
effective dot radius a0. Here the simulation parameters are the same
as in Fig. 6, with Fz = 4.5 MV/m.
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near the � point. The allowable terms in this expansion are
constrained by the symmetries of the crystal, which greatly
simplifies the resulting Hamiltonian.

Similar symmetry arguments can also be used to de-
termine the dependence of the Hamiltonian on the strain
tensor elements {εi j}. The framework we use for these
calculations was developed by Bir and Pikus [35], who

made use of the fact that the deformation potentials de-
pend (approximately) linearly on the strain [36]. We refer
to the full model as the Luttinger-Kohn-Bir-Pikus (LKBP)
Hamiltonian, which can be expressed in the notation of
Ref. [37], with the phase convention of Ref. [38], in
the basis of total angular momentum eigenstates | j, mj〉 ∈
{| 3

2 , 3
2 〉, | 3

2 , 1
2 〉, | 3

2 ,− 1
2 〉, | 3

2 ,− 3
2 〉, | 1

2 , 1
2 〉, | 1

2 ,− 1
2 〉} as

HLKBP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P + Q −S R 0 −S/
√

2
√

2R

−S∗ P − Q 0 R −√
2Q

√
3/2S

R∗ 0 P − Q S
√

3/2S∗ √
2Q

0 R∗ S∗ P + Q −√
2R∗ −S∗/

√
2

−S∗/
√

2 −√
2Q∗ √

3/2S −√
2R P + � 0√

2R∗ √
3/2S∗ √

2Q∗ −S/
√

2 0 P + �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where

P = Pk + Pε, Q = Qk + Qε,

R = Rk + Rε, S = Sk + Sε. (3)

Here the k subscripts refer to Luttinger-Kohn Hamiltonian matrix elements, which reflect the bulk diamond structure and its
symmetries, defined as [39]

Pk = h̄2

2m0
γ1

(
k2

x + k2
y + k2

z

)
, Qk = − h̄2

2m0
γ2

(
2k2

z − k2
x − k2

y

)
,

Rk =
√

3
h̄2

2m0

[−γ2
(
k2

x − k2
y

) + 2iγ3kxky
]
, Sk =

√
3

h̄2

m0
γ3(kx − iky)kz. (4)

When strain is introduced into the Luttinger-Kohn model, the unperturbed valence bands strongly hybridize. The ε subscripts in
Eq. (3) refer to Bir-Pikus strain-matrix elements, defined as [35]

Pε = −av (εxx + εyy + εzz ), Qε = −bv

2
(εxx + εyy − 2εzz ),

Rε =
√

3

2
bv (εxx − εyy) − idεxy, Sε = −dv (εxz − iεyz ). (5)

These strain elements also reflect the underlying lattice sym-
metries, as seen in the form of the strain-tensor elements εi j ,
which mirror the kik j terms appearing in the Luttinger-Kohn
parameters, Eq. (4). The Bir-Pikus expressions in Eq. (5) are
generic, and we note that the parameter εxx(=εyy) is equivalent
to ε(x), defined in Eq. (1). In this work we focus on the special
case of uniaxial strain, for which εzz = −2(C12/C11)εxx and
εxy = εyz = εzx = 0, leading to Rε = Sε = 0.

We note that results similar to those reported here can
be obtained from alternative starting points, such as Kane’s
model, which includes the lowest conduction band, in addition
to the upper valence bands [38]. However, the LKBP model is
commonly adopted when the conduction band is not of direct
interest. The resulting band curvatures, nonparabolicities, and
energy splittings from the LKBP model closely mirror those
obtained from Kane’s model.

The key ingredients for describing physics of quantum dots
are all contained in Eq. (2). For example, � is the energy
splitting between the topmost valence bands and the split-off
band at k = 0, in the absence of strain. The strain is captured

by the parameters {εi j} in the Bir-Pikus expressions, and the
quantum confinement due to gate-induced electric fields, as
well as the quantum-well band offsets, is captured by the wave
vectors {ki}.

