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Frustration-induced incommensurate solids in the extended Bose-Hubbard model
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The extended Bose-Hubbard model with nearest-neighbor and next-nearest-neighbor repulsive interactions on
a square lattice is investigated by using the quantum Monte Carlo method. We find that for the cases of weak
next-nearest-neighbor interactions and small hoppings, incommensurate solids of fractional densities varying
from 1/4 to 1/2 can be stabilized in the thermodynamic limit. We further show that the continuous changes
of ordering wave vectors from (π, π/2) [or (π/2, π )] to (π, π ) within the incommensurate solid phase can be
understood by the mechanism of domain wall formation. The related ground-state phase diagram and thermal
phase transitions are also discussed.
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I. INTRODUCTION

Polar molecules trapped in optical lattices provide a unique
opportunity to study the dipole-dipole interactions in real
experimental setups [1–4]. One primary investigation is to
identify possible quantum phases that may uniquely arise
from these long-range interactions but cannot be observed in
systems with only short-range interactions. Recent numerical
studies [5–8] of hard-core bosons with infinite-range interac-
tions on two-dimensional (2D) square lattices have presented
evidence of Mott insulators with checkerboard, stripe, and
star ordering at densities ρ = 1/2, 1/3, and 1/4, respectively.
Furthermore, supersolids around the Mott lobes with ρ = 1/2
and 1/4 are also found by doping the solids with particles or
vacancies. Besides, devil’s staircase (that is, a sequence of
commensurate phases separated by a series of jumps) is ob-
served for finite-size systems, which signals the presence of
the incommensurate phases in the thermodynamic limit. A
question is: Are all these interesting phases uniquely stabi-
lized by long-range interactions?

Actually, the Mott insulators and the supersolids can be
realized in short-range models as well. In previous numeri-
cal investigations on the extended Bose-Hubbard model that
includes only the nearest-neighbor (nn) and the next-nearest-
neighbor (nnn) interactions, Mott insulators at 1/2 and 1/4
fillings and the associated supersolids have indeed been ob-
served [9–14]. The model Hamiltonian for the hard-core
bosons on a 2D square lattice is

H = − t
∑
〈i, j〉

(b†
i b j + H.c.) + V

∑
〈i, j〉

nin j + V ′ ∑
〈i, j〉′

nin j

− μ
∑

i

ni . (1)

Here bi (b†
i ) is the annihilation (creation) bosonic operator on

site i, t the hopping integral, ni the particle number on site
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i, and V (V ′) the nn (nnn) repulsive interaction. μ denotes
the chemical potential which controls the particle density in
the grand canonical ensemble. For the cases of strong V ′
(V ′ > V/2), Mott insulators of striped and star orders are ob-
served at 1/2 and 1/4 fillings, respectively. Both of them are
associated with supersolids of the same orderings. Therefore,
the long-range nature of the dipole-dipole interactions is not
indispensable to the stability of these phases.

Moreover, the discovery of incommensurate supersolid
phases for hard-core bosons with nn interactions on
anisotropic triangular lattices [15,16] shows that long-range
interactions are not crucial for the appearance of incommen-
surate phases. This motivates us to explore the possibility
of incommensurate phases in short-range models. In addi-
tion, the nature of incommensurate phases and their stabilities
is of great interest on its own, the understanding of which
should shed light on the other systems with frustrated interac-
tions. However, these fundamental issues are hard to address
for infinite-range models. The realization of incommensurate
phases in short-range models will thus help us to analyze
the mechanism of their formation and then to improve our
understanding of these phases.

In this work, we employ the quantum Monte Carlo (QMC)
method with a stochastic series expansion algorithm [17,18]
to study the short-range model in Eq. (1). We find that at
small hopping t and weak nnn interactions V ′ (V ′ < V/2),
incommensurate solids of densities ranging from 1/4 to 1/2
can be stabilized in the thermodynamic limit. The ground-
state phase diagram, as one of our main results, is presented
in Fig. 1, where incommensurate solids emerge between the
half-filled checkerboard and quarter-filled solids. In contrast
to the strong V ′ cases [9–13], there exists no supersolid
phases in the present case of weak V ′. The incommensu-
rate solids are found to be characterized by a continuous
change in ordering wave vectors as model parameters are
varied. The formation of such a phase can be explained by the
proliferation of domain walls from half-filled or quarter-filled
solids. Following the analysis in Ref. [16] in the context of
the anisotropic triangular lattice, analytical calculations on
the domain-wall excitation energies are made for the present
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FIG. 1. Ground-state phase diagram with V = 4 obtained from
QMC calculations after extrapolating to thermodynamic limit. The
dotted lines are the phase boundaries predicted by the domain wall
analysis. The insets show the CBS and the QFS lattice structures.
Here V ′ = 1 as the energy unit.

