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Anisotropic Berry phase in the Dirac nodal-line semimetal ZrSiS: The effect of spin-orbit coupling
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The topological nodal-line semimetals (NLSMs) possess a loop of Dirac nodes in the k space with linear
dispersion, different from the point nodes in Dirac/Weyl semimetals. While the quantum transport associated
with the topologically nontrivial Dirac fermions has been investigated extensively, features uniquely associated
with the extended nodal lines remain to be demonstrated. Here, we investigate the quantum oscillations (QOs) in
the nodal-line semimetal ZrSiS, with the electron transport along the c axis and magnetic field rotating in the ab
plane. The extremal orbits identified through the field orientation dependence of the QOs interlock with the nodal
line, leading to a nonzero Berry phase. Most importantly, the Berry phase shows a significant dependence on the
magnetic field orientation, which we argue to be due to the finite spin-orbit coupling gap. Our results demonstrate
the importance of the spin-orbit coupling and the nodal-line dispersion in understanding the quantum transport
of NLSMs.
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I. INTRODUCTION

Topological semimetals feature conduction and valence
band crossing [1–3], a topologically distinct property, which
garnered extensive attention due to the low energy excitation
resembling that of relativistic particles [4,5]. A large body of
exotic behavior useful for quantum information technology,
including high magnetoresistance (MR), high carrier mobil-
ities, and chiral anomaly, have been explored [6]. Protected
by the crystalline or the time-reversal symmetry [7], the band
crossing in topological semimetals is stable, which has led to
distinct topology-related features, particularly the presence of
nonzero Berry phase associated with the nodes in the k space
[8,9].

The band crossing in the k space can be Dirac/Weyl
nodes occurring at discrete points or nodal lines which con-
sist of open lines or closed rings [10–12]. Linear dispersion
near the nodes was confirmed by band structure calculations
and measurements. In particular, electrical quantum transport
measurements played an indispensable role in the study of
topological semimetal for its ability of quantifying the Berry
phase [6]. The topological signature of Dirac/Weyl nodes
in the quantum transport, due partly to the discrete nodal
points which render an ‘isotropic’ Berry curvature, has been
well characterized. However, for the nodal-line semimetals
(NLSMs), the nodal points at different k values do not locate
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at the same energy. This dispersion of the nodal lines them-
selves adds complexity, such as the correlation effect found
in ZrSiSe [13]. To date, the physical consequences of the
nodal-line dispersion in quantum oscillation measurements
have not been demonstrated.

One representative topological NLSM, ZrSiS, attracted
extensive attention. ZrSiS possesses a lattice structure with
square nets of Si, which turned out to be described by the
square-net model proposed by Young and Kane [5]. One im-
portant consequence is that ZrSiS hosts two types of Dirac
nodes: (i) Dirac points protected by the nonsymmorphic sym-
metry and (ii) Dirac nodal lines protected by the inversion
symmetry and time-reversal symmetry [14]. The two types
of Dirac line nodes is different in its response to spin-orbit
coupling (SOC): The former is immune to SOC, while the
latter will open a gap. However, the former is far below the
Fermi energy, therefore the Fermi surface (FS) in ZrSiS is
purely consisted of linearly dispersed bands close to the nodal
lines, for which the effect of SOC is non-negligible. The linear
band dispersions persist up to 2 eV from the Fermi level [15].
As a result, the electron transport is dominated by the Dirac
fermions, providing an ideal system to explore the effect of
nodal lines on the transport properties.

