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Quench dynamics and relaxation of a spin coupled to interacting leads
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We study a quantum quench in which a magnetic impurity is suddenly coupled to Hubbard chains, whose
low-energy physics is described by Tomonaga-Luttinger liquid theory. Using the time-dependent density-matrix
renormalization-group (tDMRG) technique, we analyze the propagation of charge, spin, and entanglement in the
chains after the quench and relate the light-cone velocities to the dispersion of holons and spinons. We find that
the local magnetization at the impurity site decays faster if we increase the interaction in the chains, even though
the spin velocity decreases. We derive an analytical expression for the relaxation of the impurity magnetization
which is in good agreement with the tDMRG results at intermediate timescales, providing valuable insight into
the time evolution of the Kondo screening cloud in interacting systems.
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I. INTRODUCTION

The interaction between a magnetic impurity and a non-
magnetic metallic host is one of the fundamental problems in
many-body physics [1]. A deep understanding of the Kondo
effect has been achieved thanks to the numerical renormaliza-
tion group [2], the exact Bethe ansatz solution [3], and con-
formal field theory techniques [4]. A hallmark of the Kondo
effect is the emergence of a characteristic scale, the
Kondo temperature TK , which varies exponentially with the
exchange coupling between the impurity and a Fermi liquid
metal. At temperatures below TK , perturbation theory in the
exchange coupling breaks down, and the properties of the
system are governed by the formation of a singlet state be-
tween the impurity and the conduction electrons [5]. Kondo
physics is also manifested in the spatial dependence of spin
correlations [6–11], which change qualitatively over distances
of the order of ξK = h̄vF /(kBTK ), where vF is the Fermi ve-
locity of the conduction electrons and h̄ and kB are the Planck
and Boltzmann constants, respectively. The length scale ξK is
interpreted as the size of the Kondo screening cloud, whose
effects have been observed recently in a mesoscopic device
[12].

Experiments with quantum dots coupled to electron reser-
voirs [13,14] opened the way for controllable realizations and
inspired studies of the nonequilibrium dynamics of Kondo
systems [15–23]. The active research on this topic has also
been boosted by recent efforts to simulate the Kondo effect
with ultracold atoms [24–27]. A typical quench protocol in
this context consists of switching on the coupling between an
initially spin-polarized impurity and a metallic lead [15,28–
30]. One then observes a real-time decay of the impurity
magnetization accompanied by the buildup of Kondo corre-
lations over a time scale τK = h̄/(kBTK ) after the quench. By
analogy with the Kondo effect, the scaling behavior in the

time dependence as the system approaches equilibrium has
also been studied for the resonant level model [31–33].

The usual description of the Kondo effect within the
single-impurity Anderson model [1] takes into account the
local interaction at the quantum dot but neglects electron-
electron interactions in the bulk. In higher dimensions, this
approximation is justified by Landau’s Fermi liquid theory,
where the bulk degrees of freedom are associated with weakly
interacting fermionic quasiparticles. However, if the leads
are interacting one-dimensional systems, as in the case of
quantum wires [34], Fermi liquid theory must be replaced
by Tomonaga-Luttinger liquid (TLL) theory [35]. In a TLL,
the elementary excitations are spin-charge-separated bosonic
modes and correlation functions decay as power laws with
interaction-dependent exponents. Despite the spin-charge sep-
aration in the bulk, the Kondo effect in a TLL can still be
affected by interactions in the charge sector [36–41].

In this work we investigate the nonequilibrium dynamics
after a local quench in which a spin-polarized electron is sud-
denly coupled to a correlated chain described by a repulsive
Hubbard model. We are particularly interested in comparing
numerical results obtained by time-dependent density matrix
renormalization group (tDMRG) methods with the predictions
from an effective field theory for the coupling of a localized
spin to a TLL. We first study the problem using bosoniza-
tion to describe the quench within TLL theory, following the
approach of Ref. [42]. Applying perturbation theory in the
Kondo coupling JK , we derive an analytical expression for the
decay of the impurity magnetization valid up to intermediate
times, which are greater than the microscopic time scale h̄/JK

but shorter than the Kondo time τK . Second, we simulate the
nonequilibrium dynamics in the lattice model using tDMRG.
Analyzing the propagation of correlations and entanglement
entropy, we observe two light cones with distinct veloci-
ties, which can be identified with the maximum velocities of
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FIG. 1. Schematic representation of the quantum quench in the
Anderson impurity model with interacting leads. At the initial time,
the impurity site with energy εd and interaction Ud , occupied by
a spin-up electron, is connected to the left and right wires via hy-
bridization couplings t ′

1 and t ′
2, respectively. The wires are described

by a quarter-filled Hubbard model with hopping parameter t and
onsite interaction U .

elementary charge and spin excitations in the Hubbard chain.
The numerical results confirm the field theory prediction of a
time regime where the impurity magnetization scales logarith-
mically with time. On the other hand, they also reveal a strong
dependence on the interaction strength which we ascribe to a
renormalization of the high-energy cutoff in the field theory,
rather than to the Luttinger parameter in the charge sector.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the time-dependent Anderson impurity
model with interacting leads and describe the quench protocol.
In Sec. III, we use the TLL theory to derive an analytical ex-
pression for the real-time decay of the impurity magnetization
from perturbation theory in the Kondo coupling. Section IV
presents our tDMRG results. We discuss the propagation of
perturbations after the quench in relation to the exact veloc-
ities of elementary excitations and analyze the relaxation of
local observables at the impurity site. Our concluding remarks
can be found in Sec. V. Finally, Appendix contains some de-
tails of the analytical calculation outlined in Sec. III. Hereafter
we set h̄ = kB = 1.