system on a square lattice. Our analytical predictions on the
phase boundaries agree very well with the QMC numerical
results. Furthermore, the quantum phase transitions from the
incommensurate solids to the half-filled or quarter-filled solids
are found to be continuous in the thermodynamic limit, while
the transition to the superfluid phase is first order. Upon in-
creasing temperatures, the incommensurate solids will melt
into normal fluids via a first-order thermal phase transition,
which is demonstrated by hysteresis of the structure factors
and double peaks in the histogram.

This paper is organized as follows. The ground-state phase
diagram at fixed V and V ′ is identified in Sec. II. The general
features of the incommensurate solids are explained in Sec. III
by the domain wall formation. The energetic perspective of
the domain wall is elucidated in Sec. IV. Analytic expressions
of phase boundaries of the incommensurate solids and of the
domain wall density are then derived. More quantum and
thermal phase transitions out of the incommensurate solids are
discussed in Sec. V. We summarize our work in Sec. VI.

II. QUANTUM PHASE DIAGRAM

In this work we utilized the well established stochastic
series expansion algorithm [17,18] in the QMC calculations
as the Hamiltonian H in Eq. (1) is sign-problem free. Unless
mentioned otherwise, we set V ′ = 1 as the energy scale. The
inverse temperature is set to be β = 1/(2L), where L is the
linear size of lattice (L = 12, 24, 36, and 48 are used). To
identify various quantum phases, besides the particle den-
sity ρ, two more quantities are measured in our simulations.
The superfluidity ρs is calculated to signal off-diagonal U(1)
symmetry breaking, which is defined by the fluctuations of
winding numbers Wx and Wy,

ρs = 1

2β

(〈
W 2

x

〉 + 〈
W 2

y

〉)
. (2)
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FIG. 2. Order parameters as functions of μ with t = 0.4 and
V = 4. Upper panel: the particle density ρ as a function of μ. The
fractional numbers are the corresponding densities of the plateaus.
Solid (open) circles represent the data for L = 36 (L = 24). Lower
panel: superfluidity ρs (filled squares) and structure factors S(Q)
(open circles) as functions of μ. The corresponding ordering wave
vectors of the data are, from left to right, Q=(2mπ/L, π ) with
m = L/4, (L/4) + 1,..., L/2. For simplicity, the structure factors for
the ordering wave vectors Q=(π , 2mπ/L) are not shown. Note that
the data of S(π, π ) is reduced by five times.

On the other hand, the translational broken symmetry is char-
acterized by the structure factor

S(Q) = 1

L2

∑
i, j

〈nin j〉eiQ·ri j , (3)

where Q denotes the wave vector and ri j the displacement
between two sites i and j.

In the parameter regime we studied in our model, the
off-diagonal and the diagonal orderings do not coexist, which
means no supersolid is found. In Fig. 1, the ground-state phase
diagram μ vs t with V = 4 contains a superfluid (SF) and
two solid states of definite ordering wave vectors Q signaling
the peak in the structure factor. Their phase boundaries are
determined by the abrupt changes of ρs or S(Q) (see Fig. 2)
and then by extrapolating to the thermodynamic limit with
L → ∞. The half-filled phase is a checkerboard solid (CBS)
with Q = (π, π ) instead of a striped solid, because the nn
repulsion is dominant (V > 2V ′) so that nn occupation is
avoided. Reducing the chemical potential such that ρ = 1/4,
the ground state is then a quarter-filled solid (QFS) of star
ordering [12,13] with Q = (π/2, π ) or (π, π/2). While there
are two types of star orders that are doubly degenerate at
t = 0, the degeneracy is lifted for finite t . The preferred
QFS ordering is shown in the inset of Fig. 1 as it prevents
nn occupation up to second order of hopping t to reduce the
cost of the nn potential energy. Interestingly, for finite but
small t , the phase in between the CBS and the QFS is nei-
ther a superfluid nor supersolid but an incommensurate solid
(ICS) with ordering wave vectors Q continuously varying
from (π/2, π ) [or (π, π/2)] to (π, π ) in the thermodynamic
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FIG. 3. Illustrations of domain wall motion. (a) Removing a col-
umn of bosons. (b) Shifting the right half of the lattice costs no extra
potential energy but gains kinetic energy due to the fluctuation of the
domain wall (red line). (c) Multiple domain walls. (d) QFS state with
a domain wall density ρD = 1/2.