The FS of ZrSiS has been characterized by a number of
experiments, including ARPES [15–17], de Haas-van Alphen
(dHvA) oscillations [18], Shubnikov-de Haas quantum (SdH)
oscillations [19,20], and thermoelectric quantum oscillations
[21]. The FS consists of an electronlike and a holelike band,
forming a diamond shape, which fully encloses the nodal line.
The Berry curvature associated with the nodal line was found
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in earlier quantum oscillation measurements, most of which
adopted a configuration with the electron transport in the ab
plane and a magnetic field parallel to the c axis. A phase shift
in the oscillations was identified clearly as a consequence of
the topology of the band structure. Nevertheless, the reported
values of phase shift bear a significant variation. Little insight
on the effect of nodal-line dispersion and SOC was obtained
due to the limited measurement configurations. Here, we per-
formed measurements of SdH oscillations on ZrSiS single
crystals with the electron transport along the c axis and a
rotating magnetic field in the ab plane, where the nodal line
manifested a significant dispersion. A systematic variation of
the SdH oscillations was observed upon the change of the az-
imuthal angle. However, the Berry phase deduced consistently
from both the Landau fan diagram and the Lifshitz-Kosevich
formula shows significant variation. The configuration be-
tween the FS and the nodal lines requires a nontrivial Berry
phase for all azimuthal angles. We argue that the change in the
Berry phase found in our experiments is due to the effect of
SOC on the dispersed nodal lines, an effect often overlooked
in previous experiments.

II. EXPERIMENTAL METHOD

Single crystals of ZrSiS were grown by the chemical
vapor transport method. ZrSiS crystals were characterized
by powder x-ray diffraction (XRD) to confirm purity and
single-crystal XRD with the Laue method to determine crystal
orientation. All crystals were polished to be a regular shape
which enables in-plane and out-of-plane transport measure-
ments. The sample quality is further confirmed by a large
residual resistance ratio of 250. In-plane and out-of-plane
resistance were measured with current applied along the [100]
and [001] direction, respectively, by using the standard four
terminal method in a Quantum Design physical property mea-
surement system (PPMS) with 14 T magnet and ac transport
and resistivity options. The angle dependent MR was mea-
sured with a rotator for controlling the angle between the
magnetic field and crystal axis.

III. RESULTS AND DISCUSSION

The tetragonal crystal structure of ZrSiS is shown in
Fig. 1(a), which consists of quintuple layers of S-Zr-Si-Zr-S.
One particular feature of the lattice is that Si forms square
networks, as can be seen from the top view of the lattice. The
crystal possesses a glide-mirror symmetry with respect to the
Si layer. The neighboring S layers are weakly bonded which
form natural cleavage planes [22,23]. Both the in-plane (resis-
tivity along the a axis, ρa) and out-of-plane (resistivity along
the c axis, ρc) resistivities at zero magnetic field show metallic
behavior, as seen in Fig. 1(b), with the resistivity anisotropy
ρc/ρa around 7 at 2 K, consistent with earlier reports [24].
The residual resistance ratio (RRR) along the c axis is found
to be up to 250, confirming the high crystal quality. The
similar temperature dependence of both in- and out-of-plane
MR signals a similar dominant transport mechanism for both
directions.

The anisotropy of the system was also investigated with
the current applied along the c axis and the magnetic field
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FIG. 1. (a) Tetragonal crystal structure of ZrSiS consisting of
quintuple layers of S-Zr-Si-Zr-S. The neighboring S layers are
weakly bonded which forms natural cleavage planes. (b) Zero-field
in-plane (ρa) and out-of-plane (ρc) resistivity. Resistivities in both
directions show metallic behavior with anisotropy ρc/ρa(T = 2 K)
∼7 and excellent crystal quality with a RRR ∼ 250 in ρc. (c) Az-
imuthal angle dependent MR with the current applied along the c
axis and a magnetic field rotating in the ab plane at 2 K. The MR
shows apparent fourfold symmetry. SdH oscillations were observed
in a large magnetic field around the principal axes.

rotating in the ab plane. This measurement configuration en-
sures the orthogonal relative orientation between the current
and the magnetic field for all azimuthal angles. In Fig. 1(c),
the azimuthal angle-dependent values of MR for various mag-
netic fields at 2 K are shown. An apparent fourfold symmetry
is evident for all magnetic fields. ZrSiS possesses maximal
resistivity for H parallel to the principal in-plane axes and
minimal resistivity for H along the bisector in-plane axes. A
close examination of the data reveals a small and complex
pattern near the bisector directions, which is similar to ear-
lier measurements [24,25]. The exact nature of this behavior
is not yet clear, although the detailed FS morphology may
be responsible. In addition, SdH oscillations were found to
emerge with the increasing field, manifested as small peaks
seen around the principal axes. The angular dependence of
SdH oscillations is determined by the anisotropy of the FS in
the in-plane direction.