The essential physical parameters in Eqs. (2)–(5) include
the bare electron mass m0, the Luttinger parameters [39] γ1 =
13.38, γ2 = 4.24, and γ3 = 5.69, the deformation potentials
[40] av = 2.0 eV, bv = −2.16 eV, and dv = −6.06 eV, and
the elastic stiffness constants for the strain-stress tensor [33]
C11 = 129.2 GPa and C12 = 47.9 GPa. In this work we adopt
the experimentally measured energy splitting of the split-off
band, for bulk, relaxed Ge [18], � = 0.296 eV.

C. Calculating the Rashba spin-orbit coupling

We now consider the practical consequences of the strained
band structure for qubit implementations, which will be used
in the following section to estimate EDSR driving speeds.
We envision a single hole-spin qubit in an electrostatically
defined quantum dot, formed in a Ge quantum well. Due
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to the inversion asymmetry inherent in the approximately
triangular well we consider, Rashba SOC is expected to be
exceptionally strong. We note that the Rashba effect is purely
2D, and although it depends on the energy splitting of the
split-off band �, its physical origins are distinct. Since the Ge
crystal lattice has near-inversion symmetry, the Dresselhaus
interaction is known to be absent in the bulk. In quantum
wells, Dresselhaus-like terms may arise due to the presence
of interfaces [41]. However, these depend on the coupling
to the conduction and split-off bands and we expect them
to be quite weak in a quantum well, because the hole wave
functions barely enter into the barrier regions [42]. Moreover,
when Rashba terms are present in hole systems they tend to
overwhelm all other spin-orbit interactions [42]. With these
observations in mind, we focus only on the Rashba SOC for
the remainder of this work, and discuss the ways it can be used
to implement electric-dipole spin resonance for qubit rotations
and spin dipole-dipole entanglement.

There are two prerequisites for observing Rashba SOC in a
quantum well: a broken structural symmetry and an intrinsic
SOC. The broken symmetry is provided here by an asymmet-
ric confinement potential of the form

Vz(z) =
{

eFzz (|z| < d/2),
∞ (otherwise), (6)

where Fz is the average electric field across the quantum
well, and the well width d = 20 nm is held fixed for all our
calculations. (Note that d is not an important parameter in this
calculation, since the electric field draws the hole wave func-
tion to the top of the quantum well, so that it does not interact
strongly with the bottom of the well.) The total Hamiltonian
for the vertical confinement of holes is then given by

Hz = HLKBP(k2, k̂z ) + Vz(z), (7)

where k̂z = −i ∂
∂z and k2 = k2

x + k2
y .

The strength of the Rashba SOC depends on the details of
the wave function confinement and on the local electrostatics.
It is mainly determined by the hybridization of the top two
valence bands, since the split-off band is far away in energy.
However, the split-off band indirectly enters the calculation
because it affects other parameters, such as the effective
masses and the intrinsic splitting of the top bands. To estimate
the confinement along the ẑ direction, we therefore consider
the full three-band model (not counting spin), as described
by HLKBP, which includes both strain and SOC effects. We
introduce variational, effective-mass wave functions for each
of the bands, given by [43]

ϕi(z) =

⎧⎪⎨
⎪⎩

sin
[

π
d

(
z+ d

2

)]
exp [−bi( z

d + 1
2 )]

π

√
d exp(−bi ) sinh(bi )

2π2bi+2b3
i

(|z| < d/2),

0 (otherwise).

(8)

Here i is the band index and {bi} are the dimensionless
variational parameters. Physically, the ratios d/bi represent
the effective widths of the wave functions. A separate vari-
ational parameter is required for each of the bands because
of their distinct effective masses. We determine their val-
ues by minimizing the eigenvalues of Hz in the limit of
k = 0, in which case the Hamiltonian is already diagonal and
the bands decouple. The effective Rashba coupling within

the topmost band is determined by applying a Schrieffer-
Wolff transformation to Eq. (7), using the states shown in
Eq. (8), to eliminate the coupling to the other two bands [42].
In this way we obtain the effective Hamiltonian H0 + HR,
where H0 = h̄2(k2

x + k2
y )/2mx is the kinetic energy in the

effective mass approximation. For electrons, the Rashba inter-
action couples states with �mj = ±1. In contrast, the topmost
valence band is doubly degenerate, with |mj | = 3/2. Tran-
sitions within this band therefore require that �mj = ±3,
consistent with Hamiltonian operators that are predominantly
cubic in k [42,44], and may be expressed as