II. MODEL AND QUENCH PROTOCOL

We consider the setup shown in Fig. 1, described by the
time-dependent Hamiltonian

H (τ ) = Hleads + Himp + �(τ )Hhyb, (1)

where �(τ ) denotes the Heaviside step function. The first
term represents the Hamiltonian for the conduction electrons
in the interacting leads, Hleads = ∑2

�=1 H�, where the index
� = 1, 2 labels the left and right wires, respectively. Each wire
is described by a Hubbard model:

H1 = −t
−2∑

i=−L1

∑
σ

(c†
iσ ci+1σ + H.c.) + U

−1∑
i=−L1

ni↑ni↓,

H2 = −t
L2−1∑
i=1

∑
σ

(c†
iσ ci+1σ + H.c.) + U

L2∑
i=1

ni↑ni↓, (2)

where ciσ annihilates an electron with spin σ =↑,↓ at site i,
niσ = c†

iσ ciσ are number operators, t is the hopping parameter,
and U > 0 is the onsite interaction strength. The number of
sites is L1 for the chain on the left and L2 for the chain on
the right, and we impose open boundary conditions at the
chain ends. Throughout this work, we set t = 1, which defines
the unit of energy. We shall work at fixed average density

ρ = N1/L1 = N2/L2, where N� is the number of electrons in
each decoupled chain in the initial state. At half filling, an
infinitesimal U > 0 drives the system into a Mott insulating
phase [35]. To consider interacting metallic leads, we set the
density to quarter filling, ρ = 1/2.

The Hamiltonian for the impurity site, i = 0, is given by

Himp = εd n0 + Ud n0↑n0↓, (3)

where n0 = n0↑ + n0↓, εd is the energy shift of the localized
state with respect to the Fermi level in the leads, and Ud is the
local interaction. To have a local moment at the impurity site,
we consider εd < 0 and Ud > 0.

Finally, the hybridization between the impurity and the
chains is described by

Hhyb = −t ′
1

∑
σ

c†
−1σ c0σ − t ′

2

∑
σ

c†
0σ c1σ + H.c., (4)

where t ′
1 and t ′

2 are the hopping parameters between the im-
purity site and the nearest sites in the left or right chains,
respectively. While this model describes the general case of
asymmetric tunneling amplitudes, we shall focus on two spe-
cial limits. First, in the maximally asymmetric case, we set
t ′
1 = 0 and t ′

2 �= 0. The impurity site is then coupled only to the
first site of the right wire and we can forget about the left wire.
Second, for t ′

1 = t ′
2, the impurity site is coupled symmetrically

to both wires. In this case, hopping through the impurity site
allows for electron transport between the wires.

We are mainly interested in the strong Coulomb blockade
regime t ′

1,2 � −εd ,Ud , where states in the low-energy sub-
space contain a singly occupied impurity site, n0 = 1. We
then apply a Schrieffer-Wolff transformation to integrate out
high-energy processes that change the occupation of the im-
purity site [1]. As a result, model (1) can be mapped onto the
effective Hamiltonian

Heff (τ ) = Hleads + �(τ )HK , (5)

where [43]

HK = JK S0 · (κ1c†
−1 + κ2c†

1)
σ

2
(κ1c−1 + κ2c1)

+V (κ1c†
−1 + κ2c†

1)(κ1c−1 + κ2c1). (6)

Here S0 = c†
0(σ/2)c0 is the spin operator for the electron at the

impurity site and σ is the vector of Pauli matrices acting on the
two-component spinor ci = (ci↑, ci↓)t . The antiferromagnetic
Kondo coupling JK > 0 is given by

JK = 2[(t ′
1)2 + (t ′

2)2]

(
1

−εd
+ 1

Ud + εd

)
, (7)

and the amplitude V of the potential scattering term is given
by

V = (t ′
1)2 + (t ′

2)2

2

(
1

−εd
− 1

Ud + εd

)
. (8)

The dimensionless parameters κ1,2 in Eq. (6) are

κ1 = t ′
1√

(t ′
1)2 + (t ′

2)2
, κ2 = t ′

2√
(t ′

1)2 + (t ′
2)2

. (9)

For t ′
1 = 0 and t ′

2 �= 0, the impurity spin couples to the spin
density at the boundary of the right wire. For t ′

1 = t ′
2, it
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couples to the symmetric orbital at sites i = ±1. The potential
scattering can be canceled at lowest order in t ′

1,2/Ud if we
set εd = −Ud/2. Note, however, that a nonzero V may be
generated at higher orders because particle-hole symmetry is
broken for any electron density away from half filling.

In the quench protocol, we assume that for times τ < 0 the
system is prepared in the state

|
0〉 = |GS〉1 ⊗ |↑〉 ⊗ |GS〉2, (10)

where |GS〉� for � = 1, 2 is the ground state of the discon-
nected Hubbard chains and | ↑〉 is the polarized state of the
impurity spin. This initial state is not an eigenstate of Hamil-
tonian (1) for τ > 0. After we switch on the hybridization
couplings, the state evolves nontrivially according to

|
(τ )〉 = e−iτ (Hleads+Himp+Hhyb )|
0〉. (11)

Since this is a local quench, we expect that, in the thermody-
namic limit and for sufficiently long times, local observables
will relax to the corresponding expectation values in the
ground state of the post-quench Hamiltonian. The ground
state of H (τ > 0) in Eq. (1) at quarter filling was studied nu-
merically in Ref. [44]. For noninteracting chains, U = 0, one
finds that the Kondo regime, where 〈n0〉 ≈ 1 and 〈(Sz

0)2〉 ≈
1/4, is reached with good approximation for t ′ = 0.5 and
Ud � 5. Smaller values of Ud lead to a mixed valence regime
with significant deviations from single occupancy in the im-
purity site. Importantly, for a fixed value of Ud , increasing the
interaction U > 0 in the chains suppresses charge fluctuations
and drives the system closer to the Kondo regime [44].

