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Signatures of optical conductivity in double-layer graphene excitonic condensate
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Signatures of the excitonic condensation state and its optical properties in biased double-layer graphene
(DLG) are discussed. In the framework of the generic bilayer graphene model involving a Coulomb interaction
between electrons in one layer and holes in the opposite layer, we have derived a set of self-consistent
equations determining the excitonic condensate order parameter by use of the projector-based renormalization
method. Based on the Kubo theory of the linear optical response, a formula of the optical conductivity is also
obtained with full contributions of the quantum fluctuations. Our results elucidate a possibility of the excitonic
condensation formation in the biased system once the dielectric thickness is sufficiently small. As a function
of the external electric field, the excitonic condensation dome suppresses rapidly as enlarging the dielectric
thickness. The impression of the dielectric thickness and external electric field affecting the excitonic condensate
is also addressed in the signature of the optical conductivity. Our findings are worthwhile to understand the
formation and stability of the excitonic condensation states not only in DLG but also in other double-layer
systems or in semimetal-semiconductor transition materials.
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I. INTRODUCTION

The coherent state of a homogeneously bosonic quasiparti-
cle system driven by electronic correlations is one of the most
fundamental phenomena in condensed matter physics. At a
sufficiently small temperature, the amount of the quasiparti-
cles might stabilize in a macroscopic coherent state following
the Bose-Einstein condensation (BEC) theory [1,2]. One of
the most perspective candidates for observing the BEC at a
large temperature is the exciton—an extremely small effec-
tive mass bosonic quasiparticle formed by a composition of
electrons and holes driven by the Coulomb interaction. The
excitons have been predicted to be able to condense in a
macroscopic phase-coherent so-called excitonic condensation
state since the ’60s of the last century [3,4], however, exper-
imental attestations of the coherent state are still modest. So
far, the excitonic condensation state has been observed exper-
imentally in some transition-metal dichalcogenides (TMDs)
[5,6] and in some double-layer systems such as semiconductor
double quantum wells [7,8], double-bilayer graphene [9,10],
and double-layer graphene (DLG) [11].

Graphene and its based structures are most likely the
building blocks of future nanoelectronic devices [12–14].
Single-layer graphene (SLG) is an exact two-dimensional
system [15,16] that is similar to unbiased bilayer graphene
(BLG), consisting of two AB-stacked, chemically bound
graphene monolayers [17,18]. More interestingly, one finds
another graphene-based structure like BLG but two graphene
sheets are separated by a dielectric so the tunneling between
the layers can be ignored [19–22]. That structure, so-called

*Corresponding author: phanvannham@duytan.edu.vn

DLG, has attracted much interest because the charge carrier
concentration of an individual layer in the system can be
controlled simply by the application of a gate voltage [18,23].
This electric-field effect is fundamental for potential techno-
logical applications. Once a gate bias is applied across the two
sheets, an attractive Coulomb interaction between the excess
electrons on one layer and holes on the opposite layers raises
the possibility of the formation of electron-hole bound states
[19,20,24–28]. In a double-layer system, electrons and holes
are separated by a thickness dielectric layer, they thus have
less probability to recombine or an exciton can live longer
than that formed in the normal TMD [7,8]. Experimental
observation of excitonic condensation in a DLG is thus more
accessible. The excitonic condensation state in DLG has been
triggered like a superfluid state of Cooper pairs in the micro-
scopic Bardeen-Cooper-Schrieffer (BCS) theory [25,26,29]
that has been experimentally typified recently in Ref. [11].

To examine in more detail the excitonic condensate in
DLG, especially its optical response signatures, in the present
paper, we use the projector-based renormalization method
(PRM) adapting to a generic graphene bilayer model, taking
into account the Coulomb interaction between an electron
in one layer and a hole in the opposite layer. The PRM
starts from a many-particle Hamiltonian. By using a sequence
of the unitary transformations, a nondiagonal part of the
Hamiltonian is integrated out and one obtains a completely
renormalized Hamiltonian in a diagonal form. The physical
relevant quantities, therefore, would be more simply calcu-
lated in the form of the renormalized Hamiltonian. Note
here that the Hilbert space is not reduced by the sequence
of the unitary transformations; the eigenspectrum of the
original Hamiltonian thus remains after the renormalization
process [30]. At first glance, the PRM is similar to Wilson’s
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renormalization group approach [31–33]. However, there are
some big differences between them. If the aim of Wilson’s
approach is to reduce the size of the Hamiltonian matrix
by keeping its smallest eigenvalues, the PRM remains the
Hamiltonian size but eliminates the off-diagonal terms. With
the reduced size, the Hamiltonian matrix in Wilson’s ap-
proach might be solved numerically. The energy cutoff in
Wilson’s approach indicating the renormalized Hamiltonian
matrix size, therefore, is finite. Meanwhile, by eliminating the
off-diagonal parts, the renormalized Hamiltonian in the PRM
might be diagonal, thus relevant physical quantities are easily
evaluated. In PRM, the energy cutoff indicates the energy
transitions induced by the off-diagonal parts and it might be
zero and the renormalized Hamiltonian is diagonal. In both of
the methods, the renormalization is taken by using the unitary
transformation to derive the finally renormalized Hamiltonian
and the unsolvable parts are eliminated by using the projector
operators. Note that our PRM used here has some connections
to Wegner’s continuous flow equation method [34] if a special
case of the unitary transformation generator is chosen [30].
The latter approach is similar to the similarity transformation
introduced by Glazek and Wilson but applied for many-
particle physics (Glazek and Wilson originally introduced the
approximation for the field of high-energy physics) [35,36].
Our approach, therefore, is much connected with the similar-
ity transformation introduced by Glazek and Wilson and the
continuous flow equation method of Wegner (see recent re-
view in Ref. [30]), rather than Wilson’s renormalization group
approach.

