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Angular dependence of magnetoresistance and planar Hall effect
in semimetals in strong magnetic fields

Akiyoshi Yamada and Yuki Fuseya
Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan

(Received 9 October 2020; accepted 22 February 2021; published 23 March 2021)

The semiclassical transport theory is especially powerful for investigating galvanomagnetic effects. Generally,
the semiclassical theory is applicable only in weak fields because it does not consider Landau quantization.
Herein, we extend the conventional semiclassical theory by considering Landau quantization through the field
dependence of carrier density in semimetals. Using this approach, we simultaneously explain the qualitative
change in the angular dependence of transverse magnetoresistance (TMR), anisotropic magnetoresistance, and
planar Hall effect in bismuth with an increase in the magnetic field. We also considered the quantitative
applicability of our theory. We found that the field dependence of mobility can result in a qualitative agreement
in TMR far beyond the quantum limit (�10 T).
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I. INTRODUCTION

The galvanomagnetic effect, in which the direction and am-
plitude of current are changed by a magnetic field, is one of the
oldest and most fundamental subjects in solid-state physics.
Every textbook of solid-state physics provides its introduc-
tory explanation, and some books discuss it in detail [1,2].
Despite it being discovered centuries ago, the galvanomag-
netic effect continues to drive novel physics even today.
Recently, the galvanomagnetic effect has attracted significant
attention in connection with topological condensed-matter
physics [3,4]. For example, the possibilities of observing the
chiral anomaly in solids are being actively discussed, such as
in negative magnetoresistance [3,5–7] and in the planar Hall
effect (PHE) [7–16].

The semiclassical transport theory has proved to be very
useful in explaining the galvanomagnetic effect [1,4,17].
For example, it could successfully explain the complex gal-
vanomagnetic effect in bismuth, a multivalley semimetal
with Dirac electrons [18–22]. The angular dependence of
transverse magnetoresistance (TMR), anisotropic magne-
toresistance (AMR), and PHE in Bi have been accurately
explained by the semiclassical theory for weak fields
(� 1 T) [16,22,23]. However, the angular dependence ex-
hibits an essential transformation by the magnetic field from
weak to strong. (The experimental details are provided later
in the paper.) The semiclassical theory has failed to explain
these field-induced transformations in the angular dependen-
cies [16,23,24]. This leads to a simple question. Does the
apparent failure of the semiclassical theory indicate the ap-
pearance of novel physics, or imply the limitation of the
semiclassical theory?

Regarding the possibility of novel physics, Yang et al.
argued the possibility that the field-induced transformation in
Bi originates from the effect of the chiral anomaly in Weyl and
Dirac electrons [16]. However, the same study also pointed

out that a phase shift of π/2 in the bisectrix channel of PHE
did not agree with the chiral anomaly model. Typically, the
semiclassical theory is not applicable in strong fields, because
it does not consider Landau quantization. If this difficulty is
overcome, it can reveal the origin of the field-induced trans-
formation in the galvanomagnetic effect in Bi.

This study aims to point out the critical effect of Landau
quantization in magnetoresistance (MR); it also aims to clar-
ify the origin of the nontrivial field-induced transformation
in the angular dependence of TMR, AMR, and PHE in Bi.
We extend the semiclassical transport theory by considering
Landau quantization through the field dependence of carrier
density, which is crucial for semimetals in strong fields. Using
this approach, we provide a critical point of view for MR in
the strong-field region. The results of our modified theoretical
approach exhibit a field-induced transformation in the angular
dependence of TMR, AMR, and PHE, all of which agree well
with the experiments.

The electronic structure and Landau quantization of Bi
are accurately known owing to a number of previous stud-
ies [18,21,22]. There is no ambiguity in the electric structure.
Therefore, Bi provides an ideal environment for our purpose.

Before we discuss the theory, let us summarize the experi-
mental results on the angular dependence of TMR, AMR, and
PHE in Bi. TMR in Bi exhibits a large angular dependence,
where the magnetic field is rotated in the binary-bisectrix
plane with the current along the trigonal axis [Fig. 1(a)].
The angular dependence is sufficiently large to be observed
at 300 K [25]. This highly anisotropic TMR originates from
the extremely high mobility of Bi (μ ∼ 108 cm2/V s) [26].
The TMR is anisotropic only in weak fields (�1 T) and the
anisotropy disappears in strong fields (�10 T), i.e., the TMR
becomes nearly isotropic [23,24]. This is rather surprising
because the anisotropy should be enhanced by the magnetic
field. (Note that the loss of threefold symmetry in TMR has
been observed in strong fields [23,25]; however, here we
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FIG. 1. Configuration of the current J and magnetic field B for
(a) TMR and (b) AMR and PHE. One circle and three ellipsoids
express the hole and the electron pockets of the Fermi surface in Bi,
respectively.