III. FIELD THEORY APPROACH

Deep in the Kondo regime, we can use the Hamiltonian
in Eq. (5) to study the time evolution of observables which
do not entail charge fluctuations at the impurity site. In par-
ticular, we shall be interested in the time-dependent impurity
magnetization

m0(τ ) = 〈
(τ )|Sz
0|
(τ )〉. (12)

The latter must decay to zero for τ → ∞, signaling the for-
mation of the Kondo screening cloud. In this section, we
calculate the time dependence of m0(τ ) using the low-energy
effective field theory and perturbation theory in the Kondo
coupling. Our calculation for electrons with spin is inspired
by the approach of Ref. [42] for spinless fermions.

A. Effective Hamiltonian

We start with the Luttinger model for the disconnected
interacting leads. Here we consider two semi-infinite chains,
corresponding to the limit L1,2 → ∞. To describe the low-
energy modes in the wires, we take the continuum limit and
expand the fermionic field operators in terms of right (R) and
left (L) movers [35]

c jσ ∼ c�,σ (x) = eikF xψR,�,σ (x) + e−ikF xψL,�,σ (x), (13)

where c1,σ (x) is defined for x < 0 and c2,σ (x) for x > 0. At
quarter filling, the Fermi momentum is kF = π/4, where we
set the lattice spacing to unity. The open boundary condition,
c�,σ (0) = 0, can be cast as a constraint on the chiral fermionic

modes in each wire [39]

ψL,�,σ (x) = −ψR,�,σ (−x). (14)

Thus, for instance, the left mover in wire � = 2 can be re-
garded as the analytic continuation of the right mover to the
negative-x axis. Likewise, we may choose the right mover in
wire � = 1 to be the analytic continuation of the correspond-
ing left mover to the positive-x axis. These relations allow us
to work with a single chiral field in each wire redefined in the
domain x ∈ R. It will be convenient to use the two-component
spinors

ψ
†
1 (x) = (ψ†

L,1,↑(−x), ψ†
L,1,↓(−x)),

ψ
†
2 (x) = (ψ†

R,2,↑(x), ψ†
R,2,↓(x)). (15)

In the continuum limit, the Hamiltonian for the interacting
leads becomes the Luttinger model with an open boundary
[39], H� ≈ HLL

� , with

HLL
� = vF

∫ ∞

−∞
dx

[
ψ

†
� (−i∂x )ψ�

+ g

2
ρ�(x)ρ�(x) + g

2
ρ�(x)ρ�(−x)

]
, (16)

where vF = 2 sin kF is the Fermi velocity of the noninter-
acting system, g = U/vF is a dimensionless parameter, and
ρ� = ψ

†
� ψ� is a density operator.

Using Abelian bosonization [35,45], we write the
fermionic field in terms of charge and spin boson fields:

ψ�(x) ∼ 1√
2πα

(
e−i

√
π
2 [φ�,c (x)+φ�,s (x)]

e−i
√

π
2 [φ�,c (x)−φ�,s (x)]

)
, (17)

where α is a short-distance cutoff and φ�,c/s =
(φ�,↑ ± φ�,↓)/

√
2 obey the commutation relations

[φ�,λ(x), φ�′,λ′ (y)] = iδ��′δλλ′sgn(x − y). (18)

In terms of bosonic annihilation operators η�,λ,q with momen-
tum q > 0, the fields φ�,λ(x) are given by

φ�,λ(x) = 1√
L

∑
q>0

e− α
2 q

√
q

[zλq(x)η�,λ,q + z∗
λq(x)η†

�,λ,q], (19)

where zλq(x) = (1/
√

Kλ) cos(qx) + i
√

Kλ sin(qx), with Kλ

the Luttinger parameter in the charge or spin sector for λ =
c, s, respectively. The SU(2) spin-rotation symmetry of the
Hamiltonian for the leads fixes Ks = 1 [35,45]. For the charge
sector, bosonization gives Kc ≈ 1 − g/π to first order in g �
1. The exact value of the charge Luttinger parameter can
be obtained from the Bethe ansatz solution of the Hubbard
model [46,47]. For repulsive interactions, one finds Kc < 1,
with Kc = 1 for U = 0 and Kc → 1/2 for U → ∞. Using
the mode expansion in Eq. (19), we diagonalize the Luttinger
Hamiltonian in the form

HLL
� =

∑
λ=c,s

∑
q>0

vλqη
†
�,λ,qη�,λ,q, (20)

with vc/s being the velocities of the charge and spin bosonic
modes. Like the Luttinger parameters, the exact velocities can
be determined using the Bethe ansatz solution. In particular,
in the strong coupling limit U → ∞, the ground-state wave
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function can be expressed as a product of a Slater deter-
minant of spinless fermions and the spin wave function of
the spin-1/2 Heisenberg chain [48]. In this limit, the spin
velocity vanishes, vs ∼ t2/U → 0, while the charge velocity
approaches vc = 2 sin kF [48,49].

The Kondo coupling involves the fermionic fields at sites
i = ±1. Using the boundary condition, we get

c1σ ∼ eikF ψR,2,σ (0) + e−ikF ψL,2,σ (0)

= 2i sin kF ψR,2,σ (0). (21)

Likewise, c−1σ ∼ 2i sin kF ψL,1,σ (0). We can now write the
Kondo coupling in the weak coupling limit JK � t . We will
distinguish between the two cases of interest. First, for t ′

1 = 0
we obtain

H (1)
K = λK S0· : ψ

†
2 (0)

σ

2
ψ2 (0) :, (22)

where : ... : denotes normal ordering and we have used kF =
π/4 and εd = −Ud/2 to obtain the bare Kondo coupling λK =
4JK sin2 kF = 16(t ′

2)2/Ud to lowest order in t ′
2/Ud . Second, for

t ′
1 = t ′

2, we obtain

H (2)
K = λK S0 ·

∑
�,�′

: ψ
†
� (0)

σ

2
ψ�′ (0) :, (23)

with the same bare λK as in Eq. (22). Note that the terms with
� �= �′ in H (2)

K account for processes which transfer electrons
between the wires.