The PRM has been shown to be applicable to address
complex superfluid phase structures in various many-particle
quantum systems such as excitonic condensate in TMDs
[37,38], excitonic-polaritonic condensation in microcavities
[39,40], or unconventional superconducting states in high-Tc

cuprates or in heavy-fermion systems [41,42]. In our calcula-
tions, we have supposed that electron-hole pair formation and
condensation might appear in the DLG system at least at zero
temperature if a gate bias is applied. In doing so, we expect
to derive a set of self-consistent equations in the framework
of the PRM permitting us to solve numerically the excitonic
condensate order parameters once the quantum fluctuations
are taken into account.

To inspect in more detail the nature of the excitonic con-
densation state in the DLG, in this paper, we also examine the
optical response of the system in the condensation state. The
optical response has become one of the most effective tools,
providing important insight into the excitonic condensation
state in a system. Indeed, by using the density functional
theory and density-matrix renormalization group method, ex-
perimental optical conductivity spectra have been analyzed
and reveal that the preformed exciton might occur in the
semimetal Ta2NiSe5 at a temperature larger than excitonic
condensate critical value [43]. That is in contrast with the
conventional picture that the preformed excitons are found
only in semiconductor materials [38,44]. Recently, the collec-
tive modes of the excitonic condensation state in Ta2NiSe5

were also discussed in a signature of the optical conductivity
[45,46]. The optical response has been used to address the
excitonic condensation state in doped SLG [47] and BLG
[48] but not in DLG, in our knowledge so far. However,

in a signature of the frequency dependence of transmission,
reflection, and absorption coefficients, some dynamical prop-
erties of the electron-hole pairs have been discussed [49–51].
The stability of the excitonic condensation state in DLG in
a signature of the optical response thus remains an open
issue.

Our main interests here are the effects of the dielectric
thickness and the external electric field regarding the optical
properties in the excitonic condensate DLG. In the feature
of the PRM, we derive an analytical formula for the real
part of the optical conductivity based on the linear optical
response theory [52]. The signature of the optical properties
of the system in the condensation state then is addressed.
Analyzing the optical conductivity spectrum might allow
us to examine the bound electron-hole pair state preced-
ing the stability of the condensation state. Indeed, the real
part of the optical conductivity rises—a sharp peak at a fre-
quency equal to the band gap or twice the excitonic order
parameter at the Fermi level. Our findings are worthwhile
to understand the formation and stability of the excitonic
condensation states not only in DLG but also in the other
double-layer systems or in emimetal-semiconductor transition
materials.

The present paper is organized as follows. In Sec. II, we
introduce the generic BLG model applied for the DLG in
which the Coulomb interaction between electrons on one layer
with holes in the opposite layer is involved. Next, in Sec. III,
the PRM is proposed to solve the model described in the
previous section. Here, explicit renormalized equations and
a set of self-consistent equations determining the excitonic
condensate order parameter are given. In this section, we also
present the analytical result for the real part of the optical
conductivity in the framework of the PRM. Section IV shows
the numerical results and their discussions. Finally, the con-
clusions can be found in Sec. V.

II. MODEL

To model the electron-hole system in a DLG, first we
assume that the two graphene sheets are stacked in hexagonal
and separated by a dielectric thickness of d . A gate-induced
potential difference between the two layers Vg is applied, then
an electric field Eext = Vg/(ed ) is formed inside the structure.
The gate-induced potential difference or the electric field can
be used to tune the chemical potential μ = Vg/2 [25]. The
finite potential difference releases an opposite charge density
in the two layers, so-called upper (n-type) and lower (p-type)
layers. Assuming the DLG system is neutral, then the Fermi
level lies symmetrically in the conduction band of the upper
layer and in the valence band of the lower layer. In analogy
to the situation in the electron-hole system in a semimetal-
semiconductor transition [3,4], in the present paper, we use
the electron instead of the hole representation for the valance
band. The hole representation might be delivered simply by
the electron-hole transformation. In the low-energy approx-
imation, the filled valence and empty conduction bands can
be omitted and the conducting electron system of the valance
and hole bands in DLG can be described by the following
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Hamiltonian:

H = gs

∑
k

ε+
k a†

kak + gs

∑
k

ε−
k b†

kbk

+ gs

N

∑
k1k2,q �=0

Uk1k2q a†
k1+qak1

b†
k2−qbk2

, (1)

where gs = 2 allows for the spin degeneracy. The first two
terms in Eq. (1) indicate the noninteracting electron system in
momentum space with a†

k (ak) and b†
k (bk) being the creation

(annihilation) operators of electron in the conduction and the
valance bands at momentum k, respectively. The band disper-
sions ε±

k in the tight-binding approximation read

ε±
k = ±γ0

[
1 + 4 cos2 ky

2
+ 4 cos

ky

2
cos

√
3kx

2

]1/2

∓ μ, (2)

with γ0 denoting the nearest-neighbor transfer amplitude
(γ0 � 2.8 eV [12]) and μ is the chemical potential. The last
term in Eq. (1) describes the long-ranged Coulomb interaction
between conduction-band electrons in one layer and valence-
band electrons in the opposite layer with

Uk1k2q = κ
e−d|q|

|q| cos
φ1

2
cos

φ2

2
with κ = gs

2πe2

ε
, (3)

depending on the dielectric constant ε of a medium barrier
between two graphene sheets and distance d between them.
Here, φi = θki − θki+q, with θk = atan(ky/kx ), is the scatter-
ing angle [20]. In the Hamiltonian written in Eq. (1) we have
omitted the intralayer Coulomb repulsion between on-layer
electrons that manifests itself simply by a screening of the
interlayer Coulomb interaction.