concentrate on the behavior of a large component that holds
the threefold symmetry.) Remarkable amplitudes of AMR and
PHE are observed with the current along the binary axis by
rotating the magnetic field in the same plane as that of TMR
[Fig. 1(b)] [11,16]. In weak fields (�1 T), both AMR and
PHE have two components of angular oscillation with period
π/2 and π . In strong fields (�10 T), however, the angular
oscillation with period π/2 disappears. We primarily address
these nontrivial field-induced phenomena in this study.

II. THEORY

Each part of the theory—the Landau levels and carrier den-
sity of Bi [27–29], and the semiclassical theory for multivalley
systems [30–32]—has been already well established in previ-
ous studies. By combining these parts, we can examine the
effect of field-dependent carrier density on TMR, AMR, and
PHE simultaneously. TMR, AMR, and PHE are all calculated
from the resistivity tensor ρ̂, which is given by the inverse
of the conductivity tensor, ρ̂ = σ̂−1. For multivalley systems,
the total conductivity tensor is given by the summation of
each valley conductivity, σ̂ = ∑

i σ̂
(i) [30]. Each conductivity

tensor in an ellipsoidal valley is written as

σ̂ (i) = eni
(
μ̂−1

i ± B̂
)−1

, (1)

where e > 0 is the elementary charge and B̂ is the magnetic
field tensor [30,33]. ni and μ̂i are the carrier density and the
mobility tensor of each valley, respectively. The sign ± corre-
sponds to the sign of charge. It is naively expected that Eq. (1)
is not applicable in the strong-field region, because it was
obtained without Landau quantization. A possible approxima-
tion to overcome this difficulty is the extended semiclassical
approach, where the field-independent carrier density ni is
replaced by the field-dependent one ni(B) in Eq. (1) [17]. In
this extended semiclassical approach, it is assumed that the
carrier density can be decoupled from the other parts of the
conductivity tensor. The validity of this decoupling was veri-
fied by a fully quantum approach based on the Kubo formula
with the Landau quantization [34]. This allows us to calculate
the carrier density separately from the other parts at each mag-
netic field. In addition, this extended semiclassical approach

agrees significantly well with the fully quantum approach by
the Kubo formula even in the case of Dirac electrons except
for the quantum oscillation [17].

This approach has not yet been applied to specific materi-
als. In the present work, we employ the extended semiclassical
theory with the Landau levels and the field and angular depen-
dencies of carrier density in Bi, which have been accurately
determined by several studies [22,27–29]. The field-induced
angular dependence of carrier density plays a crucial role in
solving the anomalies in strong fields.

One hole pocket is located at the T point along the trigonal
axis, and three electron pockets are located at three equivalent
L points (Fig. 1). The electrons around the L point can be well
described as the Dirac electrons with an additional g factor,
which originates from the multiband effect of spin-orbit cou-
pling [35–38]. Its Landau quantized energy is given as [29]

εn,σ (kz ) =
√

�2 + 2�ξn,σ (kz ) + σg′μBB

2
,

(2)

ξn,σ (kz ) =
(

n + 1

2
+ σ

2

)
h̄ωc + h̄2k2

z

2mz
,

where n is the Landau level index, and σ = ± corresponds to
the degree of freedom of the Kramers doublet. � is the half
of the band gap and ωc is the cyclotron frequency. g′ is the
additional g factor, and μB is the Bohr magneton. kz and mz

are the wavenumber and effective mass along the magnetic
field direction, respectively. The holes around the T point can
be well approximated as a nearly free particle with a modified
g factor [27,37] (for details see Ref. [39]). The Fermi energy
is determined in order to satisfy the charge neutrality condi-
tion: nh(B) = ∑

i=1-3 nei(B), where nh(B) and nei(B) are the
carrier densities of holes and electrons, respectively. Finally,
we calculate the magnetoconductivity tensors by substituting
ni in Eq. (1) with the computed field-dependent carrier den-
sity. This theoretical approach enables the calculation of the
galvanomagnetic effect even at strong fields, where Landau
quantization is noticeable [17].

