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Recent experiments on the twisted transition metal dichalcogenide (TMD) material WSe2/WS2 have observed
insulating states at fractional occupancy of the moiré bands. Such states were conceived as generalized Wigner
crystals (GWCs). In this paper, we investigate the problem of Wigner crystallization in the presence of an
underlying (moiré) lattice. Based on the best estimates of the system parameters, we find a variety of homobilayer
and heterobilayer TMDs to be excellent candidates for realizing GWCs. In particular, our analysis based on rs

indicates that MoSe2 (among the homobilayers) and MoSe2/WSe2 or MoS2/WS2 (among the heterobilayers) are
the best candidates for realizing GWCs. We also establish that due to larger effective mass of the valence bands,
in general, hole crystals are easier to realize that electron crystals as seen experimentally. For completeness, we
show that satisfying the Mott criterion n1/2

Motta∗ = 1 requires densities nearly three orders of magnitude larger
than the maximal density for GWC formation. This indicates that for the typical density of operation, bilayer
moiré systems are far from the Mott insulating regime. These crystals realized on a moiré lattice, unlike the
conventional Wigner crystals, are incompressible due to the gap arising from pinning with the lattice. Finally,
we capture this many-body gap by variationally renormalizing the dispersion of the vibration modes. We show
these low-energy modes, arising from the coupling of the WC with the moiré lattice, can be effectively modeled
as a Sine-Gordon theory of fluctuations.
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I. INTRODUCTION

A strongly interacting dilute gas of electrons minimizes
its energy by spontaneously breaking translation invariance
to form a Wigner crystal (WC) [1]. Though this physics is
a simple and intuitive manifestation of a strongly interact-
ing many-body phase, experimental realizations of quantum
Wigner crystals have been far and few between. Thus far, they
have been seen in a two-dimensional electron gas (2DEG)
realized in semiconducting heterostructures [2] and liquid
helium [3]. Recently, moiré materials, synthetic materials con-
stituted from stacked monolayers with a mismatch in lattice
size or orientation, have emerged as a highly tunable and
experimentally accessible platform to study the physics of
strong electronic correlations as well as topology [4–19].

In particular, homobilayer moiré (HoM) materials or het-
erobilayer moiré (HeM) materials based on transition metal
dichalcogenides (TMD), see Fig. 1, have emerged as prime
candidates for realizing WCs [13–15,20,21]. This can be
largely attributed to the fact that the low-energy moiré elec-
trons in TMDs often reside in extremely narrow (quasiflat)
bands [18,19,22,23] or have very large effective masses, even
compared to the traditional 2DEG systems [3]. This makes
them highly susceptible to charge localization. Such factors,
coupled with the high controllability of TMDs for studying
correlated phenomena [17–19], make them great candidates
for studying Wigner crystallization. Given the plethora of
TMDs, a primary goal in this paper is to explore material

characteristics—lattice constant (a), dielectric constant (ε),
effective mass (m∗)—to characterize the ideal candidates for
hosting a WC.

Typically, a pure WC formed in a 2DEG slides when
subjected to a nonzero electric field due to the lack of a
momentum relaxation mechanism. A key signature of such
a WC is its negative compressibility [24–28]. Disorder, how-
ever, pins the WC and renders it incompressible as a result
of the activation or pinning gap. A WC realized in moiré
materials [29,30] is however, ineluctably influenced by the
underlying moiré lattice, which provides a uniform periodic
background potential as illustrated in Fig. 2. This provides
a pinning mechanism distinct from that induced by disorder
which will strongly influence its properties. Such a crystal is
often referred to as a “generalized Wigner crystal” (GWC)
[31], see Fig. 2. Although disorder-pinned-WCs have been
studied widely [2,3,32–36], an in-depth study of GWCs is still
lacking.