To describe the excitonic condensation state, a sponta-
neously broken symmetry with respect to the stability of the
coherent state of electron-hole pairs needs to appear in the
original Hamiltonian. In doing so, a hybridization between
conduction-band electrons and valence-band electrons must
be considered. Practically, we rewrite the Hamiltonian Eq. (1)
in the representation of a normal-ordered form in a way that
an arbitrary operator A would be written by A =: A : +〈A〉.
The Hamiltonian in Eq. (1) then is

H = H0 + H1, (4)

where

H0 =
∑

k

[ε+
k a†

kak + ε−
k b†

kbk + (	kb†
kak + H.c.)] (5)

and

H1 = 1

N

∑
k1k2,q �=0

Uk1k2q : a†
k1+qak1

b†
k2−qbk2

: . (6)

Here, we have decomposed the Hamiltonian into two parts,
the noninteracting part H0 and the perturbation H1 containing
the fluctuating part of the Coulomb interaction. Note here
that the Hamiltonian has also been written in the unit of the
spin degeneracy gs and all constants have been eliminated. In
Eq. (5), we have defined

	k = − κ

N

∑
q

e−d|q|

|q|
(1 + cos φ)

2
δk+q (7)

to indicate the spontaneous symmetry breaking with φ =
θk+q − θk and δk+q = 〈a†

k+qbk+q〉. Because the Coulomb in-
teraction is long ranged, by excluding the q = 0 component
(comprising the jellium background), no Hartree contribution
to the one-particle energies is involved. That is differentfrom
the case of the local situation as in the extended Falicov-
Kimball model [37,38,40].

III. THEORETICAL APPROACH

A. Renormalized Hamiltonian

In the present work, the Hamiltonian written in Eq. (4)
is analyzed in the framework of the PRM, a special case of
the generalized diagonalization scheme recently reviewed in
Ref. [30]. The renormalization scheme is started from the
ansatz of a renormalized Hamiltonian at a cutoff λ,

Hλ = H0,λ + H1,λ, (8)

where

H0,λ =
∑

k

[ε+
k,λa†

kak + ε−
k,λb†

kbk + (	k,λb†
kak + H.c.)] (9)

and

H1,λ = Pλ

N

∑
k1k2,q �=0

Uk1k2q : a†
k1+qak1

b†
k2−qbk2

:, (10)

with all the parameters of H0,λ depending on the cutoff λ and
the projection operator Pλ defined as PλHλ = �(λ − |ωλ|)Hλ

projects on all low-energy transitions with respect to the
unperturbed Hamiltonian H0,λ, ωλ. Then a completely renor-
malized Hamiltonian, H̃ = Hλ=0, can be found by using a
general flow equation:

Hλ−	λ ≈ H0,λ + H1,λ + [Xλ,	λ,H0,λ + H1,λ], (11)

where a generator operator Xλ,	λ is defined as

Xλ,	λ = 1

N

∑
k1k2,q �=0

αk1k2q(λ,	λ) : a†
k1+qak1

b†
k2−qbk2

:, (12)

with the prefactor given by

αk1k2q(λ,	λ) = �k1k2q,λ

(
1 − �k1k2q,λ−	λ

)
Uk1k2q

ε+
k1+q,λ

− ε+
k1,λ

+ ε−
k2−q,λ

− ε−
k2,λ

(13)

and

�k1k2q,λ = �
(
λ − ∣∣ε+

k1+q,λ − ε+
k1,λ

+ ε−
k2−q,λ − ε−

k2,λ

∣∣) , (14)

which restricts transitions to excitation energies smaller
than λ.

To arrive at the completely renormalized Hamiltonian, one
needs a set of renormalization equations showing a λ depen-
dence of the model parameters. The result on the right-hand
side of Eq. (11) must be compared with the generic forms in
Eqs. (9) and (10) of Hλ (with λ replaced by λ − 	λ) when it
is written in terms of the original λ-independent variables a(†)

k

and b(†)
k . This leads to the following renormalization equations
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for the parameters of H0,λ:

ε+
k,λ−	λ − ε+

k,λ

= 1

N2

∑
pq

{
Uk,p+q,qαk+q,p,−q(λ,	λ)

× [
nb

p+q

(
1 − nb

p

) − na
k+q

(
nb

p − nb
p+q

)]
− Uk−q,p+q,qαk,p,−q(λ,	λ)

× [
nb

p+q

(
1 − nb

p

) + (
1 − na

k−q

)(
nb

p − nb
p+q

)]}
, (15)

ε−
k,λ−	λ − ε−

k,λ

= 1

N2

∑
pq

{
Up,k,qαp+q,k−q,−q(λ,	λ)

× [
na

p+q

(
1 − na

p

) + (
na

p − na
p−q

)(
1 − nb

k+q

)
− Up,k+q,qαp+q,k,−q(λ,	λ)

× [
na

p+q

(
1 − na

p

) − (
na

p − na
p+q

)
nb

p+q

]}
, (16)

	k,λ−	λ − 	k,λ

= − 1

N

∑
p

	k,λαk,k+p,p(λ,	λ)
(
na

k+p − nb
k+p

)

− 1

N2

∑
pq

δp+q
[
Uk,p+q,qαk+q,p,p−k(λ,	λ)

× (
1 − nb

p + nb
k+q

)
− Up,k+q,qαk,p+q,p−k(λ,	λ)

(
1 − na

p + na
k+q

)]
.