HR = iαR2(k3
+σ− − k3

−σ+)

+ iαR3 (k+k−k+σ+ − k−k+k−σ−), (9)

where σ± = σx ± iσy are Pauli spin matrices and k± = kx ±
iky. The coupling constants αR2 and αR3 are derived in
Ref. [42]. Here αR2 arises from the spherically symmetric
component of the Luttinger-Kohn Hamiltonian, while αR3

arises from the cubic-symmetric component.

D. Calculating the EDSR Rabi frequency

An external magnetic field is used to define the quantiza-
tion axis of the spin qubit. This field also generates rotations
about the qubit’s ẑ axis. However, a universal gate set also
requires being able to perform rotations about the x̂ axis, using
a technique such as spin resonance. To implement electric-
dipole spin resonance, microwave voltage signals are brought
to the qubit through the top-gate electrodes used to confine the
hole laterally and form the quantum dot. This time-varying
drive causes the hole to oscillate in the plane of the quantum
well. SOC then provides a mechanism for converting the
orbital motion into spin oscillations [45,46]. When the drive
frequency is resonant with the spin precession frequency,
the desired x rotations occur. We now estimate the resulting
gate speed.

We assume the presence of Rashba SOC, as described in
the previous section. Contrary to other proposals that we have
seen, we assume the quantizing B field is oriented perpen-
dicular to the plane of the quantum well, to take advantage
of the large out-of-plane g factor [44] gz, which reduces the
constraints on the field magnitude. The qubit Hamiltonian for
EDSR is then given by

Hq = H0(k → −i∇ − eA/h̄) + HR(k → −i∇ − eA/h̄)

+Vd (x, y) + (gz/2) μBBzσz + eEACx cos(ωt ) σx,

(10)

where A = (Bz/2)(−y, x, 0) and gz ≈ 8 is the Landé g factor
for Ge, in the direction perpendicular to the quantum well
[16]. For a circular, parabolic dot we assume an electrostat-
ically defined confinement potential of the form

Vd (x, y) = 1
2 mxω

2
0(x2 + y2), (11)

where h̄ω0 is the energy splitting between the orbital levels
when Bz = 0. If we now assume that Bz > 0, but set EAC = 0,
the eigenstates of Hq are defined as Fock-Darwin orbitals
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[47,48], for which the ground state (n = 0) is given by

φ0(x, y) = 1

a0
√

π
exp

[−(x2 + y2)/2a2
0

]
, (12)

and the first excited states (n = 1) are given by

φ±1(x, y) = 2

a2
0

√
π

(x ± iy) exp
[−(x2 + y2)/2a2

0

]
. (13)

For an out-of-plane magnetic field, we note that the dot
is confined both electrostatically and magnetically, with an
effective radius of a0 = √

h̄/|eBz|/(1/4 + ω2
0/ω

2
c )1/4, where

ωc = |eBz|/mx is the cyclotron frequency.
For hole-spin qubits, the logical (spin) states are formed

exclusively within the ground-state orbital φ0. However, the
EDSR spin-flip mechanism involves virtual transitions to φ±1

via a second-order process that combines AC driving and
SOC. The driving term in Eq. (10), eEACx cos(ωt ), is applied
through one of the nearby top gates [49], generating an or-
bital transition with �n = ±1. Initial proposals for hole-based
EDSR [2] therefore required Dresselhaus SOC, which can
generate such �n = ±1 transitions. For group-IV materials,
however, the Dresselhaus mechanism is normally absent, as
pointed out above. Moreover, the dominant αR2 term of the
Rashba coupling, Eq. (9), is cubic in k, as consistent with
�n = ±3, and therefore does not support EDSR. An impor-
tant conclusion of the present work is that the αR3 term, which
is not typically considered in such calculations, provides the
required �n = ±1 transitions that support EDSR. In what
follows, we focus exclusively on this term.