limit. As explained in the next section, we found that ICS can
be understood by inserting linear domain walls into the solid
phases. By increasing hopping t , all solid phases eventually
melt into a superfluid phase directly without passing an inter-
mediate supersolid phase. Further discussions on these phase
transitions will be provided in Sec. V.

III. INCOMMENSURATE SOLIDS

For a given hopping t = 0.4, the particle density ρ is shown
in Fig. 2 for L = 36. A series of density plateaus is observed
from ρ = 1/4 to 1/2, in between the QFS and the CBS.
We note that the plateaus occur at densities of m/L, with m
being an integer from L/4 to L/2. This is very similar to
the results found in the model with infinite-range interactions
[3,5]. In that case, although a smaller lattice size (L = 12)
is used, many more plateaus of rational fillings are found
between ρ = 1/4 and 1/2. The reason for this difference is
that the infinite-range nature of the interactions allows more
possible configurations of particle ordering to be stabilized,
which, unfortunately, also makes the physics more difficult
to be analyzed. In contrast, for the present system with short-
range interactions, we can understand the origin of the density
plateaus by a simple picture of linear fluctuating domain
walls. While both domain walls along the x and y directions
are observed in our simulations, for simplicity only the do-
main walls along the y direction will be discussed hereafter.

Under doping the half-filled CBS with holes, the potential
energy gain is 4V ′ for each added isolated hole. Nevertheless,
holes aligned together to form a domain wall [Fig. 3(b)]
can further gain kinetic energy through particle hoppings,
which will be explained in detail in the next section when
we discuss the domain wall dynamics. For convenience, we
define Lx (Ly) to be the lattice size in the x (y) direction.
We note that even numbers of domain walls are required

to maintain the periodic boundary condition imposed in our
system. Because Ly/2 particles must be removed in order to
create a domain wall along the y direction out of the CBS,
the total number of removed particle becomes nLy when 2n
domain walls appear in the lattice for n = 0, 1, 2,..., Lx/4.
Consequently, when there are Lx/4 pairs of domain walls, the
particle density is reduced by 1/4 and the state becomes the
QFS with ρ = 1/2 − 1/4 = 1/4 [Fig. 3(d)]. For the states
containing 2n domain walls, the particle densities become
ρ = (Lx − 2n)/(2Lx ), which exactly corresponds to those of
the plateaus found in Fig. 2 for both L = 24 and 36 (note
that L = Lx = Ly in all our simulations). Our analysis clearly
shows that the series of plateaus is formed by adding pairs of
linear domain walls from the CBS.

Furthermore, the observed shift in the ordering wave vector
Q in Fig. 2 implies the presence of linear domain walls as
well. We note that the insertion of domain walls at equal
distance will not immediately destroy the order completely.
Instead, due to producing long-period superstructures in the
x direction, the ordering wave vector will be shifted by
(2π/Lx, 0) for each added pair of linear domain walls along
the y direction. Hence the plateau states in ICS with 2n domain
walls along the y direction can be characterized by the order-
ing wave vectors Q = (π − 2nπ/Lx, π ) or Q = (2mπ/Lx, π )
with m being an integer from Lx/4 to Lx/2. (The same dis-
cussions apply as well for the states with 2n domain walls
along the x direction.) This conclusion is consistent with the
numerical results shown in Fig 2.

