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We present a variational matrix product state (vMPS) for the ground state of the spin-1/2 Heisenberg model.
The MPS effectively organizes the various dimer configurations, in faithful reflection of the resonating valence
bond picture of the spin liquid, with the energy only 0.024% higher than the exact value given by Bethe ansatz.
Building on the ground-state vMPS, the one-spin wave function is constructed in a simple manner with the
dispersion that matches well with the exact spectrum. The vMPS scheme is applied to the family of Hamiltonian
extrapolating between the Heisenberg model and the Majumdar-Ghosh model.
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I. INTRODUCTION

The idea of a resonating valence bond (RVB) as a de-
scription of the spin liquid in low dimensions was forcefully
advanced by Anderson [1], originally as a candidate phase
for the high-temperature superconductivity, and has since
played a central role in the study of this exotic phase of
spin matter [2–5]. The explicit construction of a variational
RVB state in Ref. [6] has added credibility to his original
idea. Although not often stated as such, the ground state of
the one-dimensional antiferromagnetic Heisenberg spin-1/2
chain, first solved by Bethe’s ansatz, is also a historic example
of the spin liquid phase in low-dimensional spin systems [7].

The original solution of the Heisenberg spin-1/2 chain
problem by Bethe is exact. Despite the accuracy of the solu-
tion, though, the nature of the ground state wave function and
in particular its spin liquid nature is not always transparent
in Bethe’s method, which relies on the use of plane waves as
the basis. On the other hand, the appeal of Anderson’s RVB
idea is that the failure for the spins to order and the reason
for their liquidlike nature are very easy to grasp by construc-
tion. In fact, attempts had been made in the past to derive
the ground state of the one-dimensional spin-1/2 Heisenberg
model based on the RVB picture [8,9]. The numerical ac-
curacy of the variational ground states was quite reasonable
compared with the exact value from the Bethe ansatz, but
somehow the idea seemed not to have gained much traction
since its original proposal [8,9].

With the advance of tensor network method in recent years,
increasing efforts to write down spin liquid wave functions in
the tensor network form have been made [10–16]. The one-
dimensional version of the tensor network scheme, known as
the matrix product state (MPS), has been employed, over the
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past decade, to go beyond the description of the correlated
ground states to address the issue of elementary excitations
and temporal dynamics [17–22]. Significant progress has been
made toward the variational construction of the excitation
spectrum for various spin models based on the MPS scheme.
In the existing approaches, it is customary to find both the
ground state MPS matrix and the matrix used to construct the
elementary excitation from a numerical optimization scheme
[17–22]. An explicit, analytic construction of the MPS tensor
is usually lacking as a result.

The approach we take in this paper differs from those in
the existing literature in the sense that an explicit, analytic
construction of the variational MPS tensor is given for var-
ious spin-1/2 chain models. Using these variational tensors,
we can further construct the wave functions of the excited
states known as the “spinons” without having to introduce
further variational parameters. Despite the simplicity of the
idea, the energy of the ground states and the excitation spec-
tra are in excellent agreement with the known values. Other
physical properties such as the spin-spin correlation func-
tions and the entanglement spectra are in excellent agreement
with those found by density matrix renormalization group
(DMRG) method, which we also perform for various spin-1/2
model. Our construction of the MPS tensor builds faithfully on
the RVB picture by employing various dimer configurations
instead of plane waves as the core building block. The spin
liquid nature of the ground state thus becomes transparent.

In Sec. II we show how to construct the variational MPS
wave function, or vMPS for short. We do so by first con-
structing tensors of small bond dimension D and gradually
building more intricate dimer structures into them employing
the larger bond dimension D. The vMPS wave function thus
constructed is proven to work very well not only for the
Heisenberg model but also for a family of models that extends
to the Majumdar-Ghosh (MG) Hamiltonian. Then in Sec. III
we show how to use the vMPS ground states to construct the
spinon wave functions. The energy spectrum of the spinon
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states thus constructed is proven to capture the well-known
spinon spectrum of the Heisenberg model very well and can
make predictions for the spinon spectrum of other spin-1/2
chains. A brief summary of the overall paper is given in
Sec. IV.