To calculate the EDSR Rabi frequency fR, we evaluate
the full Hamiltonian, Eq. (10), using the Fock-Darwin basis
states, and perform a Schrieffer-Wolff transformation to elim-
inate the coupling to the excited states. For resonant driving,
with ω =

√
ω2

0 + ω2
c/4, we obtain

h fR = −eEACαR3

2a2
0

[(
1

�1
+ 1

�2

)
−

(
1

�3
+ 1

�4

)]

− e2EACαR3Bz

4h̄

[(
1

�1
+ 1

�2

)
+

(
1

�3
+ 1

�4

)]
,

(14)

where

�1 ≡ −h̄ω − 1
2 h̄ωc,

�2 ≡ −h̄ω − 1
2 h̄ωc − gzμBBz,

�3 ≡ −h̄ω + 1
2 h̄ωc + gzμBBz,

�4 ≡ −h̄ω + 1
2 h̄ωc. (15)

This result is explicitly proportional to EACαR3. Moreover, fR

is found to be linear in Bz, as readily verified by expanding
Eq. (14) in powers of (small) Bz:

| fR| = eEACαR3gzμBBzm2
xa2

0

2π h̄5 . (16)

We note in Eq. (16) that the Rabi frequency scales as a2
0.

The explanation for this interesting behavior is that the EDSR
strength is determined by the Rashba coupling between the

ground and excited states of the dot. Since larger quantum dots
have smaller confinement energies, the excitation energies are
also small, yielding faster EDSR. In Sec. IV D, below, we
provide numerical estimates for fR, based on results of our
DFT and k·p calculations.

IV. RESULTS

We now describe the numerical results of our DFT and k·p
calculations. We also discuss the shifts in energy caused by
confinement and provide numerical estimates for Rabi fre-
quencies that can be obtained from EDSR. The main products
of the DFT and k·p calculations are the Ge band structures,
as a function of strain. The calculations also allow us to char-
acterize the different bands, with regards to effective mass,
spin, and band hybridization. The results are summarized as
follows. In the limit of zero strain (ε = 0), the topmost band
is considered to be “heavy,” with a large transverse effective
mass mx. Away from k = 0, this heavy band is doubly degen-
erate, with total spin quantum numbers mj = ±3/2, which are
well defined. For nonzero strain, the top two bands become
increasingly hybridized, with nonparabolic band structures.
Focusing mainly on the topmost band where the qubit is
formed, mx abruptly jumps from being heavy to light. This
is the mass experienced by large dots (with small k), due to
weak lateral confinement. However, small dots (with large
k) may experience an effective mass that is heavy due to
the band nonparabolicity. Similarly, for large dots, the mj

quantum number may have values near ±3/2. However, for all
k2 = k2

x + k2
y > 0, the top two bands hybridize significantly,

causing the mj quantum numbers to mix, such that mj is
no longer a good quantum number. Similar considerations
also apply to the second valence band, although it does not
house qubits. For the reasons described above, we therefore
adopt the labels “top” (or “first”), “second,” and “split-off”
for the three valence bands. Since they do not house qubits,
the second and split-off bands are considered to be “leakage”
bands.