In bosonized form, the Kondo Hamiltonian for the impurity
coupled to a single wire becomes

H (1)
K = λK

2

[
S+

0

e−i
√

2πφ2s (0)

2πα
+ S−

0

ei
√

2πφ2s (0)

2πα

+Sz
0

1√
2π

∂xφ2s(0)

]
. (24)

In this case, the Kondo interaction does not involve the charge
boson. In fact, spin-charge separation is preserved when the
impurity spin is coupled to the open boundary of a TLL
[39,50]. As a consequence, the equilibrium Kondo effect in
this geometry does not exhibit anomalous scaling associated
with the Luttinger parameter Kc < 1 in the charge sector.
This is in contrast to the Kondo effect in a TLL studied in
Refs. [36,37], where the impurity spin is coupled to the elec-
tron spin density in the middle of an infinite wire. However,
the Kondo effect described by Eq. (24) can still be affected by
interactions in the bulk as the latter can renormalize the bare
Kondo coupling λK or equivalently the nonuniversal constant
α in prefactor of the boundary spin operators. We shall see
that is indeed the case when we analyze the numerical results
in Sec. IV.

When the impurity spin is symmetrically coupled to both
wires, we obtain

H (2)
K = λK

2

(
S+

0 F + S−
0 F † + Sz

0G
)
, (25)

where the boundary operators F and G are given by

F = 1

2πα
[e−i

√
2πφ1s (0) + e−i

√
2πφ2s (0)]

+C e−i
√

πφ+
s (0)

πα
cos[

√
πφ−

c (0)], (26)

G =
√

1

π
∂xφ

+
s (0) − 2C

πα
sin[

√
πφ−

c (0)] sin[
√

πφ−
s (0)].

(27)

Here φ±
λ = (φ1λ ± φ2λ)/

√
2 are symmetric and antisymmetric

combinations with respect to exchanging the wires. In addi-
tion to the spin-only terms analogous to Eq. (24), the Kondo
interaction for this geometry contains operators that involve
the charge bosons and are associated with tunneling between
the wires. Here we have introduced a nonuniversal constant C
because the tunneling terms renormalize differently than the
ones that scatter electrons back into the same wire [39]. Given
that the Kondo interaction involves the charge boson, in this
case we should expect some explicit interaction dependence
as the Luttinger parameter Kc must show up in the exponent
of correlators for the boundary operators.

B. Decay of the impurity magnetization
after the quantum quench

We now turn to the calculation of m0(τ ). In the effective
field theory, the ground state of the disconnected leads is a
vacuum of the bosonic modes of the TLLs. Thus, the initial
state is written as |
0〉 = |0〉1 ⊗ | ↑〉 ⊗ |0〉2, where |0〉� for
� = 1, 2 obey η�,λ,q|0〉� = 0 for both spin and charge modes
(λ = c, s) and any q > 0.

Let us first consider the case in which the impurity is cou-
pled to a single wire. The time evolution for τ > 0 is governed
by the effective Hamiltonian H0 + H (1)

K , with H0 = HLL
2 . In

the interaction picture, we write

m0(τ ) = 〈
I (τ )|Sz
0,I (τ )|
I (τ )〉. (28)

Here ÔI (τ ) = eiH0τ Ôe−iH0τ denotes an operator evolved with
the unperturbed Hamiltonian, while the state evolves with the
Kondo interaction in the form

|
I (τ )〉 = T exp

[
−i

∫ τ

0
dτ ′H (1)

K,I (τ ′)
]
|
0〉, (29)

where T denotes time ordering.
Clearly, the initial condition is m0(0) = 1/2. Expanding

the exponential in Eq. (29) in powers of the Kondo coupling
λK , we find that the first nonvanishing correction appears at
order J2

K . Following the steps detailed in Appendix, we obtain

m0(τ ) ≈ 1

2
− λ2

K

4

∫ τ

0
dτ ′dτ ′′ C(τ ′ − τ ′′) + O

(
λ3

K

)
, (30)

where C(τ ) = (2πα)−2〈e−i
√

2πφ2s (0,τ )ei
√

2πφ2s (0,0)〉0 and 〈. . . 〉0

denotes the expectation value in |
0〉. Calculating the correla-
tor and performing the integration over τ ′ and τ ′′, we obtain a
logarithmic dependence for the time decay:

m0(τ ) = 1

2
−

(
λK

4πα�

)2

ln[1 + (�τ )2] + O
(
λ3

K

)
, (31)
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where � ∼ vF /α is an ultraviolet cutoff that appears in the
boundary correlators. Note that the leading time dependence
of m0(τ ) stems from the correlator for the operators associated
with spin-flip scattering in Eq. (24), which provides a mecha-
nism for the relaxation of the polarized impurity spin.