In light of the recent experiments in TMD platforms ex-
ploring the physics of strong correlations [13–16,37], a study
of the properties of the GWC is timely as it helps distinguish
the GWC from other density ordered gapped states that a lat-
tice system may host alongside a GWC [15,37–40]. Insulating
states observed in WSe2/WS2 are at fractional fillings, ν =
1/3, 2/3, [13] and those in the twisted bilayer of graphene
(TBLG) are at integer fillings [4–12]. Simple observables like
compressibility (or capacitance) are often misguiding and in-
sufficient [41–44] to discern between a pinned WC and a Mott
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FIG. 1. Schematic of AA stacked TMD bilayer: (a) the side
view shows the MX2 layer, with trigonal prismatic (H) coordination,
stacked on top of the M ′X ′

2 layer. The large (yellow or brown) balls
represent the metal ions M or M ′ and the small (blue or green)
balls represent the chalcogens X or X ′. The distance between the
metal ions and the chalcogens are, respectively, denoted by dM and
dX . (b) The top view is a honeycomb lattice of lattice of lattice
constant a.

state as these exhibit similar capacitive signatures [43,44].
However, in the presence of the moiré lattice, Mott states
must preserve the underlying (moiré) lattice symmetry, and
can only be observed at fillings for which a placement of
the electrons preserves the underlying symmetry of the moiré
lattice. While this is difficult for integer fillings exceeding
unity [29,30], it is impossible at fractional filling observed in
WSe2/WS2. Consequently, the nature of the insulating states
at integer fillings remains ambiguous. In TBLG, our earlier
works [29,30], based on the Mott criterion, precluded the in-
terpretation of the observed insulating states at integer fillings

FIG. 2. A cartoon rendition of a WC and the relevant length
scales: A Wigner lattice is realized on a moiré superlattice (gray
background) at filling fraction 2/3. The distance between two nearest
dark (or bright) spots is the moiré periodicity λm. The distance
between the two nearest localized particles (red dots) is the Wigner
lattice periodicity λw. The bell-shaped curve, representing the wave
function of a localized particle, has a width of 2ξ . Our discussion
in this paper is confined to a crystal where the moiré electrons are
highly localized, ξ � λw.

as Mott states. Wigner crystallization [29,30] was envisaged to
be more favorable than Mott insulation at low charge densities
in TBLG.

In this paper, we explore from a materials perspective the
viability of both homo- and heterobilayer TMDs for realizing
WCs. Additionally, we study the impact of the moiré lattice
on collective excitations [2,3,32] of GWCs and present es-
timates for the gap in the deep crystalline limit which can
be directly accessed in transport experiments. Our results are
directly of relevance to a slew of recent experiments in these
systems exploring the physics of the GWC [13,16]. We orga-
nize this paper as follows. In Sec. II, we analyze the material
parameters of various HoM and HeM systems and assess
their candidacy for crystal formation using several criteria.
We identify a wide range of TMD materials that can support
GWC phases and establish, broadly speaking, HeM to be
better candidates than HoM for this purpose. In Sec. III, in the
elastic limit [28,45,46], we obtain an effective Hamiltonian
that describes harmonic fluctuations in a GWC pinned to a
moiré lattice. We then move to obtaining the self-consistent
equations for the pinning gaps corresponding to a GWC in
Sec. IV. Finally, we conclude by connecting our results to the
recent experiments in Sec. V. Technical details are relegated
to various appendices.