Another implication from the above analysis is that as
L → ∞, the number of plateaus will become infinity such
that ρ changes continuously from 1/4 to 1/2. The density
jump at the phase boundary between QFS (CBS) and ICS is
then expected to be reduced to zero, and the corresponding
commensurate-incommensurate transition should thus be con-
tinuous rather than of first order. The location of these phase
boundaries in the ground-state phase diagram for small t can
be determined analytically by considering the domain wall
dynamics, as discussed in the next section.

IV. DOMAIN WALL DYNAMICS

Here we follow the analysis in Ref. [16] for incommen-
surate supersolids on anisotropic triangular lattices to discuss
the domain wall dynamics in the present model. Started from
the half-filled CBS state, one can split the CBS into half by
removing a column of bosons (i.e., removing Ly/2 bosons),
as depicted in Fig. 3(a). This gives a cost in potential energy
per unit length �Ep/Ly = (μ − 4V ′)/2. After shifting half of
the lattice upwards, a domain wall is created without further
cost in potential energy. To be specific, we define the domain
walls by connecting the center of unoccupied bonds, shown
as the red solid zigzag line in Fig. 3(b). Note that the domain
wall can fluctuate to gain the kinetic energy, because the
bosons around the shifted boundary are now free to move
sideways. As illustrated in Fig. 3(b), after the hopping of
bosons, parts of the domain wall fluctuate in the opposite
direction of the particle movement (shown as the red dotted
lines). To estimate the gain in kinetic energy, one can map the
one-dimensional (1D) domain wall onto a 1D spin-1/2 XY
chain [16,19,20]. That is, by tracing the zigzag chain along the

125151-3



KWAI-KONG NG AND MIN-FONG YANG PHYSICAL REVIEW B 103, 125151 (2021)

y direction, an up (down) spin is assigned if the x coordinate
of a given unoccupied bond is increased (decreased) by one
unit. The kinetic energy of a domain wall thus corresponds to
the ground-state energy of the 1D spin chain and has the value
(per unit length) �Ek/Ly = −2t/π [19]. Therefore, the total
excitation energy (per unit length) of a domain wall becomes
�E/Ly = �Ep/Ly + �Ek/Ly = (μ − 4V ′)/2 − 2t/π . When
its excitation energy is reduced to zero by decreasing μ, the
phase transition out of the CBS induced by proliferation of
domain walls will occur. This gives the critical μc1 for the
CBS-ICS phase transition, i.e.,

μc1 = 4V ′ + 4t

π
. (4)

This quantum phase boundary is plotted in Fig. 1 (the
upper dotted line), which is in good agreement with the
QMC results.

For the transition from QFS to ICS, the same argument
applies. Doping the QFS with a column of bosons, it actually
generates two domain walls and the total cost in potential
energy per unit length equals (4V ′ − μ)/2. Here we define
the domain wall as the line connecting nn bosons. Again, by
mapping each of the two domain walls onto a 1D spin-1/2
chain, the gain in kinetic energy per unit length of the two do-
main walls is deduced to be 2(−2t/π ). Therefore, the critical
μc2 for the QFS-ICS phase transition is given by

μc2 = 4V ′ − 8t

π
, (5)

which is again in good agreement with the numerical re-
sults. Deviations in analytical predictions of μc1 and μc2 are
expected for large t , since higher order corrections and SF
fluctuations become important then.

Following the analysis in Ref. [16], we also determine
the domain wall density ρD as a function of μ, which is
defined as:

ρD = 1

LxLy

∑
x,y

n̄x,yn̄x+1,y , (6)

where n̄x,y = 1 − nx,y is the hole number at site (x, y). Here
the summation of n̄x,yn̄x+1,y over x coordinates counts the
number of hole-hole bonds in the x direction and then gives
the number of linear domain walls along the y direction. The
QMC results of ρD are shown in Fig. 4.

Clearly, the domain walls will interact with each other.
In combination with the discussions in the first paragraph of
this section for isolated domain walls, the total energy for
interacting domain walls at a finite density ρD will take the
following form:

E (ρD) = LxLyV
′ρD

[
−2 + μ

2V ′ − 2t

πV ′ + f (ρD)

]
. (7)

Here the last term accounts for an effective repulsive interac-
tion energy between two neighboring domain walls. This yet
unknown function f (ρD) can be determined by fitting to the
numerical results.