According to the perturbative result in Eq. (31),
the impurity magnetization would vanish for times τ ∼
�−1e8π2(α�/λK )2 � �−1. However, we expect the lowest-
order result to break down before this condition is reached.
The reason is that for times τ ∼ τK ∼ �−1eπvF /λK the higher-
order corrections must begin to renormalize the effective
Kondo coupling. In fact, the finite time in the quench dynam-
ics plays the role of an effective temperature Teff ∼ 1/τ , which
cuts off the infrared singularities associated with the Kondo
effect, see Ref. [15]. To estimate the Kondo time scale, we set
� = 1, vF = √

2 for kF = π/4, and λK = 1/2, which gives
τK ≈ 7 × 103. Thus, in the same way that the Kondo screen-
ing cloud can reach mesoscopic length scales ξK ∼ 1 μm
[11], the Kondo time is much longer than the microscopic

time scale set by the exchange coupling. In this work we focus
on the regime �−1 � τ � τK , in which perturbation theory is
under control and the dynamics is governed by the ultraviolet
(weak coupling) fixed point of the Kondo problem. This is the
relevant regime for comparison with the numerical results in
Sec. IV and possibly with future experiments that might probe
the nonequilibrium dynamics in this kind of quench protocol
[27]. At long times, τ � τK , the dynamics must be governed
by the low-energy fixed point at which the impurity spin is
completely screened by the conduction electrons [37,39].

For the case where the impurity is coupled to both wires,
we apply second-order perturbation theory in the Kondo cou-
pling in Eq. (25). We obtain Eq. (30) with the correlator C(τ )
replaced by 〈F (τ )F †(0)〉0. Once again, the spin relaxation is
related to the correlator for the operators associated with spin-
flip scattering in the Kondo interaction. In fact, the operator G
in Eq. (27) does not appear in this lowest-order result. Leaving
the details of the calculation to Appendix, here we write down
the result:

m0(τ ) = 1

2
− 2

(
λK

4πα�

)2(
ln[1 + (�τ )2] + 2C2K2

c

1 − Kc

{
1 − [1 + (�τ )2]

Kc−1
2Kc cos

[
1 − Kc

Kc
arctan(�τ )

]})
+ O

(
λ3

K

)
. (32)

The logarithmic term in this case differs by a factor of 2
from the corresponding term in Eq. (31). The decay is also
enhanced by the contribution from the tunneling terms, which
depends on Luttinger parameter Kc. Note that the exponent
1 − K−1

c is negative for Kc < 1, which means that the power
law vanishes for τ → ∞ and the term ∝ C2 converges to a
finite value. This happens because the tunneling operators in
Eq. (26) have scaling dimension (1 + K−1

c )/2 and are irrele-
vant at tree level for repulsive interactions [39,51]. Therefore,
the relaxation of the impurity magnetization is still predomi-
nantly driven by the marginal terms in the Kondo interaction,
which give rise to the logarithmic term in Eq. (32). In the
noninteracting limit Kc → 1, the tunneling operators become
marginal as well, and Eq. (32) reduces to the pure logarithmic
dependence (setting C = 1):

m0(τ ) = 1

2
− 4

(
λK

4πα�

)2

ln[1 + (�τ )2]. (33)

This is expected because in this case the Kondo interaction in
Eq. (23) can be rewritten in terms of the coupling to a single
noninteracting channel, H (2)

K = 2λK S0 · ψ
†
+(0)(σ/2)ψ+(0),

where ψ+ = (ψ1 + ψ2)/
√

2 annihilates an electron in the
symmetric orbital.

IV. NUMERICAL RESULTS

In this section, we use tDMRG to study the nonequilibrium
dynamics following a hybridization quench described by the
Hamiltonian in Eq. (1). The numerical results were obtained
using a second-order Suzuki-Trotter decomposition with a
time step dτ = 0.05, which keeps the error of the order of
10−6 for the time intervals we consider. In the preparation of
the initial state, we fix the electron density at quarter filling,
ρ = 0.5, by adjusting the chemical potential in the chains.

To simulate the dynamics for τ > 0, we set the hybridization
parameters t ′

1,2 = 0.5. In our DMRG method it is convenient
to choose an even number of sites for the coupled system.
For both geometries, we have fixed the total length to L = 48
sites. When the impurity is coupled to a single chain, we
use L1 = 0 and L2 = 47. When both chains are included, we
take L1 = 23 and L2 = 24. To lift the Kramers degeneracy
in the initial state of the odd-length chain, we apply a weak
magnetic field at the site farthest from the impurity spin. The
small difference between the chains in the second geometry
accounts for a slight asymmetry in the propagation of charge,
spin, and entanglement in Fig. 2 below.

A. Light cones

After the local quench, the propagation of perturbations
away from the impurity site is bounded by light cones [52]. It
is known that low-lying excitations on top of the ground state
can rule the velocities of the light cones [53]. For noninter-
acting leads, U = 0, the elementary excitations are electrons
that carry both spin and charge simultaneously. By contrast,
for U > 0, the exact solution of the one-dimensional Hubbard

TABLE I. Velocities and Luttinger parameter obtained from the
Bethe ansatz solution of the Hubbard model at quarter filling for dif-
ferent values of the interaction U . Here vmax refers to the maximum
velocity calculated from the exact holon dispersion.

U vs vc vmax Kc

2 1.09 1.67 2.06 0.82
4 0.86 1.81 2.05 0.71
8 0.56 1.93 2.02 0.62
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FIG. 2. Spatiotemporal dependence of local observables and entanglement entropy after the hybridization quench. Here we fix Ud = 7.
Different columns correspond to different values of the interaction in the Hubbard chains: U = 2 (left panels), U = 4 (middle panels), and
U = 8 (right panels). Panels in the same row show the variation in the local density �ρ(i, τ ) [(a)–(c)], local magnetization m(i, τ ) [(d)–(f)],
and entanglement entropy �S(i, τ ) [(g)–(i)]. Solid red lines represent the boundaries of the light cones defined by the maximum holon velocity
vmax for �ρ(i, τ ) in the top row and by the spin velocity vs for �m(i, τ ) in the middle row, as given in Table I.

model tells us that the elementary excitations are spinons,
which carry spin, holons, and antiholons, which carry charge
and bound states thereof [47]. We may then anticipate that the
light cone velocities in our quench protocol can be extracted
from the dispersion of spinons and holons in the chains. Im-
portantly, these are bulk properties which do not depend on
the parameters at the impurity site.