II. VARIATIONAL MPS

It was proven that the entire collection of noncrossing
dimers spans the Hilbert space of total spin singlets for spin-
1/2 chain [8,9], to which the ground state must belong. A
dimer [i j] refers to a spin singlet (| ↑i↓ j〉 − | ↓i↑ j〉)/

√
2 over

a pair of (i, j) sites in the lattice. A “parent” dimer config-
uration is the [12] · · · [L − 1, L] (or [23][34] · · · [L, 1] for a
closed chain) for even lattice sites L. Applying permutations
on the site indices (1, · · · , L) gives rise to new dimer con-
figuration [P1, P2][P3, P4] · · · . Some of these permutations
generate crossed dimers, such as [13][24], which breaks down
to two noncrossing dimers by virtue of the easily derived
identity [8]: [13][24] = [12][34] + [14][23]. The identity can
be extended to say that an arbitrary crossed dimer state can
be decomposed as a sum of several noncrossing dimer con-
figurations. Furthermore, one does not have the possibility of
trimers or any singlets out of an odd number of spin-1/2s. The
tetramer [1234] breaks down as the sum

[1234] = [12][34] + 2[14][23],

and the same fate awaits all bigger 2q-mers [23]. In short,
vMPS only needs to capture the various dimer configurations
in some efficient manner, not having to worry about higher-
order q-mer structures.

Our strategy in constructing a good vMPS for the spin-1/2
chain is to start with the well-known MG model and its exact
ground state [24],

HMG =
∑

i

(
Si · Si+1 + 1

2
Si · Si+2

)
. (1)

Each Si is a spin-1/2 operator at the lattice site i. The
ground state spontaneously breaks the translation symmetry
by forming [2n, 2n + 1] dimers which are compact dimers
for all integers 1 � n � L/2 − 1, or [2n − 1, 2n] dimers. The
even and odd MG states, |MGe〉 and |MGo〉, can be lin-
early combined to restore translational symmetry: |MG〉 =
|MGe〉 + |MGo〉. The symmetrized MG state |MG〉 has a MPS
representation in terms of the site (T s) and bond (B) tensors:
[T1]s

i j = δi0δ js, [T ′
1 ]s

i j = δisδ j0, Bi j = (1 ⊕ [CG0
1
2

1
2
])i j . The site

tensors depend on the physical (s = 1, 2) and the virtual (0 �
i, j � 2) indices. The bond tensor depends only on the virtual
indices, which span the spin-0 (i, j = 0) and the spin-1/2
sector (i, j = 1, 2), for a total bond dimension D = 3. The
Clebsch-Gordon (CG) notation [CGs

s1s2
] for fusing two spins

(s1, s2) into the spin-s is used throughout the paper. One can
find their explicit forms in Appendix A.

The MPS wave function is obtained by first making the
matrix product of the site tensor with the bond tensor T sB ≡
T

s
: [T 1]

s
i j = δi0[CG0

1
2

1
2
]s j, [T

′
1]

s

i j = δisδ j0. The index j runs

over j = 1, 2 in [CG0
1
2

1
2
]s j . With the site tensor given by T =

FIG. 1. [(a)–(d)] Dimer configurations of {T1, T ′
1 , T2, T ′

2 }; (c) an
extended dimer arching over the two compact dimers; (d) crossed
dimers; [(e)–(g)] complex dimer configurations of the full tensor
combination; (h) a 3-rainbow dimer configuration; (i) a 4-rainbow
dimer configuration.

T1 + T ′
1 , one can show∑
{s}

Tr[T
s1 T

s2 · · · T
sN ]|{s}〉 = |MGe〉 + |MGo〉, (2)

{s} = (s1, · · · , sN ). One can show T
si

1 T
sj

1 = 0 = T ′
1

si
T ′

1

s j
,

while [T 1T
′
1]s1s2

i j = δi0δ j0[CG0
1
2

1
2
]s1s2 produces a compact

dimer. The MG state has the energy 〈Si · Si+1〉 = −3/8 =
−0.375, far higher than the exact ground state energy of the
Heisenberg model from the Bethe ansatz, EBA = 1/4 − ln 2 =
−0.443147. The MG state represents an ordered array of
dimers with zero interdimer correlations as shown in Fig. 1(a).
We can improve on the MG state by incorporating more and
more of the resonant dimer states shown in Fig. 1.