A. DFT estimates

DFT results are plotted in the main panels of Figs. 2(a) and
2(b), where we compare Ge band structures for the cases of
x = 0 (unstrained Ge) and x = 0.25 (strained Ge). In the first
case, the cubic symmetry ensures that the energy dispersion
is identical for wave vectors in the plane of the quantum well
(kx, ky) and the growth direction (kz). (Here the subscript x
refers to the [100] axis, rather than the alloy composition.)
In the second case, the X and Z points are inequivalent, as
apparent in the figure. Focusing on holes, Figs. 2(c) and 2(d)
show blown-up views of the top of the valence band. Since
the quantum dot wave functions are constructed mainly from
Bloch states at the very top of the band, the essential physics
is captured in the band curvature at the � point, which is
proportional to the inverse effective mass. In the case of strain,
we observe anisotropic behavior in the x (in-plane) and z
(out-of-plane) directions. Figures 2(c) and 2(d) also highlight
the large energy splittings between the different bands under
strain, which is key for defining the qubit states.
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Figure 3 provides a more detailed picture of the in-plane
(mx) and out-of-plane (mz) effective masses, obtained for
strains in the range ε ∈ [−1, 0] percent. The corresponding
values of x in the SixGe1−x barrier alloy are also shown. We
note that the in-plane mass of the top two bands changes
abruptly near x = 0. Remarkably, mx becomes lightest for the
top band, over the experimental regime of interest (x � 0),
despite the usual label of “heavy-hole” band. As noted above,
we therefore refrain from referring to heavy or light holes
in this work, adopting instead the terminology first (or top),
and second bands. For mz, the top band remains heaviest for
all x considered here, and is a smooth function of the strain.
These results are in reasonable agreement with several recent
experiments [4–6], and they agree very well with Ref. [7], in
which band nonparabolicity is explicitly accounted for.

Figure 4 shows the corresponding results for the energy
dispersion of the valence-band edges. In the limit x → 0, the
top two bands become degenerate, and the split-off band is
lower in energy by an amount � = 0.29 eV, which compares
well with the experimentally measured value of 0.296 eV
[18]. For x > 0, the band degeneracy is lifted by a signif-
icant amount, of order 100 meV for typical quantum-well
heterostructures. In contrast with the effective mass, no abrupt
change occurs for the valence-band edges near x = 0.

To summarize the present results, DFT predicts a sudden
change in the in-plane mass of the top band as the strain
decreases from zero, with mx becoming very light. Moreover,
the degeneracy of the top two bands is lifted, and the energy
splitting between all the bands is enhanced. These results are
all consistent with recent experiments.

B. k·p analysis

The k·p approach allows us to explore the mechanisms that
cause the changes in the band structure and clarify their sepa-
rate roles. In Fig. 5 we plot the edges of the top three valence
bands, as a function of either strain or SOC. The symmetries
of each band are indicated for the � point. By following
the progression from a single sixfold-degenerate band (center
panel) to three twofold-degenerate bands (outer panels), we
infer that the splitting of the top two bands requires both
strain and SOC. The resulting top valence band is twofold
degenerate, in accordance with time-reversal symmetry, and
can be split by an external magnetic field to define the qubit
states |0〉 and |1〉, and their quantization axis. The calculations
also show that the hybridization of the topmost bands occurs at
second order, via strain-induced coupling to the split-off band.
Since this effect is weak, the total angular momentum in the
top band, which defines the qubit, is still given by j ≈ 3/2 and
mj ≈ ±3/2 to a reasonable approximation, as indicated in the
figure. Spin flips with �ms = ±1 are allowed by EDSR, how-
ever, via the Rashba coupling mechanism described above.

In the k·p calculations we note that strain has been intro-
duced perturbatively. Hence, although the energy splitting of
the lowest valence band is accurate when ε = 0, since it is
taken as an input parameter, the calculated energies become
increasingly inaccurate for higher strain values. For example,
when ε = −1%, the more accurate DFT result of �= 0.53 eV
is >50% larger than the k·p estimate. Likewise, the k·p

energy splitting of 0.06 eV between the top two valence bands
is approximately half the DFT estimate of 0.13 eV.

To summarize, the k·p theory reproduces the general fea-
tures of the band structure that was obtained more rigorously
using DFT. Although k·p methods are less accurate than DFT,
they allow us to clarify that both strain and SOC are required
to fully lift the band degeneracy at k = 0.

C. Quantum well corrections to the energy

The energies plotted in Fig. 4 were obtained without
including the quantum-well subband confinement energies,
which differ for different bands, and can be sizable. Here we
show that the subband contribution to the hole energy does not
compromise the energy splitting between the top two valence
bands or change the effective ordering between them.