We calculate the exact holon and spinon dispersions at
quarter filling by solving the Bethe ansatz integral equations
in the thermodynamic limit following Ref. [47]. Within the
Bethe ansatz solution, the ground state is constructed by filling
up the spinon and holon states with quantum numbers up
to some values, fixed by electron density and magnetization,
which define the Fermi boundary. At zero magnetic field, the
maximum spinon velocity occurs at the Fermi boundary and
can be identified with the spin velocity vs in the TLL theory.
On the other hand, the charge velocity vc, calculated from low-
energy particle-hole excitations in the holon dispersion, is not
the maximum velocity for holons. The reason is that for any
density below half filling the inflection point of the holon dis-
persion lies above the Fermi boundary. Here it is instructive to
recall that this is also true for U = 0, where the free electrons
have dispersion ε0(k) = −2 cos k. The maximum velocity in
the band is vmax = max{dε0/dk} = 2, defined from single-
particle states at k = π/2, which is higher than the Fermi

velocity vF = 2 sin kF = √
2 for kF = π/4. Remarkably, in

the opposite limit U → ∞, the maximum velocity is also
vmax = 2, but here it comes from the dispersion of holons
which behave as free spinless fermions [48]. In Table I, we
show the values of the spin (vs), charge (vc), and maximum
(vmax) velocities calculated by Bethe ansatz for three different
values of U . Note that vmax ≈ 2 for all values of the interac-
tion. We stress that TLL theory does not predict vmax, as the
latter depends on the holon dispersion at finite energies.

In Fig. 2, we show the tDMRG results for perturbations in
three different quantities as a function of position i and time τ

after the quench when the impurity is coupled to both wires.
Let us first discuss the change in the local density,

�ρ(i, τ ) = |〈
(τ )|ni|
(τ )〉 − 〈
0|ni|
0〉|, (34)

shown in panels (a)–(c) for U = 2, 4, 8, respectively, and
fixed Ud = 7. Since this observable depends on charge fluctu-
ations, its dynamics should be dominated by the propagation
of holons. The slope of the red lines represented in Figs. 2(a)–
2(c) is set by vmax given in Table I, in good agreement with
the observed light cones. Note that the fastest holons reach
the open boundaries of the finite chains at time τ ≈ 12. After
this, a second cone associated with reflection at the boundaries
propagates back towards the center of the system. If we are
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FIG. 3. Local occupation at the impurity site coupled to two
wires. After the hybridization quench, the occupation varies in time
as shown in (a) for Ud = 2 and in (b) for Ud = 7. Different curves in
(a) and (b) correspond to different values of the interaction strength
U in the chains; from bottom to top, U = 0, 2, 4, 8, 10. Panel
(c) shows the equilibrium occupation as a function of U for different
Ud for comparison with the dynamics.

interested in the behavior of local observables in the ther-
modynamic limit, we must restrict the measurement to times
below this reflection cone.

Next, we consider the variation in the local magnetization,

�m(i, τ ) = |〈
(τ )|Sz
i |
(τ )〉 − 〈
0|Sz

i |
0〉|. (35)

In particular, �m(0, τ ) = 1/2 − m0(τ ) corresponds to the de-
cay of the impurity magnetization. The numerical result is
shown in Figs. 2(d)–2(f). In this case, the slope of the light
cone boundary is defined by the spin velocity vs, which de-
creases with increasing interaction. Recall that vs ∼ 1/U → 0
for U → ∞. Clearly, in the strongly interacting limit per-
turbations in the spin sector propagate more slowly than
perturbations in the charge sector, cf. panels (a)–(c).

Finally, we study how the von Neumann entanglement
entropy (EE) evolves after the quench. Here we divide the
system into two partitions, A and B, such that subsystem
A comprises the leftmost i sites, while B contains the L − i
rightmost sites. The EE is defined as S(i, τ ) = −∑

n ξn log ξn,
where {ξn} is the set of eigenvalues of the reduced den-
sity matrix ρ̂A/B(τ ) = TrB/A|
(τ )〉〈
(τ )|. In Figs. 2(g)–2(i),
we show the propagation of variations in the EE, given by
�S(i, τ ) = |S(i, τ ) − S(i, 0)|. We observe that the velocity of
the light cone in the entanglement entropy is close to vmax,
indicating that entanglement propagates with the velocity of
the fastest excitation.

B. Local observables at the impurity site

Let us now investigate the time evolution of local observ-
ables at the impurity site. Figures 3(a) and 3(b) display the
occupation number ρ0(τ ) = 〈
(τ )|n0|
(τ )〉 for two different
values of Ud and several values of U when the impurity is
coupled to both wires. For comparison, in Fig. 3(c) we plot

FIG. 4. Impurity magnetization as a function of time after the
quench when the impurity spin is coupled to a single chain. (a) For
fixed U = 4, the magnetization decays more slowly with increasing
Ud . (b) For times τ � 10, the variation in the magnetization scales
logarithmically with time. Panels (c) and (d) show the same as (a) and
(b) for U = 8. The different slopes of the dashed lines in (b) and
(d) show that the prefactor of the logarithmic time dependence in-
creases with U .

the corresponding equilibrium values ρ
eq
0 calculated from the

ground state of the post-quench Hamiltonian in Eq. (1). Our
results indicate that ρ0(τ ) approaches the equilibrium values
for all values of U and Ud , but it also exhibits oscillations with
a frequency that increases with Ud . Most importantly, we ob-
serve that the deviation from single occupancy �ρ0 = 1 − ρ0

decreases as we increase both Ud and U , in agreement with the
equilibrium results of Ref. [44]. This implies that the repulsive
interaction in the chains facilitates the Kondo regime, where
we can neglect charge fluctuations at the impurity site.