Generalizing the MG tensor, we propose the following
D = 36 site tensor T = T1 + T ′

1 + T2 + T ′
2 + T3 + T ′

3 + T4 +
T ′

4 with 23 parameters. Actual MPS is obtained by first multi-
plying T s and B to get T

s = T sB, then taking their product as
in Eq. (2). Explicit forms of Ti’s are

[T1]s
ii′, j j′ = δi0δ js[χ1]i′ j′ [T ′

1 ]s
ii′, j j′ = δisδ j0[χ1′]i′ j′,

[T2]s
ii′, j j′ = [χ2]i jδi′0δ j′s [T ′

2 ]s
ii′, j j′ = [χ2′]i jδi′sδ j′0,

[T3]s
ii′, j j′ = [

CG
1
2
1
2 1

]s

i j[χ3]i′ j′ [T ′
3 ]s

ii′, j j′ = [
CG

1
2

1 1
2

]s

i j[χ3′]i′ j′,

[T4]s
ii′, j j′ = [χ4]i j

[
CG

1
2
1
2 1

]s

i′ j′ [T ′
4 ]s

ii′, j j′ = [χ4′]i j
[
CG

1
2

1 1
2

]s

i′ j′,

[χk]i j = (
xk,0 ⊕ xk, 1

2

[
CG0

1
2

1
2

] ⊕ xk,1
[
CG0

11

])
i j . (3)

The virtual indices span the spin-0 (i, j, i′, j′ = 0), the spin-
1/2 (i, j, i′, j′ = 1, 2), and the spin-1 sector (i, j, i′, j′ =
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3, 4, 5). The CG tensor is defined within their ap-
propriate subspaces. Each χk-tensor is parametrized by
three variables xk,0, xk, 1

2
, xk,1 denoting the weights of

the virtual spin-0, spin-1/2, and spin-1 sector, respec-
tively. The bond tensor is symmetric in the two sets
of virtual indices: Bii′, j j′ = (1 ⊕ [CG0

1
2

1
2
] ⊕ [CG0

11])i j (1 ⊕
[CG0

1
2

1
2
] ⊕ [CG0

11])i′ j′ . The first weight x1,0 can be set to 1

without loss of generality. Optimization over the remain-
ing 23-parameter space gives the energy E = 〈Si · Si+1〉 =
−0.44304007, only about 0.024% higher than the exact en-
ergy. The vMPS calculations were performed on L = 2000
lattice using periodic boundary conditions. There is little dis-
cernible change in the variational energy for L � 1000.

These tensors possess certain symmetries. Interchang-
ing the two sets of virtual indices (i j) ↔ (i′ j′) brings
T1, T ′

1 , T3, T ′
3 to T2, T ′

2 , T4, T ′
4 , respectively, implying that

identical structures can be generated from employing
{T2, T ′

2 , T4, T ′
4 } tensors as from {T1, T ′

1 , T3, T ′
3 }. By employ-

ing all eight tensors, though, one can generate a richer
variety of dimer configurations. First, {T1, T ′

1 } alone repro-
duce the MG state [Fig. 1(a)]. The {T1, T ′

1 , T2, T ′
2 } tensors

allow a certain subset of configurations such as (i) com-
pact dimers [Fig. 1(b)], (ii) extended dimers [m, n] with
m + 1 < n which encloses other compact dimers [Fig. 1(c)],
and (iii) crossed dimers [ik][ jl] (i < j < k < l ) [Fig. 1(d)].
Some dimer structures can be expressed in multiple ways.
Both T 1T 2T

′
2T

′
1 and T 2T 1T

′
1T

′
2 give [14][23], for instance.

The {T1, T ′
1 , T3, T ′

3 } tensors generate all the structures al-
ready given by {T1, T ′

1 , T2, T ′
2 }, except the crossed dimers.