We note that the transition from the state with 2M − 2
domain walls to that with 2M domain walls occurs when
E [(2M − 2)/Lx] = E (2M/Lx ). This condition leads to a
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FIG. 4. Domain wall density ρD as a function of μ for t = 0.4
(upper panel) and t = 0.2 (lower panel). The red solid lines are
analytical predictions given by Eq. (10). The insets show the fittings
of the interaction energy f (ρD ) to a power-law function Aρα

D for each
case. Here V = 4 and L = 24 are taken.

recursive relation of f (2M/Lx ):

μM = μc1 + 2V ′
[

(M − 1) f

(
2M − 2

Lx

)
− M f

(
2M

Lx

)]
,

(8)
which can be solved to have

f

(
2M

Lx

)
= 1

V ′

[
μc1

2
−

M∑
i=1

μi

2M

]
. (9)

As a result, the simulated values of μM can be used to
evaluate the discrete values of f (2M/Lx ). As shown in the
inset of Fig. 4, a power-law function Aρα

D can be fitted to
f (ρD) with the exponent α = 3.4(2) for t = 0.4 (upper panel).
With this result, the domain wall energy of Eq. (7) is then
minimized to obtain the domain wall density

ρD =
[

μc1 − μ

2V ′A(α + 1)

]1/α

, (10)

which is found to be in good agreement with the simulated
data in Fig. 4. Our results thus justify the application of the
domain wall dynamics in the present system. Interestingly, we
repeated the same calculations on domain wall density for t =
0.2 and obtained nearly the same exponent α = 3.6(3). This
suggests a possible universal exponent for different hopping
integrals.

V. INCOMMENSURATE-SUPERFLUID AND THERMAL
PHASE TRANSITIONS

In our parameter regime, the quantum phase transitions
from all solid states to the SF phase are observed to be
discontinuous and there appears no immediate supersolid
phase. These discontinuous transitions are demonstrated by
the abrupt changes of the superfluid density ρs and the
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FIG. 5. Superfluid density ρs (open circles) and structure factor
S(Q) (open squares) as functions of t for (a) μ = 4.0 and (b) μ =
3.2. Here V = 4 and L = 24. Both quantities show the signatures of
first-order phase transition from the ICS to the SF states.

structure factor S(Q) at the phase boundaries. Here we focus
on the transitions out of the ICS states.

In Fig. 5, we present our data for μ = 4.0 and 3.2, which
give the ICS states at small hopping t with ρ = 1/3 and 7/24,
respectively. Upon increasing t , we find that both ρs and S(Q)
change abruptly across the phase boundaries. We note that the
solid ordering is destroyed at the same critical t where the
superfluidity emerges. Hence no signs of coexistence of both
order parameters is found. The absence of supersolid phase
could be accounted for by the same argument for the CBS
and the QFS that phase separation is more favorable than the
supersolid phase [9].

In the previous discussions, we fix the nnn interaction V ′
to be unity. We now turn to the effect from varying V ′. When
V ′ is increased, the enhanced nnn frustrations will reduce
the cost in potential energy for the domain wall formation
(see Sec. IV). Therefore, the boson density of the system is
expected to follow a series of density drops as more domain
walls of holes can be generated for larger V ′. Our numeri-
cal results for V = 4 at μ = 4.0 and 4.6 plotted in Fig. 6
demonstrate this prediction. At μ = 4.0, the system moves
from the 1/3-filling state all the way to the quarter-filling
state as V ′ increases. However, at μ = 4.6, when V ′ > 1.24,
the frustration becomes too strong such that the diagonal
long-range order cannot be sustained and the system melts
into a superfluid phase instead. An abrupt jump in superfluid
density is observed that signals a direct first-order phase tran-
sition from the ICS to the SF and there exists no intermediate
supersolid phase.