The MR for the same measurement configuration (I//c,
H//ab plane) is shown in Fig. 2(a), which exhibits nearly
quadratic field dependences at various azimuthal angles ϕ.
The subquadratic field dependence is commonly observed
in topological semimetals [6]. The MR magnitude decreases
monotonically with ϕ increased from 0◦ to 45◦, again owing
to the FS anisotropy. Most notably, the MR reaches as high
as 3.2 × 105% at 14 T and 2 K for ϕ = 0◦ with nonsaturating
trend. Similar results were obtained in previous studies and at-
tributed to the close-to-compensate electron and hole carriers
[26].

The prominent oscillatory part in the MR can be ex-
tracted by subtracting the nonoscillatory background. The
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FIG. 2. (a) Magnetoresistance with current applied along the c axis and magnetic field at various azimuth angle ϕ. The magnitude
of the magnetoresistance reaches as high as 3.2 × 105 percent at 14 T and 2 K. The inset shows the schematic of the measurement
configuration. (b) Extracted oscillatory part in magnetoresistance at various angles by subtracting the nonoscillatory background. (c) Fast
Fourier transformation (FFT) spectra of the SdH oscillations at various angles. The gray solid lines are guides to illustrate the frequency
evolution. (d) Angle dependence of the resolvable frequencies β1, β2, and 2β2. The red and blue solid lines are fittings using the simplified
model in (f). The simplified cylinder model fits the β1 and β2 branches very well, as shown by the solid lines. (e) Schematic FS in the Z-R-A
plane, adopted from Ref. [28]. The FS consists of an electronlike dog-bone (indicated by the blue line) and a holelike petal part (gray line).
(f) A simplified model of the FS in (e). The electronlike dog-bone bands are approximated by perpendicular cylinders. The corresponding
extremal cross sections are indicated by the blue dashed circles, with the angle dependence of β1 ∼ A0

cos (45◦−ϕ) and β2 ∼ A0
cos (45◦+ϕ) , respectively.

corresponding fast Fourier transformation (FFT) spectra are
shown in Fig. 2(c). There are three major features in the FFT
spectra: (i) The peak with the lowest frequency γ around 30 T,
which is weakly angle dependent, is close to that found in
the in-plane transport [20]. (ii) The peak at 174 T for ϕ = 0◦
is seen to bifurcate into two branches with opposite angular
dependences (denoted as β1 and β2, respectively) and marked
with gray solid lines. (iii) The peak with the higher frequency
is noted as the double-frequency peak of β2. We note that an
additional small shoulder peak appeared near β1, which could
be the effect of Zeeman splitting [26]. In addition, several
small peaks with very low frequencies appear for small ϕ,
which are likely due to the area near the crossing point of the
nodal lines, as proposed recently [27].

To obtain a quantitative understanding of the oscillation
frequencies described above, additional information on the
FS is needed. However, the nodal-line semimetallic nature
of ZrSiS makes its FS structure very sensitive to the exact
position of the Fermi level, which is partly the reason for
the apparently different FS reported in earlier DFT calcula-
tions [16,28,29]. Among the resolvable peaks (γ , β1, and β2)
summarized in Fig. 2(c), we will focus on the two better-
resolved peaks β1 and β2 whose azimuthal angle dependence
is shown in Fig. 2(d). The two peaks emerge from the same
174 T frequency at ϕ = 0◦. With increasing ϕ, β1 decreases
progressively, while β2 increases. These features provide an

important clue for the origin of these two peaks. The most
likely FS that corresponds to the carrier density in our crystals
is shown in the schematic in Fig. 2(e), which is the FS of ZrSiS
at kz = π