The crossed dimer configuration [13][24] is equal to the
sum of two noncrossing dimer [12][34] + [14][23]. The
argument can be applied to higher-order crossed dimers
such as [14][25][36]. In the end, all crossed dimer config-
urations decompose into various noncrossing dimers. The
full tensor combination {T1, T ′

1 , T2, T ′
2 , T3, T ′

3 , T4, T ′
4 } can give

rise to additional structures such as (i) an extended dimer
enclosing crossed dimers (e.g., [16][24][35]); (ii) more com-
plex, crossed structures such as [15][26][34], [13][26][45],
and [15][27][34][68] [Figs. 1(e)–1(g)]; (iii) more complex
“rainbow” structures like [16][25][34] and [18][27][36][45]
(Figs. 1(h) and 1(i)]. For example, [15][27][34][68] and
[18][27][36][45] come from the products [T1T2T4T ′

4 T3T ′
3 T ′

2 T ′
1 ]

and [T1T2T3T4T ′
4 T ′

3 T ′
2 T ′

1 ], respectively.
The D = 36 tensor can capture the n-rainbow structure

given by [1, 2n][2, 2n − 1] · · · [n − 1, n] for n � 4 but not for
n > 4. By examining the line of thinking that led us from the
D = 3 MG tensor to the D = 36 tensor, we can also figure
out a way to go to bigger tensors. One way to enlarge the
tensor space is to go from, e.g., 0 ⊕ 1

2 to 0 ⊕ 1
2 ⊕ 1 in the

virtual spin space. Such extension gives rise to D = 6 tensor
T = T1 + T ′

1 + T3 + T ′
3 ,

[T1]s
i j = δi0δ js [T ′

1 ]s
i, j = δisδ j0,

[T3]s
i j = [

CG
1
2
1
2 1

]s

i j [T ′
3 ]s

i j = a
[
CG

1
2

1 1
2

]s

i j,

Bi j = (
1 ⊕ [

CG0
1
2

1
2

] ⊕ [
CG0

11

])
i j, (4)

with one adjustable parameter a. One can show

[T 1(T 3T
′
3)q−1T

′
1] ∼ [

CG1
1
2

1
2

]α

s1s2

[
CG

1
2

1 1
2

]β

αs3

[
CG

1
2
1
2

1
2

]γ

βs4[
CG

1
2

1 1
2

]δ

γ s5

[
CG

1
2
1
2

1
2

]ε

δs6
· · · [CG

1
2

1 1
2

]η

ζ s2q−1

[
CG0

1
2

1
2

]
ηs2q

(5)

represents a 2q-mer, i.e., a singlet made from 2q adjacent spin-
1/2s. As mentioned before, all 2q-mers break down as the
product of q dimers, e.g.,

[T 1T 3T
′
3T

′
1] ∼ [12][34] + 2[13][24],

[T 1(T 3T
′
3)2T

′
1] ∼ [12][34][56] + 2[12][36][45]

+ 2[14][23][56] + 4[16][23][45]. (6)

The introduction of the spin-1 virtual sector is a convenient
device for writing down 2q-mers efficiently, which in turn is
an efficient way of generating diverse dimer configurations.
The second approach is to make multiple copies of the virtual
indices, e.g., two copies of (1 ⊕ 1

2 ) virtual spaces for (i j) and
(i′ j′) bond indices. This way of extending the tensor can give
rise to D = 9 tensor T = T1 + T ′

1 + T2 + T ′
2 with

[T1]s
ii′, j j′ = δi0δ js[χ1]i′ j′ [T ′

1 ]s
ii′, j j′ = δisδ j0[χ1′]i′ j′,

[T2]s
ii′, j j′ = [χ2]i jδi′0δ j′s

[
T t

2

]s

ii′, j j′ = [χ2′]i jδi′sδ j′0,

[χk]i j = (
xk,0 ⊕ xk, 1

2

[
CG0

1
2

1
2

])
i j,

Bii′, j j′ = (
1 ⊕ [

CG0
1
2

1
2

])
i j

(
1 ⊕ [

CG0
1
2

1
2

])
i′ j′ . (7)

The D = 36 tensor, given in Eq. (3), incorporates both ways
of extending the tensor. For completeness, we write down the
D = 100 tensor construction from the 0 ⊕ 1

2 ⊕ 1 ⊕ 3
2 virtual

space in Appendix B.
The D = 36 vMPS wave function works well for capturing

the ground states of the nearest and the next-nearest (NNN)
neighbor spin-1/2 model [25–27],