Now we focus on results for Ud � 5 to ensure that the
system is close to the Kondo regime and analyze the decay
of the impurity magnetization m0(τ ). We first discuss the
geometry where the impurity is coupled to a single chain, for
which we have the simpler analytical expression in Eq. (31).
Figure 4 shows m0(τ ) for two values of U and several values
of Ud . The numerical result shows oscillations at short times
and also for τ � 25. The latter can be attributed to the finite
size effect of reflection at the boundaries. Remarkably, the
impurity magnetization decays faster with increasing U even
though the spin velocity vs decreases with U . Note that the
total magnetization of the system is conserved due to the
SU(2) symmetry of the Hamiltonian, which implies that m0(τ )
can only decay because the magnetization gets transported
away from the impurity. However, the dynamics of the im-
purity magnetization has a qualitatively different interaction
dependence than the ballistic propagation along the light cone.

At intermediate times, we observe a smooth behavior
which can be compared with the field theory prediction. Ap-
proximating Eq. (31) for τ � �−1 and substituting λK =
16(t ′

2)2/Ud , we can write

�m(0, τ ) ≈ A

U 2
d

ln τ + const., (36)
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TABLE II. Fitting parameters for the decay of the impurity mag-
netization. The nonuniversal prefactor A is obtained by fitting the
tDMRG results for a single chain to Eq. (36). Having fixed A, we
determine B and C in Eq. (37) by fitting the data for two chains. The
errors were estimated by varying the time intervals in the fitting.

U = 4
Ud A B C

10 1.18 ± 0.03 0.36 ± 0.07 0.15 ± 0.03
8 1.17 ± 0.04 0.48 ± 0.02 0.20 ± 0.01
6 1.10 ± 0.06 0.62 ± 0.04 0.26 ± 0.02

U = 8
Ud A B C

10 3.57 ± 0.08 0.71 ± 0.04 0.09 ± 0.01
8 3.3 ± 0.1 0.80 ± 0.08 0.09 ± 0.01
6 2.7 ± 0.9 0.79 ± 0.01 0.04 ± 0.01

where A = 32(t ′
2)4/(πα�)2 is a nonuniversal prefactor. In

Figs. 4(b) and 4(d) we plot �m(0, τ ) versus U −2
d ln τ . The

results are in agreement with the logarithmic scaling expected
for �−1 � τ � τK . Note that the parameter A (see Table II)
controls the slope of the lines in the semilog plot. The fact that
A remains approximately constant for the larger values of Ud

confirms the dependence of the Kondo coupling λK ∼ 1/Ud

for t ′
2 � Ud . On the other hand, A clearly increases with the

interaction U in the chains. This dependence is not predicted
by TLL theory and must be associated with a renormalization
of the cutoff parameters by bulk interactions. We also note that
the logarithmic scaling at intermediate times demonstrated by
our results differs from the exponential decay postulated in
Ref. [30].

The decay of the impurity magnetization for the two-wire
geometry is shown in Fig. 5. In the regime τ � �−1, the
expression in Eq. (32) simplifies to

�m(0, τ ) ≈ 2A

U 2
d

ln τ − Bτ 1−K−1
c + C, (37)

where the Luttinger parameter Kc is known from Bethe ansatz
(see Table I) and A, B, and C are nonuniversal parameters.
Unfortunately, within the limited time range available numer-
ically we are not able to unambiguously distinguish between
a pure logarithmic dependence, as expected for the noninter-
acting case in Eq. (33), and the combination of a logarithm

FIG. 5. Impurity magnetization when the impurity spin is cou-
pled to both chains. The results are for (a) U = 4, (b) U = 8. The
dashed lines represent the fittings to Eq. (37) with the parameters
given in Table II.

and a power law with exponent 1 − K−1
c . We have fitted the

data in Fig. 5 using Eq. (37) fixing Kc from Bethe ansatz and
assuming that A takes the same value as in the single-wire
geometry, see Fig. 4. The parameter B and C were left as
fitting parameters. The result of this fitting is represented by
the dashed lines in Fig. 5. The nonuniversal prefactors are of
order 1 and are given in Table II. Overall, the numerical results
are consistent with the analytical expressions.

V. CONCLUSIONS

We investigated the role of electronic interactions on
the dynamic screening of a localized spin coupled to one-
dimensional metallic leads. We considered a quantum quench
in which a magnetic impurity is suddenly connected to inter-
acting chains described by the Hubbard model. We studied
the model numerically via the time-dependent density matrix
renormalization group (tDMRG) formalism, as well as analyt-
ically within Tomonaga-Luttinger liquid (TLL) theory. Such a
theoretical framework gives us access to the evolution of the
system at intermediate timescales in regard to the formation
of the Kondo screening cloud.

We have observed clear signatures of spin-charge separa-
tion in the propagation of density and magnetization pulses
after the quench. The propagation is bounded by light cones
with velocities that can be extracted from the dispersion re-
lation of the elementary excitations. For densities below half
filling, the fastest excitation is a holon with a finite energy
above the Fermi level, whose velocity is higher than the charge
velocity used in TLL theory. This maximum velocity defines
the density light cone, while the maximum spinon veloc-
ity bounds the magnetization propagation. According to our
tDMRG results, the propagation of the entanglement entropy,
a nonlocal quantity, is also bounded by the maximum holon
velocity.