(17)

The quantities na
k, nb

k are occupation numbers for electrons in
the conduction and valance bands,

na
k = 〈a†

kak〉 , nb
k = 〈b†

kbk〉, (18)

and have to be evaluated separately. To solve numerically the
above difference equations, one needs the initial values of
the renormalization parameters at λ = �, they are those with
regarding to the original Hamiltonian H, i.e.,

ε±
k,� = ε±

k , 	k,� = 	k. (19)

Supposing the expectation values na
k, nb

k, and δk in Eqs. (15)–
(17) are already known, the renormalization equations can be
integrated between λ = � and λ = 0. In this way, we arrive
at all the renormalization parameters at λ = 0 or the fully
renormalized Hamiltonian H̃ := Hλ=0 = H0,λ=0 is obtained:

H̃ =
∑

k

ε̃+
k a†

kak +
∑

k

ε̃−
k b†

kbk +
∑

k

	̃k(a†
kbk + H.c.).

(20)
The tilde symbols denote the fully renormalized quantities at
λ = 0. All excitations from H1,λ with nonzero energies have
been eliminated. They give rise to the renormalization of H0,λ.
The completely renormalized Hamiltonian in Eq. (20) can be
diagonalized by a Bogoliubov transformation, which gives

H̃dia =
∑
α=±

Eα
k ĉ†

kα ĉkα, (21)

where the electronic quasiparticle energies and quasiparticles
operators, respectively, read

E±
k = ε̃+

k + ε̃−
k

2
∓ sgn(ε̃−

k − ε̃+
k )

2
Wk , (22)

with

Wk =
√

(ε̃+
k − ε̃−

k )2 + 4|	̃k|2 (23)

and

ĉ†
kα =

∑
β=±

uαβ

k c†
kβ. (24)

Here, we have denoted c†
k+ = a†

k and c†
k− = b†

k. The prefactors

uαβ

k are given by

u++
k = −u−−

k = 1

2

[
1 + sgn(ε̃−

k − ε̃+
k )

ε̃−
k − ε̃+

k

Wk

]1/2

,

u+−
k = u−+

k = 1

2

[
1 − sgn(ε̃−

k − ε̃+
k )

ε̃−
k − ε̃+

k

Wk

]1/2

. (25)

The Hamiltonian written in Eq. (21) has a quadratic form
that allows us to simply compute all expectation values
formed with the renormalized Hamiltonian H̃.

B. Expectation values

To solve the renormalization equations in Eqs. (15)–(17),
all expectation values na

k, nb
k, and δk formed with the full

Hamiltonian H must be evaluated. In the framework of the
PRM, an expectation value formed with H, 〈A〉H, of an oper-
ator A can be determined by using the following identity [53]:

〈A〉H = 〈A(λ − 	λ)〉Hλ−	λ
= 〈Ã〉H̃. (26)

Here, A(λ − 	λ) = eXλ,	λAλe−Xλ,	λ with Xλ,	λ being the gen-
erator for the unitary transformation and Ã = A(λ = 0) is a
completely renormalized operator. To find the expectation val-
ues in Eqs. (7) and (18), one best starts from an ansatz for the
single fermion operators a†

k(λ) and b†
k(λ) or c†

kα (λ) depending
on the cutoff λ. In the second order of the fluctuation operators
in Eq. (10), one might choose

c†
kα (λ) = xα

k,λc†
kα + 1

N

∑
pq

yα
kpq,λc†

k+q,α : c†
p−q,−αcp,−α :,

(27)

where xα
k,λ and yα

kpq,λ are prefactors satisfying a condition

∣∣xα
k,λ

∣∣2 = 1 − 1/N2
∑
pq

∣∣yα
kpq,λ

∣∣2[
nα

k+q

(
n−α

p−q − n−α
p

)

+ n−α
p

(
1 − n−α

p−q

)]
(28)

that is derived from the anticommutation relations for the
fermion operator [c†

kα (λ), ckα (λ)]+ = 1, valid for any λ. In
analogy to deliver the renormalization equations for the pa-
rameters of Hλ, one can derive renormalization equations for
the prefactors that read

yα
kpq,λ−	λ = yα

kpq,λ + xα
k,λαkpq(λ,	λ). (29)

125156-4



SIGNATURES OF OPTICAL CONDUCTIVITY IN … PHYSICAL REVIEW B 103, 125156 (2021)

By combination with the difference equations before in
Eqs. (15)–(17), the full set of Eqs. (28) and (29) can be
integrated. With the initial values

xα
k� = 1, yα

kpq,� = 0, (30)

the prefactors at cutoff λ = 0 can be evaluated and one might
be led to the fully renormalized one-particle operators:

c̃†
kα = x̃α

k c†
kα + 1

N

∑
pq

ỹα
kpqc†

k+q,α : c†
p−q,−αcp,−α : . (31)

As before, the tilde symbols denote fully renormalized quan-
tities. With Eq. (31), the expectation values in Eqs. (18) and
δk can be calculated:

nα
k = ∣∣x̃α

k

∣∣2
ñα

k + 1

N2

∑
pq

∣∣ỹα
kpq

∣∣2(
1 − ñ−α

p

)
ñα

k+qñ−α
p−q,

δk = x̃α
k x̃−α

k δ̃k + 1

N2

∑
pq

ỹα
kpqỹ−α

kp,k+q−pñα
k+qñ−α

p−qδ̃p, (32)

where δ̃k = 〈a†
kbk〉H̃ and ñα

k = 〈c†
kα

ckα〉H̃ are the expectation
values formed with H̃. Because the Hamiltonian H̃ is diagonal
[see Eq. (21)], the expectation values can easily be evaluated,
they read

ñα
k =

∑
αβ

uαβ

k f F
(
Ẽβ

k

)
, (33)

δ̃k = −[ f F (Ẽ+
k ) − f F (Ẽ−

k )]sgn(ε̃−
k − ε̃+

k )
	̃k

Wk
. (34)

Here, the prefactors uαβ

k are defined in Eqs. (25) and f (Ẽα
k ) =

1/(1 + eẼα
k /T ) is the Fermi function and T is the temperature.