III. RESULTS

The left panels of Fig. 2 are the polar plots of the inverse of
TMR ρ−1

33 (θ ), where the field is rotated in the binary-bisectrix
plane with the current along the trigonal axis [Fig. 1(a)]. Sub-
scripts 1, 2, and 3 correspond to binary, bisectrix, and trigonal
directions, respectively. (Here, we plot the inverse of TMR to
make the comparison with the experiment easier [23]. This
plot makes the comparison with the theoretical carrier density
easier as well.) We used the electron mobilities μ1 = 11000,
μ2 = 300, μ3 = 6700, and μ4 = −710, and the hole mobili-
ties ν1 = 2200 and ν3 = 350 (in units of T−1 = 104 cm2/V s),
which were obtained by Hartman for bulk Bi at 4.23 K [26].
In weak fields, ρ−1

33 (θ ) takes the maxima (minima) for B ‖
binary (bisectrix). The highly anisotropic ρ−1

33 (θ ) in weak
fields originates from the anisotropy of mobilities. In partic-
ular, ρ−1

33 is proportional to the effective mass perpendicular
to the magnetic field, because the conductivity of the elec-
tron pocket along the bisectrix axis (e1 in Fig. 1) is given
as σ e1

33 � ene1/(μ2 cos2 θ + μ1 sin2 θ )B2, and the mobilities
are inversely proportional to the effective mass. As the field
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FIG. 2. Left: Angle dependence of inverse TMR with the current
along the trigonal axis, ρ−1

33 (B), at 0.5, 5, and 10 T. For easy com-
parison with the experiment [23], the values of ρ−1

33 are normalized
by its maximum values. Right: Angle dependence of electron carrier
densities, ne1,e2,e3(B), which are normalized by those in the weak-
field limit, nei(0.1 T) = 9.7 × 1016 cm−3. 0◦ and 90◦ correspond to
the binary and bisectrix axes, respectively.

increases, the star-shaped peaks at the binary become less
prominent and vanish at 10 T [Fig. 2(e)]. Here, the angular
dependence of TMR is almost isotropic. This regression of
anisotropy is perfectly consistent with the experiment, espe-
cially at low temperatures [23,24].

The qualitative change in the anisotropy can be easily
understood by considering the angular dependence of the car-
rier density of electrons, nei(θ ), shown in the right panels in
Fig. 2. In weak fields, nei(θ ) is isotropic, so that the anisotropy
of TMR originates solely from the anisotropy of mobilities
(μ1 � μ2). In strong fields, on the other hand, nei(θ ) becomes
anisotropic. nei(θ ) takes its maximum (minimum) values for
B ‖ bisectrix (binary). The anisotropy of nei(θ ) is orthogonal
to that of ρ−1

33 (θ ), where they compensate for each other. This
is the reason why the TMR becomes isotropic at high fields.

The origin of the anisotropy of nei(θ ) is related to (i) the
characteristics of Dirac electrons in semimetals and (ii) the

FIG. 3. Magnetic field dependence of carrier density for different
Zeeman energies, which characterizes the amplitude of the spin-orbit
coupling. The insets show the field dependence of the Landau levels
for the free and Dirac electrons.

anisotropy of effective mass. Let us discuss the first possible
origin. In semimetals, where electrons and holes coexist even
at zero temperature, each carrier density can change to a great
extent as long as it maintains charge neutrality [22,27,29]. To
understand this origin as clearly as possible, here we con-
sider a semimetal with one electron and one hole carrier as
an example. As shown in Fig. 3, the electron’s carrier den-
sity ne(B) begins to have remarkable field dependence when
the field reaches the quantum limit (h̄ωc ∼ EF ), where all
electrons are confined to the lowest Landau level. (The details
of the calculation are given in Ref. [39].) In the case of Dirac
electrons, where the Zeeman energy Ez becomes equivalent
to the cyclotron energy h̄ωc due to the large spin-orbit cou-
pling [21,35], the lowest Landau level is barely affected by the
magnetic field (cf. the inset in Fig. 3). Thus, ne(B) increases
linearly in B due to Landau degeneracy. On the other hand,
in the case of nearly free electrons (Ez/h̄ωc � 1), ne(B) de-
creases with the field, because the energy of the lowest Landau
level increases with the magnetic field (see the inset in Fig. 3).
Therefore, the large increase in the carrier density is a charac-
teristic of Dirac electrons in semimetals with large spin-orbit
coupling. Now, we discuss the second probable origin. The
increase in nei(B) depends on the inverse of cyclotron mass
mc, because the field value in the quantum limit is roughly
given by EF � h̄ωc ∝ 1/mc. Here, mc is given by the effective
mass perpendicular to the field. The anisotropy of ρ−1

33 (θ )
in weak fields, which is proportional to mc, is canceled out
by the anisotropy of nei in strong fields. Consequently, the
isotropic TMR in strong fields is the inherent characteristic
of semimetals with Dirac electrons.