Concerning local quantities at the impurity site, our results
are consistent with relaxation towards the equilibrium values
after the local quench. In particular, the relaxation of the
impurity magnetization happens more rapidly if we decrease
the interaction Ud at the impurity site, thereby enhancing the
Kondo coupling, or if we increase the interaction in the chains.
While the TLL theory predicts some interaction dependence
through the charge Luttinger parameter when the impurity
is coupled to two leads, we find that the most important
interaction dependence comes from a renormalization of the
nonuniversal prefactors. In the case of coupling to a single
chain, the field theory predicts a logarithmic scaling in the
perturbative regime of times shorter than the inverse Kondo
temperature, which agrees well with our tDMRG results.

One interesting question that we leave to future work is
what happens in the longtime limit, where the spin relaxation
must be governed by the low-energy fixed point of the Kondo
problem. This regime is hard to access by numerical tech-
niques such as tDMRG, but one might search for a crossover
in the time dependence analogous to the spatial dependence
of spin correlations in the Kondo screening cloud [9,10]. It
would also be instructive to consider other geometries, for
instance by coupling the impurity site to the middle of a
single chain, as in the original studies of the Kondo effect in
Tomonaga-Luttinger liquids [36,37].
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APPENDIX: CALCULATION OF THE TIME-DEPENDENT
IMPURITY MAGNETIZATION

In this Appendix we provide details of the calculation of
m0(τ ) in the field theory approach. Expanding the exponential
function in Eq. (29) up to second order in λK , the expectation
value of Sz

0 becomes

m0(τ ) = 1

2
+ i

∫ τ

0
dτ ′〈[HK (τ ′), Sz

0(τ )
]〉

0

− 1

2

∫ τ

0
dτ ′dτ ′′{〈Sz

0(τ )T [HK (τ ′)HK (τ ′′)]
〉
0

+ 〈
T̃ [HK (τ ′)HK (τ ′′)]Sz

0(τ )
〉
0

− 2
〈
HK (τ ′)Sz

0(τ )HK (τ ′′)
〉
0

}
, (A1)

where T (T̃ ) is the time (antitime) ordering operator and we
omit the lower index I for operators evolved in the interaction
picture. Considering HK given by Eq. (25), it is straightfor-
ward to show that 〈[

HK (τ ′), Sz
0(τ )

]〉
0 = 0, (A2)

since [S0, H0] = 0 for H0 = ∑
� HLL

� . Thus, the first-order
term vanishes identically.

In the second-order terms, it is important to keep track of
the time ordering in the product of impurity spin operators
since

〈T S+
0 (τ ′)S−

0 (τ ′′)〉0 = �(τ ′ − τ ′′), (A3)

〈T S−
0 (τ ′)S+

0 (τ ′′)〉0 = �(τ ′′ − τ ′). (A4)

Similar expressions hold for T̃ . For the two-wire geometry,
the O(λ2

K ) terms in the expansion are given by

〈
Sz

0(τ )T [HK (τ ′)HK (τ ′′)]
〉
0 =

(
λK

2

)2{1

8
〈T G(τ ′)G(τ ′′)〉0

+θ (τ ′ − τ ′′)
2

〈F (τ ′)F †(τ ′′)〉0

+θ (τ ′′ − τ ′)
2

〈F (τ ′′)F †(τ ′)〉0

}
,

(A5)

〈
T̃ [HK (τ ′)HK (τ ′′)]Sz

0(τ )
〉
0 =

(
λK

2

)2{1

8
〈T̃ G(τ ′)G(τ ′′)〉0

+θ (τ ′ − τ ′′)
2

〈F (τ ′′)F †(τ ′)〉0

+θ (τ ′′ − τ ′)
2

〈F (τ ′)F †(τ ′′)〉0

}
,

(A6)〈
HK (τ ′)Sz

0(τ )HK (τ ′′)
〉
0

=
(

λK

2

)2{1

8
〈G(τ ′)G(τ ′′)〉0 − 1

2
〈F (τ ′)F †(τ ′′)〉0

}
.

(A7)

After some algebra, we obtain

m0(τ ) = 1

2
−

(
λK

2

)2 ∫ τ

0
dτ ′dτ ′′{〈F (τ ′)F †(τ ′′)〉0

+ 1

16
〈[G(τ ′′), G(τ ′)]〉0

}
. (A8)

The last term in the integral vanishes since the commutator
is antisymmetric under the exchange τ ′ ↔ τ ′′. Therefore, the
second-order contribution only involves the correlator for the
operator F (τ ).

The correlator can be written in the form

〈F (τ ′)F †(τ ′′)〉0 =
(

2

πα

)2

C1(τ ′ − τ ′′)C2(τ ′ − τ ′′). (A9)

The first factor only involves the spin bosons:

C1(τ ) = 〈e−i
√

π
2 φ1s (τ )ei

√
π
2 φ1s (0)〉0〈e−i

√
π
2 φ2s (τ )ei

√
π
2 φ2s (0)〉0

= 1

1 + i�τ
, (A10)

where we used Ks = 1 and introduced the high-energy cutoff
�. The second factor involves both charge and spin bosons:

C2(τ ) = 1

8

{〈ei
√

π
2 φ1c (τ )e−i

√
π
2 φ1c (0)〉0 × [1 → 2]

+〈ei
√

π
2 φ1s (τ )e−i

√
π
2 φ1s (0)〉0 × [1 → 2]

}
= 1

8

[
1

(1 + i�τ )
1

Kc

+ 1

1 + i�τ

]
. (A11)

Finally, the correlator in Eq. (A9) can be written as

〈F (τ ′)F †(τ ′′)〉0 = 1

2π2α2

{
1

[1 + i�(τ ′ − τ ′′)]
1

Kc
+1

+ 1

[1 + i�(τ ′ − τ ′′)]2

}
. (A12)
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