Equations (7) and (32) in combination with the renormal-
ization Eqs. (15)–(17), (28), and (29) thus form a set of

self-consistent equations that might be solved straightfor-
wardly by a numerical method to determine the excitonic
condensate order parameters in the approach of PRM.

C. Optical conductivity

To examine the optical absorption properties in the con-
densation state, we start from the Kubo formula of the linear
response theory [52]. The real part of the optical conductivity
as a function of frequency ω is thus given by

σ (ω) = Re
1

ω

∫ ∞

0
dteiωt 〈[ j(t ), j(0)]〉, (35)

where j(t ) is the particle current operator depending on time.
For the Hamiltonian given in Eq. (1), the current operator
reads

j(t ) =
∑
k,α

vα
kc†

kα
ckα (t ), (36)

with vα
k = ∇εα

k , where εα
k are defined in Eq. (2). From the

identity in Eq. (26) one can rewrite Eq. (35) as

σ (ω) = Re
1

ω

∫ ∞

0
dteiωt 〈[ j̃(t ), j̃(0)]〉H̃, (37)

where

j̃(t ) =
∑
k,α

vα
k c̃†

kα c̃kα (t ), (38)

is the renormalized time-dependent current operator that is
expressed in terms of the renormalized single quasi-particle
operator depending on time c̃kα (t ) estimated in Eq. (31). The
average in Eq. (37) is formed with the completely renormal-
ized Hamiltonian H̃ in Eq. (20) or in the diagonal form in
Eq. (21). Similar to the evaluation of the expectation values in
Eqs. (32), one arrives at

σ (ω) = 1

ω

∑
kββ ′

A1
kββ ′δ

(
ω + Eβ

k − Eβ ′
k

) + 1

ω

∑
kpq

β1,2β′
1,2

A2
kpq,β1,2β

′
1,2

δ
(
ω + Eβ1

k+p − E
β ′

1
k + Eβ2

p−q − E
β ′

2
p

)
, (39)

where

A1
kββ ′ =

∑
αα′

vα
kvα′

k

∣∣x̃α
k

∣∣2∣∣x̃α′
k

∣∣2
uαβ

k uαβ ′
k uα′β ′

k uα′β
k

[
f
(
Eβ

k

) − f
(
Eβ ′

k

)]

− 1

N

∑
q,αα′β1

vα
kvα′

k

∣∣x̃α
k

∣∣3
ỹα

k,k+q,quαβ

k uαβ ′
k uα′β1

k+quα′β
k u−α′β ′

k u−α′β1
k+q f

(
Eβ1

k+q

)[
f
(
Eβ

k

) − f
(
Eβ ′

k

)]

+ 1

N2

∑
pq

αα′β1β2

vα
kvα′

q

∣∣x̃α
k

∣∣2
uαβ

k uαβ ′
k

∣∣ỹα′
qp,k−q

∣∣2
uα′β ′

k uαβ

k

∣∣u−α′β1
p−k+qu−α′β2

p

∣∣2
f
(
Eβ1

p−k+q

)[
1 − f

(
Eβ2

k

)][
f
(
Eβ

k

) − f
(
Eβ ′

k

)]

+ 1

N3

∑
k′pq

αα′β1β2

vα
kvα′

q

∣∣x̃α
k

∣∣2
uαβ

k uαβ ′
k

{∣∣ỹα′
k′pq

∣∣2∣∣uα′β1
k′+qu−α′β2

p

∣∣2
u−α′β ′

p−q uα′β
p−q f

(
Eβ1

k′+q

)
f
(
Eβ

k

)[
1 − f

(
Eβ2

p

)]

− ∣∣ỹα′
k′kq

∣∣2∣∣uα′β1
k′+qu−α′β2

k−q

∣∣2
u−α′β ′

k u−α′β ′
k f

(
Eβ1

k′+q

)
f
(
Eβ2

k−q

)[
1 − f

(
Eβ ′

k

)]}
, (40)

A2
kpq,β1,2β

′
1,2

= 1

N2

∑
pq,αα′

vα
k x̃α

k ỹα
kpquαβ1

k+pu
αβ ′

1
k u−αβ2

p−q u
α′β ′

2
p

(
x̃α′

p−qỹα′
p−q,qpu

α′β ′
2

p uα′β2
p−qu

−α′β ′
1

k u−α′β1
q − x̃α′

k+pỹα′
k+p,−p,−qu

α′β ′
1

k+p−quα′β1
k+pu

−α′β ′
1

q−p u−α′β1
−p

)

× {
f
(
Eβ1

k+p

)[
1 − f

(
E

β ′
1

k

)][
f
(
Eβ2

p−q

) − f
(
E

β ′
2

p
)] + f

(
E

β ′
2

p
)[

1 − f
(
Eβ2

p−q

)][
f
(
Eβ1

k+p

) − f
(
E

β ′
1

k

)]}
. (41)
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FIG. 1. Order parameter δ = (1/N )
∑

k δk as a function of tem-
perature T for dielectric thickness d = 1.5 with some values of
external electric field Eext .