c reproduced from Ref. [28]. The FS consists of a
dog-bone electronlike and a petal holelike pocket. If we ap-
proximate this FS by two cylinders as shown in Fig. 2(f), two
extremal cross sections exist with opposite ϕ dependences,
β1 ∼ A0

cos (45◦−ϕ) and β2 ∼ A0
cos (45◦+ϕ) , respectively, where A0 is

the base area of the cylinder. It is evident that upon increasing
azimuth angle ϕ, the cross-sectional areas for β1 and β2 start
off with equal size, followed by one decreasing and the other
increasing. We found that the angle dependences of the fre-
quencies can fit the experimental data very well, as shown by
the red and blue solid lines in Fig. 2(d). The resultant fitting
parameter A0 for the β1 and β2 branches are 126 T and 120 T,
respectively, reasonably close to one another. The quality of
the fitting suggests that quantum oscillations of β1 and β2

correspond to the extremal orbits in the electronlike bands as
depicted in Fig. 2(e).

The well-defined QOs permit a quantitative analysis of its
underlying physical parameters. For that we need to extract
the oscillatory components associated with discrete frequen-
cies. As shown in Figs. 3(a) and 3(b), the raw oscillation data
were treated between the cutoff frequencies marked with dif-
ferent colors. The extracted single-frequency oscillatory parts
are plotted separately in Figs. 3(c) and 3(d). The reliability of
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FIG. 3. [(a),(b)] FFT spectra of the quantum oscillations with magnetic field at ϕ = 0◦ and 15◦ for T = 2 K. [(c),(d)] The extracted
single-frequency oscillatory parts at ϕ = 0◦ and 15◦. The sum of all the extracted oscillatory components matches with the raw data.

such extraction is seen in the match between the sum of the
three extracted oscillations and the raw data. This procedure
is applied to MR oscillations at all azimuthal angles.

As we pointed out above, the hallmark of a topo-
logical semimetal in transport is a distinct Berry phase
shift. The Lifshitz-Kosevich (LK) formula describes the
SdH oscillation, �ρxx ∝ RSRT RD cos [2π ( F

B + n0)], where

RS = cos ( πg∗m∗
2me(1+λe-ph ) ), RT = 2π2kBT m∗/h̄eB

sinh (2π2kBT m∗/h̄eB) , and RD =
e−2π2kBTDm∗/h̄eB are spin, thermal, and Dingle damping terms,
respectively, and g∗ is the effective g factor, m∗ the effective
mass of the quasiparticle, me the electron mass, λe-ph the
electron-phonon coupling strength, kB the Boltzmann con-
stant, and TD the dingle temperature strength. In particular,
n0 = − 1

2 + β ± δLK is the total phase, with Berry phase φB =
2πβ and phase shift δLK. δLK is related to the curvature of the
FS with 0 for two dimensions and ± 1

8 for three dimensions.
Figure 4(a) presents the temperature dependence of the os-
cillatory amplitude with field at ϕ = 0◦. The effective mass
m∗ can be extracted through the fitting of the temperature
dependence of the oscillatory amplitude using the thermal
damping term RT in the LK formula. The resultant effective
mass is about 0.29 electron mass, with a small angular de-

pendent variation in the range of 0.22 to 0.29 as shown in
Fig. 4(b). Most importantly, the total phase n0 obtained from
the LK fitting shows significant angle dependence, as shown
in Fig. 4(c). The reliability of the extracted value of n0 is
further verified by treating the same quantum oscillation data
using the Landau fan diagram. Values of n0 obtained from
both methods are consistent.

The total phase n0 is determined by the dimensionality of
the FS and the possible Berry phase, as n0 = − 1

2 + φB

2π
+ δ3D.