We calculate ρ11 (AMR) and ρ12 (PHE) with the same
extended semiclassical theory and the same model of Bi as
in Fig. 2. The arrangement of J and B is shown in Fig. 1(b).
We used the mobility for a thin film obtained by Yang et al.:
μ1 = 142.8, μ2 = 1.99, μ3 = 32.7, μ4 = −3.38, ν1 = 18.8,
and ν3 = 1.57 (in T−1) [16]. In Fig. 4, we assumed that the
charge neutrality is violated as [n(B) − p(B)]/n(0) = 0.265
according to the experimental report [16]. Note that the fol-
lowing results are essentially unchanged even if we change
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FIG. 4. Angular dependence of ρ11 (AMR) and ρ12 (PHE) with
the current along the binary axis, assuming the mobilities for a
thin film.

the degrees of the violation [39]. In weak fields [Figs. 4(a)
and 4(b)], both ρ11(θ ) and ρ12(θ ) show four maxima; i.e., the
angular oscillation has two components with periods π and
π/2. These properties have been already reported by Yang
et al. based on the conventional semiclassical theory [16].
They also pointed out that the experimental results in strong
fields—the peak of period π/2 disappears—are impossible
to be fitted by the conventional semiclassical theory. That is
why they argued the possible scenario of chiral anomaly. In
contrast, our results for strong fields [Figs. 4(c) and 4(d)] show
that the angular oscillation of the period π/2 disappears both
in ρ11(θ ) and ρ12(θ ), which can explain the experimentally
observed field-induced transformation. It is clear that the field
and angular dependencies of nei play a crucial role for the
field-induced transformation. Even in AMR and PHE, the
angular dependence of nei(θ ) in strong fields is the same as
that in TMR (Figs. 1 and 2). Therefore, the field-induced
transformation in AMR and PHE shares the same origin as
in TMR, which has never been previously pointed out. We
revealed that the nontrivial field-induced transformations of
angular-dependent TMR, AMR, and PHE are all well ex-
plained qualitatively by our extended semiclassical theory in
a unified manner. However, this approach is not sufficient
to obtain quantitative agreement with the measured ampli-
tude of galvanomagnetic effects far beyond the quantum limit
(�10 T). For example, the theoretical value of TMR was
estimated to be two orders larger than the experimental value
at 10 T even when we considered the field-dependent carrier
density [39]. This discrepancy can be corrected by considering
the field dependence of mobilities. We hypothesized several
forms of the field-dependent mobility and found that the func-
tional form of μ̂ = μ̂0/(1 + γiB) can well fit the TMR from
weak fields to strong fields, as shown in Fig. 5. (The details
are provided in Ref. [39].) The theoretical results of TMR

FIG. 5. TMR as a function of magnetic field along the (a) binary
axis and (b) bisectrix axis. The theoretical results are obtained by the
extended semiclassical theory with the field dependence of mobility.
The experimental data are from Ref. [24].

both for B ‖ binary and bisectrix axes agree well quantitatively
with those of experiments including the sudden drop at around
40 T, which is due to the evaporation of Dirac electrons [24].
Although the microscopic derivation of this functional form is
still missing, such field dependence may be derived by the
guiding center diffusion [40] or quantum correction to the
relaxation time [41,42].

IV. CONCLUSIONS

In summary, there are three aspects to our conclusions.
First, we indicated that the nontrivial field-induced transfor-
mation observed in the angular-dependent TMR, AMR, and
PHE in Bi can be naturally explained via the angular depen-
dence of carrier density in strong fields using the extended
semiclassical approach. We demonstrated that nontrivial be-
havior does not indicate the appearance of novel topological
physics, such as the chiral anomaly. The key components of
the modified theory are Landau quantization and the field
dependence of carrier density, which have not been consid-
ered by the conventional semiclassical theory. Second, we
showed the crucial role of the field and angular dependence of
carrier density in strong fields. This property originates from
the characteristics of semimetals with Dirac electrons. These
aspects are not only valid for Bi, but can also be applied to var-
ious semimetals. Using this approach, we can further improve
the accuracy of the analysis of galvanomagnetic effects and
identify new phenomena, especially in topological semimet-
als. Finally, we found that the field-dependent carrier mobility,
which is inversely proportional to the field, is essential for the
quantitative explanation of the TMR far beyond the quantum
limit (�10 T). Although the cause of the field dependence is
an open question, the functional form has been proposed in
several theoretical studies.
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