The first line in Eq. (40) is the coherent contribution that
describes excitations at the electronic quasiparticle energies
Ẽ±

k . The remaining lines are incoherent contributions. Note
that the coherent part reduces to the mean-field result when the
renormalized quantities are replaced by the unrenormalized
quantities.

IV. RESULTS AND DISCUSSION

To discuss the excitonic condensation state in the DLG
structure within the PRM, the sets of renormalization Eqs.
(15)–(17), (28), and (29) for the renormalized parameters
would be solved self-consistently together with Eqs. (7) and
(32) for the expectation values. Starting from some initial val-
ues of nα

k and δk, the renormalization equations are integrated
in step by step 	λ starting from λ = �. At λ = 0, the Hamil-
tonian and all single quasiparticle operators are completely
renormalized. The expectation values then are recalculated
by using Eqs. (32). The renormalization process is restarted
until a convergence is achieved if all quantities are determined
with a relative error less than 10−7. In the numerical calcula-
tion, 	λ was customarily chosen as 	λ ≈ 0.01. Note here
that instead of the hexagonal, the momentum space in our
calculation is spanned in an equivalent triangular Brillouin
zone specified by vectors given by b1 = (2π/3a)(1,

√
3) and

b2 = (2π/3a)(1,−√
3) [12]. Without loss of generality, in

what follows, we choose γ0 = 1 and a = 1 as units of energy
and length, respectively. The interlayer Coulomb coupling
constant κ = 7 is used to be applicable for the situation with
SiO2 substrate/dielectric (ε � 4) [19].

The excitonic condensation state is specified by a nonzero
of the expectation value δk, indicating the hybridization be-
tween an electron on one layer and a hole in the other layer
inducing the coherent state of the electron-hole pairs driven
by the interlayer Coulomb attraction. Since the Coulomb in-
teraction takes over for all momenta, we can evaluate δ =
(1/N )

∑
k δk standing for an order parameter considering a

uniform excitonic condensate in DLG. Figure 1 shows the
excitonic order quantity δ against the temperature T for some
magnitude values of the external electric field Eext at the

dielectric thickness d = 1.5. By detuning the external electric
field, the conduction band of the upper layer enters the valence
band of the lower layer. That leads to a formation of excitons
and the excitonic condensation can set in if the temperature
is small enough. The scenario takes place first at the Dirac
points and then shifts to the momenta around the special
points by enhancing the electric field. Increasing the electric
field would lead to a strong hybridization of the conduction
and the valance electron bands. At a given sufficient large
Eext, one always finds a nonzero value of the excitonic order
parameter indicating that the system stabilizes in the excitonic
condensation state. Increasing temperature, the thermal fluctu-
ations deplete the interlayer quantum coherence, and the order
parameter decreases. Once the temperature is larger than a
critical value, all bound pairs are damaged due to the thermal
fluctuations, consequently, the system settles in the disorder,
the so-called electron/hole plasma state. The critical value is
called the excitonic transition temperature TC. It is accept-
able that the DLG is likely a 2D system and, of course, the
critical temperature for exciton condensation would be zero.
However, the system still survives in the superfluid state for
temperatures smaller than the Kosterlitz-Thouless transition
temperature TKT [20,25]. Therefore, our finite-temperature re-
sults will be valid for T � TKT at least. Raising the external
electric field, the excitonic condensate becomes more robust
due to an enhancement of the overlap between the conduction
band of the upper layer and the valance band of the lower
layer. Note here that the Fermi level is always in the intersect
of the conduction and valance bands. The number of electrons
in the conduction band is increased, whereas the number of
electrons in the valance band is decreased. Once the external
electric field is large enough, numbers of the excitonic bound
states get maxed and then exhaust if the electric field further
increases with respect to decreasing the excitonic condensate
critical temperature (comparing the green and blue lines in
Fig. 1, for instance). The signature of the critical temperature
depending on the external electric field for a given dielectric
thickness will be discussed in detail in Fig. 5 below.

In Fig. 2, we discuss signatures of the excitonic condensa-
tion order parameter δ depending on temperature T at a given
external electric field Eext = 1 for some values of dielectric
thickness d . At a given dielectric thickness d , one finds a sim-
ilar behavior of the thermal fluctuations affecting on excitonic
condensation state as addressed in Fig. 1. With increasing
the dielectric thickness d between the upper layer and the
lower layer, Fig. 2 shows us that the critical temperature is
monotonously decreased; meanwhile, the excitonic condensa-
tion order parameter δ versus the dielectric thickness d at zero
temperature (see the inset of the Fig. 2) is non-. Note here
that, for a given value of the external electric field, increasing
d , in one way, leads to increasing the chemical potential or
enlarging the overlap between the conduction and valance
bands but, in other ways, decreases the interlayer Coulomb in-
teraction. The interactive influence of the dielectric thickness
on the two factors directly affects the excitonic bound state.
The nonmonotonous behavior of the δ at T = 0 thus might
appear. When the dielectric thickness d is sufficiently large,
d � 1, the excitonic order parameter δ decreases more rapidly
with increasing the temperature. That might be explained
if one notes that once d is large, the Coulomb interaction
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FIG. 2. Order parameter δ = (1/N )
∑

k δk depending on the di-
electric thickness d as a function of temperature T for an external
electric field Eext = 1. The inset shows a dependence of the order
parameter δ on dielectric thickness d at zero temperature.

quickly diminishes [see Eq. (3)] and only a few pairs very
close to the Fermi level around the momentum q ≈ 0 play an
important role in forming the bound state. The bound state,
therefore, is expeditiously depressed by the thermal fluctua-
tions. The critical temperature for the excitonic condensation
state, consequently, decreases with increasing the dielectric
thickness d .