II. TMD CANDIDACY FOR WIGNER CRYSTALLIZATION

In this section, we discuss the key criteria for assessing the
candidacy of various TMD bilayers, both HoM and HeM for
Wigner crystallization. Generally, a material with low carrier
density and a high degree of correlation can be susceptible
to forming a WC. A natural way to measure correlation is to
compare the strength of electronic interaction (U ) with the
kinetic energy (W ) of the relevant charge carriers. Denoting
the mean separation between the moiré particles by re, we set
the scale of the Coulomb repulsion to U = e2/εre, where, e is
electronic charge and ε is the dielectric constant. In principle,
one can also use a more realistic interaction potential for
TMDs that can account for the encapsulating environment
(such as the hBN/SiO2 surroundings) [47–49]. However, at
long distances, such a potential distills to a Coulomb-type
potential [50]. Therefore our assumption remains useful for
discussing the low-energy physics of TMDs. Another simpli-
fying assumption we make is to ignore the full details of the
TMD bandstructure [18,19]. We simply set W = h̄2k2/2m∗

e
with k ∼ 1/re. m∗

e (m∗
h) is the effective mass of the electrons

(holes) in the conduction (valence) band. For re of the order
of the moiré lattice constant λm, one gets W ∼ O(1 meV) and
U ∼ O(10 meV).

Here, we reiterate that the important (in-plane) length
scales in the problem, as shown in Figs. 1 and 2, are—the
monolayer lattice cons tant (a), the moiré periodicity (λm), the
Wigner lattice periodicity (λw), and the localization length of
the moiré particles (ξ ). a is the smallest scale and can be ne-
glected in a low-energy theory. λm is a geometric scale which
is fixed for a given TMD device. Unlike these two lengths,
ξ and λw are dynamically generated. By working in the deep
crystalline limit where ξ � λm, λw we can drop ξ . Thus the
most important scale in our problem is λw, and its inter-
play with λm. Since λw = 1/

√
πne is a function of electronic
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density ne (or hole density nh), it allows us to study crystalliza-
tion as a function of doping levels. Using this, the kinetic (W )
and potential (U ) energies can be recast as W −1 = 2m/πne

and U −1 = ε
√

πne/e2. The dimensionless ratio of these two
parameters, also known as rs, provides crucial insight into
nature of a correlated state [51]. Ignoring the effect of the
moiré potential on the energies, we obtain

rs = g

a0m0

m∗
e

ε
λw, λw = 1√

πne
, (1)

where a0 = h̄2/m0e2 = 0.529 Å is the Bohr radius with m0

as the bare electron mass, and g = 2 is a valley degeneracy
factor for TMDs. This valley degree of freedom can signif-
icantly alter the correlation properties and the threshold for
Wigner crystallization. In a two-valley 2DEG, the crystal-
lization threshold drops to rs = 29.5 [52] from rs = 37 in a
one-valley system [51,53]. The further rs exceeds this thresh-
old value, the easier it is to form a WC. For further discussion
on a more fine-tuned definition of rs, see Ref. [30]. Note
however, due to the availability of a set of potential minima
facilitated by the underlying moiré lattice, the threshold value
for GWCs could be lower than rs = 29.5.

Clearly, Eq. (1) shows that the material parameters that fa-
vor Wigner crystallization (or enhance rs) are a high effective
mass, reduced screening or a small dielectric constant and
low carrier density. Firstly, low-energy carriers in TMDs or
twisted bilayers of TMDs are particularly heavy. Secondly,
though the dielectric constant of a material is fixed, it can be
altered by introducing a spacer layer [16], such as a hexag-
onal boron nitride (hBN) monolayer. Screening can then be
reduced by a judicious choice of spacer material, thereby
favoring Wigner crystallization.

Evidently however, the moiré scale dependence of rs is
not manifest in Eq. (1). This can be naturally restored by
measuring the carrier density through the filling fraction of
a moiré unit supercell. This can be understood as follows. The
area of a (hexagonal) moiré unit supercell is given by As =√

3λ2
m/2. If the full occupancy of the relevant low-energy

band is N0, usually determined by the discrete symmetries
of the system, then the supercell density is given by ns =
N0/As ∼ 1011–12 cm-2. A state consisting of N electrons in
this band is observed at a filling fraction of N/N0 ≡ ν, or at
a density ne = νns. Inserting this in Eq. (1), we observe that,
for a given material, there exists a critical density, nmax

e , or
a maximal filling fraction, νmax, above which a GWC cannot
exist. Correspondingly, since rs ∝ λm [replacing λw with λm

in Eq. (1)], there also exists a critical moiré length below
which a material cannot host a GWC. It is worth noting here
that the true advantage of moiré materials in realizing WC is
this availability of large length scales that govern most of the
physics.