We now consider the thermal phase transitions out of
the ICS and the QFS phases. It is expected that the broken
translation symmetry in these two phases will be restored
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FIG. 6. Boson density ρ (circles) and superfluid density ρs

(squares) as functions of V ′ with V = 4 for (a) μ = 4.0 and (b) μ =
4.6. Here L = 36 and V = 4.

by thermal fluctuations at high temperatures. This symme-
try restoration can be detected by the disappearance of the
corresponding structure factors. Careful studies of the order-
disorder transitions indicate that these transitions are of first
order. In Fig. 7, we measure the structure factors S(2π/3, π )
and S(π/2, π ) of the ρ = 1/3 ICS state and the ρ = 1/4 QFS
state, respectively. At first glance, the thermal transitions seem
to be continuous, but a detailed analysis shows the typical
hysteresis behaviors of discontinuous phase transitions around
the transition temperatures. Starting from the order (disorder)
states, we increase (decrease) the temperature slowly in the
QMC simulations by using the operator lists taken from previ-
ous temperatures as initial conditions. From Fig. 7, it is clearly
that results from increasing and decreasing temperatures
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FIG. 7. Hysteresis of the structure factors S(Q) for the cases of
(a) μ = 4.0 and (b) μ = 2.0, which correspond to the 1/3-filling
plateau state and the 1/4-filling QFS state, respectively. Here V = 4
and L = 24. The insets show the double-peak feature of S(Q) around
the transitions.
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follow different paths around the phase transitions. Double
peaks are also observed in the histograms (insets in Fig. 7)
which again confirm the nature of first-order transitions. We
note that the previous study for another type of quarter-
filled solid suggested a continuous thermal phase transition
[14]. This difference can be explained by the distinct broken
symmetries of these two types of quarter-filled solids. Further-
more, it is noticeable that the hysteresis loop becomes much
smaller and the double peaks feature less significantly in the
ICS than what happens in the QFS. This indicates that, as
the chemical potential μ increases from the QFS to the ICS,
the thermal transition becomes a more weakly first-order one.
This is consistent with the fact that the thermal transition of
half-filled CBS is known to be continuous, so that approach-
ing the CBS from the QFS via the ICS, the thermal transitions
are expected to evolve from strongly first order to weakly
first order and then to second order. Since the ordering wave
vector Q of the maximal structure factor varies continuously
in the ICS phase into the CBS, it is natural to expect a smooth
evolution of transition order instead of an abrupt change as Q
approaches (π , π ).

VI. CONCLUSION

We have shown that the ICS states can emerge in a bosonic
model on a square lattice under short-range frustrated inter-
actions. This observation has been overlooked in previous
studies of the extended Bose-Hubbard model. The ICS phase
appears in between the half-filled and the quarter-filled solids
and is characterized by a series of density plateaus with frac-
tional values of densities. The short-range character of the
interactions in our model simplifies the analysis and allows
us to address fundamental questions about the nature of the
plateau states. By following the analysis in Ref. [16], we show
that the fractional particle densities and the ordering wave
vectors of the plateau states can be explained by the domain
wall formation. This indicates that the incommensurate phase
originates from proliferation of domain walls. Furthermore,

the measured domain wall densities ρD agree well with the
predicted values from the theory of the interacting domain
walls. We find that the interaction term behaves as a power-
law function of ρD with an exponent likely to be independent
of the system parameters. In the thermodynamic limit, we
expect the ordering wave vector Q characterizing different
broken symmetries changes continuously from Q = (π/2, π )
for the quarter-filled star order to Q = (π, π ) for the checker-
board order. In addition, the widths of the intermediate plateau
states become diminished. There is no superfluidity found in
the ICS phase, which differs from the case of anisotropic trian-
gular lattice where an incommensurate supersolid is observed
[16]. It is not surprising since, in contrast to the case of the
square lattice, bosons have more degrees of freedom to hop
around on the triangular lattice. Based on this observation,
incommensurate supersolids may come out in our model if
the nnn hopping is turned on. It is also interesting to consider
the effect of strong frustration (large V ′) on the ICS phase.
We show that, by increasing V ′, either the ICS state is melted
into a SF or the system is transformed to be a QFS. Never-
theless, it is known that for even stronger V ′ another type
of star order becomes favorable at quarter filling. Whether
similar ICS phases can still appear around such quarter-filled
solids is not clear without extensive studies on a wide range
of parameter regime. Furthermore, one may wonder if the
present mechanism of domain wall formation may be applied
to explain the results observed in the infinite-range models.
This is worth investigating in a further study.
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