H[θ ] =
∑

i

[cos θ (Si · Si+1) + sin θ (Si · Si+2)]. (8)

The Heisenberg and the MG Hamiltonians are recovered
at θ = 0 and θMG = tan−1(1/2), respectively. The D = 36
vMPS optimization over a range of θ was performed with ex-
cellent energy comparison to the DMRG as shown in Fig. 2(a),
with the difference being no more than that at θ = 0. The spin-
spin correlation function also agrees well between vMPS and
DMRG as shown in Fig. 2(b) at θ = 0, with similar agreement
at other θs (not shown). A closed chain of size L = 2000 was
used for the vMPS optimization. Adopting the open boundary
condition, one can also compute the entanglement spectrum
(ES) at a given bond cut between sites (n, n + 1). Such bond-
by-bond ES calculations are shown in Fig. 2(c) for θ = 0 and
Fig. 2(d) for θ = (3/5)θMG. The Heisenberg model is known
to be integrable, and its ES levels reflect the conformal tower
structure of the underlying critical theory [28]. We obtain
identical degeneracy structures in the low-lying ES from both
vMPS and DMRG for each bond cut regardless of whether
the model is integrable (θ = 0) or not (θ = (3/5)θMG), further
attesting to the validity of the vMPS wave function. In order to
avoid breaking the SU(2) symmetry of the ansatz, we used the
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FIG. 2. (a) Optimized energy of the D = 36 vMPS and the
DMRG state as a function of the mixing angle θ . (b) Spin-spin
correlation function at θ = 0 (Heisenberg model) from vMPS and
DMRG. [(c), (d)] Bond-by-bond entanglement spectra obtained at
the (n, n + 1) bond from the vMPS (black) and the DMRG (red)
states for θ = 0 and θ = (3/5)θMG. The number of dots representing
the degeneracy of each spectrum agrees well between vMPS and
DMRG. ES is defined as minus the natural logarithm of the singular
values of the density matrix.

boundary vector [b] j, j′ = δ j0δ j′0 in both DMRG and vMPS
calculations of the ES.

III. VARIATIONAL CONSTRUCTION OF SPINONS

A striking feature of the spin-1/2 chain is the existence
of a spin-1/2 excitation known as the spinon. The physical
picture of a spinon in the case of MG model is that of a
free spin-1/2 flanked on either side by |MGe〉 and |MGo〉.
In other words, the spinon is a “domain wall” separating the
two degenerate ground states. The excitation spectrum of the
Heisenberg model is known exactly from Bethe ansatz [29],
while that of the MG model is known from variational con-
struction [30]. For other values of θ in the NNN model, there
are approximate formulas for the spinon spectrum [25,31].
The spinon spectrum was investigated numerically by several
groups [26,27,32,33]. Following the MG spinon construction,
we can construct the one-spinon wave function by introduc-
ing the spinon site tensor [S]s

ii′, j j′ = vsδi0δ j0δi′0δ j′0, where vs

is a coherent-state wave function representing a single spin,
e.g., (v↑, v↓) = (1, 0) for spin up and (0, 1) for spin down,
respectively. Thus, the spinon vMPS is proposed to have the

0 0.5 1 1.5 2
0

0.5

1

1.5

0 0.5 1 1.5 2
0

0.5

1

1.5

0 0.5 1 1.5 2
0

0.5

1

1.5

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

(a) (b)

(c) (d)

FIG. 3. Spinon excitation spectrum at several values of θ in the
NNN model. The θ = 0 spectrum (blue) matches the exact result
ε(k) = (π/2)| cos k| (dotted). The fitting curves (dotted) in (c) and
(d) are from Refs. [25,31].

form

|i〉sp =
(∏

j<i

T
s j

)
S

si

( ∏
j>i

T
s j

)
. (9)

As with the spinon in the MG model, a free spin-1/2 at i
([S]s

ii′, j j′ ≡ [SsB]ii′, j j = vsδ0
i jδ

0
i′ j′ ) becomes a domain wall be-

tween the two disconnected ground-state vMPSs. Projecting
all virtual indices to the spin-0 sector guarantees that spins in
the left-hand side and right-hand side of the S-tensor are com-
pletely disentangled. One can construct a slightly different
S-tensor that allows finite entanglement between two sides.
However, we have confirmed that the spinon wave function
constructed in that way does not reproduce the expected spec-
trum well.