Before proceeding further, we note the above discussions
are pertinent for zero temperature WC (or quantum WC)
only. As the temperature increases, one needs to confront the
problem of crystal melting. Although an accurate estimation
of this melting temperature can be a subtle issue [54–56],
for simplicity, we estimate it using the classical Lindemann
criterion, kBTL 	 0.01U . Our discussions in this paper will
be confined to the physics of a GWC at T � TL. In the

TABLE I. Wigner crystallization criteria for HoMs at θ = 1◦.
Due to the larger effective masses, the Mo-based compounds are gen-
erally better suited to forming GWCs as compared to the W-based
compounds. In regard to rs, or U/W , we conclude a twisted bilayer
of MoSe2 to be the best candidate for Wigner crystallization. The
effective masses and dielectric constants are adapted from Ref. [57]
and Ref. [58], respectively. Experimental lattice constant (a) data and
the distance between the TMD layers (dX ) are compiled in Ref. [57].
Eq. (1) reduces to rs = 674m∗

e/m0ε for ne = 1011 cm−2, which we
use as the unit for densities mentioned here.

HoMs MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

m∗
e/m0 0.46 0.56 0.62 0.26 0.28 0.26

ε⊥(ε‖) 4.8(3.0) 6.9(3.8) 8(4.4) 4.4(2.9) 4.5(2.9) 5.7(3.3)
ε

(2)
⊥ (ε (2)

‖ ) 6.9(4.4) 7.9(4.6) 8.6(5.5) 6.1(4.2) 6.3(4.3) 8.4(5.2)
dX (Å) 3.17 3.33 3.60 3.14 3.34 3.60
a (Å) 3.16 3.29 3.52 3.15 3.28 3.50
λm (nm) 18.1 18.8 20.2 18.0 18.8 20.0
U/W 5.0 5.8 6.0 3.1 3.3 2.6
rs|1011cm−2 56.3 62.6 60.8 34.7 36.3 26.5
nmax

e 3.6 4.5 4.2 1.4 1.5 0.8
νmax 1.02 1.38 1.48 0.40 0.46 0.28
TL (K) 1.7 1.5 1.2 1.8 1.7 1.3
nMott10−3 2.5 3.1 2.9 0.9 1.0 0.6

subsections below, we will explicitly evaluate all the above
mentioned parameters for several TMDs.

A. Homobilayers

In a HoM system, the top and the bottom layers consist
of the same TMD where each layer projects to a 2D honey-
comb lattice [see Fig. 1(b)]. This, therefore, is geometrically
equivalent to a twisted bilayer graphene system. The moiré
periodicity in a HoM is thus given by [59] λm(θ ) = a

2 sin(θ/2) 	
a/θ . Here, θ is the twist angle between the two TMD layers.
(ε , ε⊥) and (ε (2)

, ε
(2)
⊥ ) denote the in-plane and out of plane

dielectric constants of a monolayer and a homobilayer TMD,
respectively. We identify the geometric mean of these two

constants, ε (2) =
√

ε
(2)
⊥ ε

(2), as the dielectric constant of the
bilayer system [60].

Using these parameters, we summarize our results for crys-
tallization criteria in different candidate HoMs in Table I. For
a typical twist angle θ = 1◦, we find that, U/W > 1 for all the
homobilayers in Table I, rendering them strongly interacting
systems. The corresponding rs computed using Eq. (1) shows
that all the HoMs in Table I are susceptible to forming GWCs
since they all have rs fairly above the crystallization threshold.
The critical density for crystallization is found to be nearly the
order of ns. The critical density, or the closest rational filling
fraction, νmax = nmax

e /ns, below which a HoM system can host
GWC is obtained by setting rs = 29.5 in Eq. (1). Based on the
Lindemann criteria, our results predict that the GWCs should
be stable in the range of 1–3 K. Our simple analysis shows that
Mo-based HoMs are more viable than W-based compounds
for the realization of GWCs.