The cyclotron orbit we have been focused on is the maximum
cross section in the 3D electronlike band, so that δ3D = − 1

8
[30]. Therefore, we obtain the corresponding Berry phase
φB = 2π (n0 + 5

8 ), as shown in the inset of Fig. 4(c). It can
be seen that φB is nonzero for all azimuthal angles. It is close
to the ideal Berry phase of π for 15◦ � θ � 25◦ and is close
to zero but remains finite for the rest field orientations. The
angle dependence of the Berry phase is intriguing. While it is
reasonable to see a nonzero Berry phase in NLSMs, a close
examination of the magnetic field orientation with respect to
the FS [Fig. 2(e)] shows that the cyclotron orbit interlocks
the nodal line for all the field angles in our measurements.
Therefore, it is expected to show nonzero Berry phase for
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FIG. 4. (a) The β1 oscillatory component of the magnetoresistance at various temperatures from 2 K to 20 K at ϕ = 0◦. (b) The angle
dependence of effective mass fitted from the temperature dependence of the oscillatory amplitude. (c) The angle dependence of total phase
extracted by fitting with LK formula and Landau fan diagram, respectively (see text). The inset shows the corresponding Berry phase indicating
its nonzero value for all azimuthal angles. Error bars count the uncertainty in fitting the single-frequency oscillation only.

all the investigated azimuthal angles. However, the significant
variation of the Berry phase requires further interpretation.

It has been noted both theoretically and experimentally
that the nodal lines exhibit sizable dispersion [13,31,32], in
contrast to an ideal flat line in k space. Its effects have been
observed in NLSMs. In particular, the presence of SOC can
induce a finite gap �SO which breaks the nodal lines [30].
This will not change the overall topology of the electronic
bands, instead it results in a quantitative modification of the
Berry phase, φB = ±π (1 − �SO

2EF
), which depends on both the

Fermi energy EF and the spin-orbit gap �SO. Taking this into
account, it is likely that the observed angle-dependent Berry
phase reflects the effect of a finite spin-orbit gap.

The Fermi energy can be estimated using the Landau in-
dex found in the quantum oscillations as the Dirac bands
in NLSMs quantize under magnetic field [33] as E±n =
±

√
2eh̄|n|Bv̄2 cos φ + �2, where v̄ is the average Fermi ve-

locity normal to the nodal-line direction, � is half of the gap,
which in our case is �SO

2 , and φ is the angle between the
applied magnetic field and the nodal line. For a crude estimate,
we use the Fermi velocity h̄vF of 2.65 eV Å along the �-M
direction (perpendicular to the nodal line) obtained from a
quasiparticle interference measurement [34]. The Fermi en-
ergy EF , as counted from the Fermi level to the neutral point,
is found to be 167 ∼ 173 meV for 0◦ � ϕ � 45◦. EF varies
significantly along the nodal line due to its dispersion. To-
gether with the reported infrared optical [32] and APRES [17]
data on ZrSiS that the �SO along the nodal lines is 30 ∼
50 meV, the correction to the Berry phase φB = ±π (1 − �SO

2EF
)

is found to be as large as 0.15π , which corresponds to a
significant fraction in the observed angular variation of the
Berry phase. It is known that the Fermi velocity bears strong
suppression along the nodal-line direction, which makes the

correction term more important. Earlier quantum oscillation
measurements on ZrSiS mostly focus on the out-of-plane
magnetic field configuration [26]. Pressure induced changes
in the Berry phase were also reported [35,36]. However,
even for the very similar quantum oscillation frequencies, the
obtained Berry phase bares significant variation [18–21,37].
It is likely that in addition to experimental errors, the
SOC effect, which was not taken into account previously,
would play an important role. A more quantitative k depen-
dence of �SO and EF is needed to further pin down this
possibility.

IV. CONCLUSION

In conclusion, we explored the consequences of the ex-
tended nodal line and SOC in quantum transport properties
of ZrSiS and identified distinct features due to the one-
dimensional distribution of the nodal line in k space. Our
observation of clear field-orientation dependent nontrivial
Berry phase points to the importance of SOC and the nodal-
line dispersion in the interpretation of quantum transport in
NLSMs.
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