To understand the behavior of the excitonic condensation
state at zero temperature versus the dielectric thickness d , in
Fig. 3 we show the quasiparticle energies Eα

k for some dielec-
tric thicknesses d at T = 0 and external electric field Eext = 1
along the off-diagonal direction in the equivalent Brillouin
zone. At small d , the overlap of the conduction band on the
upper layer with the valance band of the lower layer is small,
however, the Coulomb interaction is large. The band gap thus
is enlarged around a small deviation of the K points. In this

-2

-1

0

1

2

3

E
1 k, E

2 k

d=0.5
d=1.0
d=1.5
d=2.0
d=2.5

K K’M

FIG. 3. Quasiparticle energies E 1
k (solid lines) and E 2

k (dashed
lines) for some dielectric thicknesses d at T = 0 and external elec-
tric field Eext = 1 along the off-diagonal direction in the equivalent
Brillouin zone. Dotted lines indicate some high symmetry points K ,
K ′, and M.

-0.5

-0.4

-0.3

-0.2

-0.1

0

δ k

-0.5

-0.4

-0.3

-0.2

-0.1

0

δ k
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K M K’ K M K’

FIG. 4. Momentum distribution of the excitonic order parameter
δk for some dielectric thicknesses d at T = 0 and external electric
field Eext = 1 along the off-diagonal direction in the equivalent Bril-
louin zone. Dotted lines indicate some high symmetry points K , K ′,
and M.

case, one finds a maximum of the momentum distribution
of the excitonic order parameter δk [see Fig. 4(a)] close the
Fermi level. The so-called Fermi momenta are very close to
the K points. Enlarging d makes the conduction band shift
down and the valance band move up. The Fermi momenta are
thus shifted further far from the K points. Moreover, in this
situation, the Coulomb interaction is reduced; consequently,
the energy gap gets smaller. However, by enlarging d , some
levels with momenta around the M point reach the Fermi level.
The electrons and holes with that momenta might contribute
to the formation of the excitons and stabilize the excitonic
condensation state. For instance, at d = 2, one finds a large
momentum distribution of the excitonic condensate order pa-
rameter δk at the M point [see Fig. 4(c)]. That is a reason
the excitonic order parameter δ gets maximum at d = 2, as
shown in the inset of Fig. 2. Increasing d further, the Coulomb
interaction gets smaller and only a small number of electrons
and holes very close to the Fermi level play a role in the
formation of the excitonic condensation state. The energy gap
thus is small with a sharp excitonic condensate distribution
around the Fermi momenta and the contribution of the quasi-
particle around the M point is less important [see Fig. 4(d)].
In all cases, one always finds a sharp peak in the momentum
distribution of the excitonic condensate order parameter δk
around the Fermi level. The excitonic condensation state in
the system thus typifies the BCS type.

To summarize the interplay of the dielectric thickness d
and external electric field Eext affecting the stability of the
excitonic condensation state under the influence of the ther-
mal fluctuations, in Fig. 5 we show the phase diagram of
the excitonic condensation state in the DLG system in the
(T, Eext ) plane for some values of dielectric thicknesses d . At
a given suitable set of the dielectric thickness d and external
electric field Eext, the excitonic condensate might be found
at low temperatures. Once the temperature is larger than a
critical value, the thermal fluctuations destroy the coherent
bound state and the system is out of the order state. When
the dielectric thickness is small, for instance, at d = 0.5,
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FIG. 5. Phase diagram of the excitonic condensate in DLG in the
(T, Eext ) plane for different values of dielectric thickness d .

increasing the external electric field in a range of Eext � 2, one
finds the broaden window of the excitonic condensation state
[see the Fig. 5(a)]. The condensate region sharply collapses
when the two layers are separated further by a dielectric
medium. Indeed, at the dielectric thickness d = 1, Fig. 5(b) il-
lustrates a smaller dome of the excitonic condensation state by
varying the external electric field. The excitonic condensation
state only appears if the Eext is sufficiently large. Increasing
Eext induces the development of the excitonic condensation
regime with respect to enhancing the transition temperature
of the condensation state. For Eext ≈ 2, the critical tempera-
ture gets maximum, the excitonic condensation regime then
collapses once Eext increases further. The position of Eext at
which the critical temperature gets maximum shifts to the left
if the dielectric thickness d is larger [cf. Figs. 5(c) and 5(d)].
Even at d = 2, Fig. 5(d) shows us that the excitonic condensa-
tion state exists as a small island with 0.5 < Eext < 2. In this
case, only a few electron-hole pairs very close to the Fermi
level play a role in the formation of the bound coherent state.