Finally, we evaluate the Mott criterion, n1/2
e a∗

0 ≈ O(1),
which a system needs to satisfy in order to host Mott insu-
lating states [61]. The effective Bohr radius, a∗

0 = h̄2/me
∗e2

∗
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TABLE II. Wigner crystallization criteria for a nearly aligned HeMs at θ = 0.5◦. Among the HeMs listed here, MoSe2/WSe2 and
MoS2/WS2 seem to be the most susceptible to forming an electronic and hole GWC, respectively. At least one experimental study of the
pertinent HeM is referenced here. The effective masses are adapted from Ref. [62]. The unit of density is ne = 1012 cm−2. Asterisked values
in the rs row indicate values crossing the crystallization threshold.

HeMs WSe2/WS2 MoSe2/MoS2 MoTe2/MoSe2 MoSe2/WS2 MoSe2/WSe2 MoS2/WS2 MoTe2/WSe2

Refs. [13,63] [64] [65,66] [67] [68,69] [70] [71]
m∗

e(h)/m0 0.28 (0.46) 0.42 (0.71) 0.46 (1.37) 0.28 (0.71) 0.54 (0.44) 0.46 (1.70) 0.30 (1.33)
2/(ε−1

1 + ε−1
2 ) 2.9 3.35 4.08 3.29 3.29 2.95 3.5

λm (nm) 8.1 8.1 5.3 7.6 35.6 34.0 5.1
U/W |e(h) 3.0 (4.9) 3.9 (6.6) 2.3 (6.9) 2.5 (6.3) 22.4 (18.2) 20.3 (75.1) 1.7 (7.5)
re(h)

s |1012 cm−2 20.6 (33.8∗) 26.7 (45.2∗) 24.0 (71.6∗) 18.2 (46.0∗) 35.0∗ (28.5) 33.3∗ (122.9∗) 18.3 (81.1∗)
TL (K) 7.1 6.1 7.6 6.7 1.4 1.7 9.3
nmax

e(h) (1012 cm−2) 0.5 (1.3) 0.8 (2.3) 0.7 (5.9) 0.4 (2.4) 1.4 (0.9) 1.3 (17.4) 0.4 (7.5)
νe(h)

max 0.28 (0.73) 0.46 (1.31) 0.17 (1.46) 0.2 (1.19) 15.56 (10.0) 13.0 (174.0) 0.09 (1.7)

and e∗ = e2/ε. Evaluating this for HoMs, we find that for
experimentally relevant densities (that is near the fractional
fillings of a moiré unit supercell), the Mott criterion is far
from being met, n1/2

e a∗
0 ∼ O(10−2) � 1. Satisfying the Mott

criterion, n1/2
Motta∗ = 1 requires densities nearly three orders of

magnitude larger than the maximal density for GWC forma-
tion. This indicates that for the typical density of operation,
HoM systems are far from the Mott insulating regime.

B. Heterobilayers

In HeM materials, the top and bottom layers contain differ-
ent TMDs. We now explore the potential for GWCs in HeMs
in the manner done in the preceding section for homobilayers.
Although the planar projection of each layer is a honeycomb
lattice with different periodicities, a moiré pattern emerges
even without introducing any twist angle (“near-aligned sam-
ple”). Twisting alters the moiré periodicity; in particular, it
reduces with increasing twist angle and often approaches the
original lattice constant at “large-twist angles.” For example,
in a HeM with a small difference in lattice constants [72], the
moiré periodicity is [63,73]

λm 	 a>√
δ2

a + 4 sin2(θ/2)
, δa = 1 − a<

a>

. (2)