The momentum eigenstate |k〉 follows from the Fourier
sum |k〉 = ∑

i eikxi |i〉sp and its energy from

ε(k) = 〈k|H[θ ]|k〉
〈k|k〉 .

The ground-state tensor T s had already been optimized for
the Hamiltonian H[θ ] and no additional effort was made to
further optimize the spinon vMPS [Eq. (9)], thus neglecting
the screening of the isolated spin-1/2 by the neighboring
spins. An odd number of sites (L = 2001) is adopted in the
calculation to accommodate a single spinon excitation in the
vMPS.

Figure 3 shows the spinon excitation spectrum at several
θ values of the NNN Hamiltonian. At θ = 0, the calcu-
lated spectrum coincides very well with the exact one,
εexact (k) = (π/2)| cos k| over the whole momentum range.
The well-known spinon spectrum at the MG point [30],
ε(k) = cos θMG × ( 5

8 + 1
2 cos 2k), is recovered at θ = θMG

(not shown). The spinon spectra at several other θ are shown
in Fig. 3. The NNN model is known to undergo a gap-closing
transition at θc = tan−1(0.241167) ≈ 0.5104 × θMG [34–36].
Estimating the gap size from vMPS for θ > θc or proving the
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gaplessness of the excitation for θ < θc, however, proved to be
extremely challenging. Note that the spinon vMPS calculation
is performed on a large lattice, L = 2001, while the accuracy
of the vMPS energy is in the first four digits. As a result, the
total energy of the vMPS state becomes uncertain at around
the same value as the expected gap size itself. The uncertainty
in the DMRG energy adds to the conundrum. Performed on an
open chain, the energy density of the DMRG wave function
varies slightly from site to site. In obtaining the two curves in
Figs. 3(a) and 3(b), we simply subtracted the minimum value
of the spinon energy ε(k). Subtracting the exactly DMRG
values would create a small energy gap ∼0.2 for θ = 0 and
an invisibly small one for θ = (2/5)θMG. In Figs. 3(c) and
3(d), actual DMRG ground state energy was subtracted. The
double-dip structure in the spinon dispersion for θ > θMG was
seen in earlier study [25].

IV. SUMMARY

A number of papers has addressed the ground state wave
function of the spin-1/2 Heisenberg model in the MPS form
[37–40]. In particular, an explicit MPS wave function equiv-
alent to the Bethe ansatz solution was given in Ref. [38].
The bond dimension of the matrix in this case equals 2L/2,
where L/2 corresponds to the number of flipped spins in the
ground state. Our vMPS is derived from a completely different

perspective that reflects the RVB picture faithfully and gives
quantitatively good fit to the exact wave function. The spinon
excitation is understood simply as the creation of an isolated
spin-1/2 between the two domains in the vMPS picture. Such
a picture results in a quantitative replication of the spinon
spectrum for the Heisenberg model.

The one-dimensional spin-1/2 antiferromagnetic Heisen-
berg model is one of the most thoroughly studied many-body
models in the past century. Its implications range over both
condensed matter and quantum field theory and touch on
such key ideas as exact solvability, Yang-Baxter equation,
and quantum spin liquid. The experimental discovery of
the predicted spinon spectrum is among the most important
confirmations of the existence of fractionalized excitations
in many-body systems [41,42]. We have proposed a vMPS
scheme for calculating the spinon spectrum in a family of
spin-1/2 chain models. Such vMPS method and its results
could be of use in future experimental investigations of spinon
excitations in various spin-1/2 chain compounds.
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APPENDIX A: MATRIX EXPRESSIONS OF TENSORS

The tensors we used for energy calculation is presented in terms of matrix. All of them are block diagonal matrices and 1 × 1,
2 × 2, 3 × 3 diagonal blocks correspond to spin-0, 1/2, 1 sector, respectively.