Next, we discuss the optical properties of the excitonic
condensate in DLG. Inspecting the signatures of the optical
conductivity might give us valuable information about the
quasiparticle properties, particularly regarding the quasiparti-
cle dynamics. In Fig. 6, we present the real part of the optical
conductivity σ (ω) at a given set of the dielectric thickness
d = 1.5 and external electric field Eext = 1 for some temper-
atures below the critical value (see the red line in Fig. 1).
When the system settles in the excitonic condensation state,
one always finds that the real part of the optical conductivity
is nearly zero for the frequency ω smaller than a double of
the excitonic condensate order parameter at the Fermi level
δkF . In this range of the electron-hole continuum, the spectral
weight of the optical conductivity is apparently diminished.
However, at the edge of the electron-hole continuum or at the
frequency ω ≈ 2δkF , the optical response gets a maximum,
then it quickly drops toward the normal state conductivity by
increasing the frequency further. The sharp peak of the optical
conductivity at the frequency ω = 2δkF indicates the reso-
nance state in the case of the strong hybridization between the

0 0.1 0.2 0.3 0.4 0.5 0.6
ω

0

0.2

0.4

0.6

0.8

1

σ(
ω

)

T=0
T=0.02
T=0.03
T=0.04

FIG. 6. Real part of the optical conductivity σ (ω) in the excionic
condensation state at Eext = 1, d = 1.5 for some different values of
temperature T .

electrons in the upper layer and the holes in the lower layer,
with respect to the formation of the excitonic condensate.
The presence of the hybridization or interorbital interaction
delivers the peak in the optical conductivity spectrum and also
the band gap in the quasiparticle energies. At the given set
of Eext and d the peak position of the optical spectrum shifts
to the left with increasing temperature. This signature of the
spectrum makes sense as we have mentioned that the excitonic
condensation order parameter decreases by raising the thermal
fluctuations.

To discuss influence of the interlayer dielectric thickness
on the optical signatures in DLG, in Fig. 7 we show the
real part of the optical conductivity σ (ω) at zero temperature
T = 0 and external field Eext = 1 for some dielectric thick-
nesses d . When d is small, at d = 0.5, for instance, the energy
gap is largely opened, corresponding to the appearance of
large frequency peaks in the optical conductivity spectrum.
Increasing d , for instance, up to d = 1, the peaks shift to the

0 0.2 0.4 0.6 0.8 1
ω

0

0.6

1.2

1.8

σ(
ω

)

d=0.5
d=1.0
d=1.5
d=2.0

MFT PRM

FIG. 7. Real part of the optical conductivity σ (ω) at zero tem-
perature T = 0 and external field Eext = 1 for some dielectric
thicknesses d by use of PRM (solid lines) and MFT (dashed lines)
for comparison.
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perature T = 0 and dielectric thickness d = 1.5 for some external
electric fields Eext.

left due to the shrink of the energy gap close to the Fermi level.
In this range of the dielectric thickness, one finds a two-peak
signature of the optical conductivity. The two-peak structure
might be induced from the contribution of the incoherent parts
based on the PRM. Note here that in the approach of the
mean-field theory (MFT), i.e., all the fluctuation contributions
are eliminated; the two-peak structure does not appear (see
the dashed lines in Fig. 7). With increasing d , the Coulomb
interaction is reduced, the peak with higher frequency is less
significant, and finally disappears when d is large enough
(for instance, at d � 2). From Fig. 7, one also learns that,
due to the contribution of the renormalization, the optical
conductivity spectrums shift to the left with lower frequencies.
That signature indicates that the excitonic condensate order
parameter evaluated by the present PRM with all fluctuation
contributions deviates from the overestimated value evaluated
by the original mean-field approximation.

To gain further insight about the external electric field in-
fluence in the optical properties of the excitonic condensation
state in DLG, we show in Fig. 8 the real part of the optical con-
ductivity at zero temperature and dielectric thickness d = 1.5
for some values of Eext. For a given dielectric thickness d , the
Coulomb interaction is fixed, thus if the external electric field
is small the system might not be stabilized in the excitonic
condensation state and no peak signature at a finite frequency
can be found in the optical conductivity spectrum. The situa-
tion is changed once the external electric field is large enough
and the system settles in the excitonic condensation state. In
this case, the optical conductivity displays the peak at a finite
frequency corresponding to the double of the energy gap at
the Fermi level.

V. CONCLUDING REMARKS

To conclude, we have analyzed the excitonic condensation
state in a DLG system by means of a PRM adapting to a
generic graphene bilayer model, so the fluctuations due to
the interlayer Coulomb interaction between an electron in
the upper layer and a hole in the lower layer are taken into
account. In the calculation, we have supposed that electron-
hole pair formation and condensation might appear in the
DLG system at least at zero temperature if a finite external
electric field is applied. In doing so, we have derived a set of
self-consistent equations permitting us to solve numerically
the excitonic condensate order parameters once the renor-
malization contributions are involved. In the feature of the
projector-based renormalization approach, we also released an
analytical formula for the real part of the optical conductivity.
The signature of the optical properties of the system in the
condensation state was then addressed. For a given dielectric
medium embedded in between two layers, one finds a dome
of the excitonic condensation state in the influence of the
external electric field and the thermal fluctuations. The dome
is rapidly suppressed when the dielectric thickness is enlarged.
As a function of the dielectric thickness, we also found a
nonmonotonous behavior of the excitonic condensate order
parameter at zero temperature. In the present paper, we also
presented signatures of the optical conductivity to address the
dynamical properties of the excitonic condensation state in
DLG by which the real part of the optical conductivity is
considered, that rises at a sharp peak at a frequency equal
to twice the excitonic condensate order parameter. Once the
dielectric thickness is small with respect to large Coulomb
interaction, the renormalization induces the two-peak signa-
tures of the optical conductivity spectrum in the condensation
state. Enlarging the dielectric thickness, the spectrum recovers
the one-peak signature as found by the original MFT. Our
findings thus have addressed in detail the phase structure of
the excitonic condensation state in the DLG and especially re-
leased the dynamical properties of the condensate state in the
singatures of the optical conductivity. In the framework of the
projector-based renormalization approach, all contributions of
the quantum fluctuations to the phase transition are taken into
account. The results are promising for the profound under-
standing of the excitonic condensation state in double-layer
systems and also in the semimetal-semiconductor transition
materials, in general.
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