The subband energies differ for the top two valence bands
due to their different effective masses. We can estimate these
effects by assuming a triangular, vertical confinement poten-
tial, as in Eq. (6). Here we assume an electric field value of
Fz ≈ ep/ε, which is the field required to accumulate a 2D
hole gas with density p = 4×1011 cm−2, and we linearly in-
terpolate the dielectric constant in the SixGe1−x barrier layer,
obtaining the relation ε(x) = (16.2 − 4.5x)ε0, where ε0 is
the vacuum permittivity. We further assume that the vertical
extent of the wave function is less than the quantum well
width, allowing us to ignore the bottom edge of the well. The
triangular potential has known solutions [51], yielding a con-
finement energy of 2.34 E0 for the first subband and 4.09 E0

for the second subband, where E0 = (h̄2e4 p2/2mzε
2)1/3 is a

characteristic energy scale and mz depends on both the alloy
composition and the particular valence band. (Note that we do
not consider band-nonparabolicity effects here, although they
can be significant due to the large energies involved.) In this
way, when x = 0.25, we obtain a total energy splitting (in-
cluding both band and subband energies) of 140 meV for the
lowest-energy confined holes in the first and second valence
bands, with the first band still having the lowest energy. In
comparison, the energy splitting between the first and second
subbands within the top valence band is 27.7 meV, which
therefore represents the predominant leakage channel for the
qubit. We conclude that band and subband excitations of the
qubit level are much larger than other relevant energy scales
in this system, including the thermal energy of the hole reser-
voirs (5–15 μeV), the interdot tunnel couplings (∼200 μeV),
and exchange interactions (∼200 μeV).

D. Rabi frequency estimates

In Sec. III D, particularly in Eq. (14), we obtained general
results for the EDSR Rabi frequency fR as a function of sys-
tem parameters. In Fig. 6 we now plot the dependence of the
Rabi frequency on the dot radius a0 and the vertical electric
field Fz. In Fig. 7 we further show a line cut through this data,
and a corresponding plot of τR = 1/ fR, representing the gate
time for an X2π gate operation. Generally we find that larger
dots yield faster gate operations due to their smaller orbital en-
ergies. (We note that, for sufficiently large a0, the perturbative
methods used here become inaccurate.) To take an example,
for a vertical field of Fz = 4.8 MV/m, which is typical for
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some experiments but can be as large as 10 MV/m [52], and
effective dot radii in the range of 30–60 nm [5,16,53], Rabi
frequencies can be of order 0.2 GHz, corresponding to a 5 ns
gate time for an Xπ gate. Such fast gates are very promising
for high-fidelity quantum gate operations.

V. DISCUSSION AND CONCLUSIONS

Recent experimental work has already demonstrated that
holes in germanium are promising as qubits. In this work
we have explored how confinement and strain are critical for
achieving such strong performance, particularly in the context
of EDSR-based gate operations. We have also demonstrated
that operating the qubits in an out-of-plane magnetic field
may be advantageous because of the highly anisotropic g
factor.

To conclude, we comment on the expected decoherence
mechanisms affecting Ge hole spins. As mentioned in the
Introduction, hyperfine interactions are suppressed for hole
spins due to the p-orbital character of the valence band [2,3],
and the low natural abundance (<8%) of Ge isotopes with
nonzero nuclear spin, which can be further reduced by iso-
topic purification [54]. However, charge noise is ubiquitous
in semiconductor devices [55], including Ge quantum dots,
particularly in the vicinity of the gate oxides. Although the
poor quality of Ge oxides could exacerbate this problem, the
simple inclusion of a Si capping layer should bring Ge/SiGe
on par with related systems, such as Si-based qubits. Sim-
ilarly, phonon noise should be similar in Ge- and Si-based
devices; in both cases, phonon effects are much weaker than in
GaAs charge [56] or spin qubits [57,58], due to the absence of
piezoelectric phonons. Hence, hole spins in Ge quantum wells

should be relatively well protected from their environment,
making them particularly strong candidates for quantum dot
qubits.
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