[
CG0

1
2 , 1

2

] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 1√

2
0 0 0

0 − 1√
2

0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

[
CG

1
2
1
2 ,1

]s=1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 − 1√

3
0

0 0 0
√

2
3 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

[
CG

1
2

1, 1
2

]s=1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0
√

2
3 0 0 0

0 − 1√
3

0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

[
CG0

1,1

] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1√

3
0 0 0 0 − 1√

3
0

0 0 0 1√
3

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

[
CG

1
2
1
2 ,1

]s=2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 −
√

2
3

0 0 0 0 1√
3

0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

[
CG

1
2

1, 1
2

]s=2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1√

3
0 0 0

0 −
√

2
3 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A1)
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APPENDIX B: GENERALIZATION OF TENSORS

The D = 100 tensor T = T1 + T ′
1 + T2 + T ′

2 + T3 + T ′
3 + T4 + T ′

4 + T5 + T ′
5 + T6 + T ′

6 which is constructed by two 0 ⊕ 1
2 ⊕

1 ⊕ 3
2 virtual spaces and the D = 100 bond tensor B are following:

[T1]s
ii′, j j′ = δi0δ js[χ1]i′ j′ [T ′

1 ]s
ii′, j j′ = δisδ j0[χ1′]i′ j′ [T2]s

ii′, j j′ = [χ2]i jδi′0δ j′s [T ′
2 ]s

ii′, j j′ = [χ2′]i jδi′sδ j′0

[T3]s
ii′, j j′ = [

CG
1
2
1
2 1

]s

i j
[χ3]i′ j′ [T ′

3 ]s
ii′, j j′ = [

CG
1
2

1 1
2

]s

i j
[χ3′]i′ j′ [T4]s

ii′, j j′ = [χ4]i j
[
CG

1
2
1
2 1

]s

i′ j′ [T ′
4 ]s

ii′, j j′ = [χ4′]i j
[
CG

1
2

1 1
2

]s

i′ j′

[T5]s
ii′, j j′ = [

CG
1
2

1 3
2

]s

i j[χ5]i′ j′ [T ′
5 ]s

ii′, j j′ = [
CG

1
2
3
2 1

]s

i j[χ5′]i′ j′ [T6]s
ii′, j j′ = [χ6]i j

[
CG

1
2

1 3
2

]s

i′ j′ [T ′
6 ]s

ii′, j j′ = [χ6′]i j
[
CG

1
2
3
2 1

]s

i′ j′

[χk]i j = (
xk,0 ⊕ xk, 1

2

[
CG0

1
2

1
2

] ⊕ xk,1
[
CG0

11

] ⊕ xk, 3
2

[
CG0

3
2

3
2

])
i j

Bii′, j j′ = (
1 ⊕ [

CG0
1
2

1
2

] ⊕ [
CG0

11

] ⊕ [
CG0

3
2

3
2

])
i j

⊗ (
1 ⊕ [

CG0
1
2

1
2

] ⊕ [
CG0

11

] ⊕ [
CG0

3
2

3
2

])
i′ j′ . (B1)
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[15] I. Kurecić, L. Vanderstraeten, and N. Schuch, Phys. Rev. B 99,

045116 (2019).
[16] S. Jandura, M. Iqbal, and N. Schuch, Phys. Rev. Research 2,

033382 (2020).
[17] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pizorn, H. Verschelde,

and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011).
[18] J. Haegeman, B. Pirvu, D. J. Weir, J. I. Cirac, T. J. Osborne,

H. Verschelde, and F. Verstraete, Phys. Rev. B 85, 100408(R)
(2012).

[19] J. Haegeman, T. J. Osborne, and F. Verstraete, Phys. Rev. B 88,
075133 (2013).

[20] V. Zauner, D. Draxler, L. Vanderstraeten, M. Degroote, J.
Haegeman, M. M. Rams, V. Stojevic, N. Schuch, and F.
Verstraete, New J. Phys. 17, 053002 (2015).

[21] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F.
Verstraete, Phys. Rev. B 94, 165116 (2016).

[22] L. Vanderstraeten, E. Wybo, N. Chepiga, F. Verstraete, and F.
Mila, Phys. Rev. B 101, 115138 (2020).

[23] J. Piekarewicz and J. R. Shepard, Phys. Rev. B 56, 5366 (1997).
[24] C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1388

(1969).
[25] A. Lavarélo and G. Roux, Eur. Phys. J. B 87, 229 (2014).
[26] M. Hafez-Torbati and G. S. Uhrig, Phys. Rev. B 95, 155136

(2017).
[27] F. Ferrari, A. Parola, S. Sorella, and F. Becca, Phys. Rev. B 97,

235103 (2018).
[28] P. Kim, H. Katsura, N. Trivedi, and J. H. Han, Phys. Rev. B 94,

195110 (2016).
[29] J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131

(1962).
[30] B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 47, 964 (1981).
[31] S. Brehmer, A. K. Kolezhuk, H.-J. Mikeska, and U.

Neugebauer, J. Phys.: Condens. Matter 10, 1103 (1998).
[32] E. Sørensen, I. Affleck, D. Augier, and D. Poilblanc, Phys. Rev.

B 58, R14701(R) (1998).
[33] K. Okunishi and N. Maeshima, Phys. Rev. B 64, 212406 (2001).
[34] F. D. M. Haldane, Phys. Rev. B 25, 4925 (1982).
[35] K. Okamoto and K. Nomura, Phys. Lett. A 169, 433 (1992).
[36] S. Eggert, Phys. Rev. B 54, R9612(R) (1996).
[37] F. C. Alcaraz and M. J. Lazo, J. Phys. A: Math. Gen. 37, L1

(2003).
[38] F. C. Alcaraz and M. J. Lazo, J. Phys. A: Math. Gen. 39, 11335

(2006).
[39] H. Katsura and I. Maruyama, J. Phys. A: Math. Theor. 43,

175003 (2010).
[40] V. Murg, V. E. Korepin, and F. Verstraete, Phys. Rev. B 86,

045125 (2012).
[41] D. A. Tennant, T. G. Perring, R. A. Cowley, and S. E. Nagler,

Phys. Rev. Lett. 70, 4003 (1993).
[42] M. Mourigal, M. Enderle, A. Klöpperpieper, J.-S. Caux, A.

Stunault, and H. M. Rønnow, Nat. Phys. 9, 435 (2013).

125157-6

https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.1163196
https://doi.org/10.1038/nature08917
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1103/PhysRevLett.61.365
https://doi.org/10.1143/JPSJ.58.1403
https://doi.org/10.1143/JPSJ.59.482
https://doi.org/10.1103/PhysRevB.86.014404
https://doi.org/10.1103/PhysRevB.86.115108
https://doi.org/10.1103/PhysRevB.92.104414
https://doi.org/10.1103/PhysRevB.98.205117
https://doi.org/10.1103/PhysRevB.99.241112
https://doi.org/10.1103/PhysRevB.99.045116
https://doi.org/10.1103/PhysRevResearch.2.033382
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1103/PhysRevB.85.100408
https://doi.org/10.1103/PhysRevB.88.075133
https://doi.org/10.1088/1367-2630/17/5/053002
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1103/PhysRevB.101.115138
https://doi.org/10.1103/PhysRevB.56.5366
https://doi.org/10.1063/1.1664978
https://doi.org/10.1140/epjb/e2014-50472-x
https://doi.org/10.1103/PhysRevB.95.155136
https://doi.org/10.1103/PhysRevB.97.235103
https://doi.org/10.1103/PhysRevB.94.195110
https://doi.org/10.1103/PhysRev.128.2131
https://doi.org/10.1103/PhysRevLett.47.964
https://doi.org/10.1088/0953-8984/10/5/017
https://doi.org/10.1103/PhysRevB.58.R14701
https://doi.org/10.1103/PhysRevB.64.212406
https://doi.org/10.1103/PhysRevB.25.4925
https://doi.org/10.1016/0375-9601(92)90823-5
https://doi.org/10.1103/PhysRevB.54.R9612
https://doi.org/10.1088/0305-4470/37/1/L01
https://doi.org/10.1088/0305-4470/39/36/014
https://doi.org/10.1088/1751-8113/43/17/175003
https://doi.org/10.1103/PhysRevB.86.045125
https://doi.org/10.1103/PhysRevLett.70.4003
https://doi.org/10.1038/nphys2652