Here, a>(<) is the largest (smallest) lattice constant among the
two layers. We see that λm is strongly influenced by the twist
angle for samples with small δa. As shown in Table I, this is
the case of HeMs with differing metal ions [MX2/M ′X2] which
have δa � 0.1%. HeMs with differing chalcogens [MX2/MX ′

2]
tend to have large δa, i.e., around 4% and are less sensitive to
small angle twists. Motivated by the experiment of Ref. [13],
which concern θ � 1◦ [63], we confine our discussion to
nearly aligned heterobilayers.

The effective dielectric constant of the HeM system is
obtained by treating the two layers as two dielectrics (or
capacitors) in series,

d1 + d2

ε
= d1

ε1
+ d2

ε2
, (3)

where εi and di are the dielectric constants and the thickness
of the top and bottom layers, respectively. We assume d1 = d2

and as the two layers are different and stacked along the direc-
tion that is normal to the dielectric plane, we set εi to be the
in-plane monolayer dielectric constants, ε ,i. For near-aligned
samples with θ = 0.5◦, using Eqs. (2) and (1), we evaluate
U/W and rs for different HeMs. Our results are summarized
in Table II (see also Appendix A for a similar table on θ = 5◦).
We find generically that hole carriers have larger rs (or cor-
relation) due to their larger effective masses. Almost all the
HeMs considered in Table II can Wigner crystallize for a hole
density of 1012 cm−2 or less. However, except for a few, most
of the electronic carriers do not crystallize. Also note that the
Lindemann temperature is the same for both electron and hole
crystals since U , under our assumptions, simply depends on
the geometry and not on the effective mass.

Since MoSe2/WSe2 and MoS2/WS2 share the same
chalcogens, they are quite sensitive to twist angle. For θ ∼ 0◦,
the moiré length can be as large as a micrometer and it gradu-
ally reduces to about a deca-nanometer by 5◦ of twisting. The
correlation factor U/W , therefore, also reduces by nearly two
orders of magnitude. For the remainder of the HoMs, though
the above mentioned trend is still valid, however, quantita-
tively, no significant change is observed in the correlation
factor since the moiré length scale remains largely insensi-
tive to small changes in the twist angle. In particular, for
WSe2/WS2, we find that at filling fraction ν = 1/3, rs = 44.0
(26.8) for holes (electrons), and at ν = 2/3, it is 31.1 (19.0)
for holes (electrons). This thus explains why Regan et al. [13]
observe GWC states on the hole side but not on the electronic
side. This is one of our key results as it bares directly on the
experiments.

Lastly, we evaluate the critical density, or filling fraction,
above which the heterostructure will be unable to host GWCs.
In particular, for WSe2/WS2 we observe that no hole-crystal
can exist above a filling fraction of 0.73 (≈3/4). States at any
filling fraction below this, even other than those at 1/3 and
2/3 [39], are perfectly allowed. Similarly, on the electron side,
GWC can exist up to ν = 0.28 (≈1/4).

To summarize, based on the best estimates of the system
parameters, we find a variety of homobilayer and heterobi-
layer TMDs to be excellent candidates for realizing WCs.
In particular, our analysis based on rs indicates that MoSe2

(among the homobilayers) and MoSe2/WSe2 or MoS2/WS2

(among the heterobilayers) are the best candidates for
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realizing WCs. We also establish that due to larger effective
masses of the valence bands, hole-crystals in general, are eas-
ier to realize than electron crystals, an observation consistent
with experiments. In the remainder of the paper, we focus on
the properties of a GWC.

III. EFFECTIVE THEORY OF GWC

Understanding the collective excitations of a GWC is crit-
ical in distinguishing them from the other density ordered
states observed in the lattice system. Here, we will focus on
the vibrational modes of the GWC in absence of an external
magnetic field. For analytical tractability we will confine our
discussion to the limit when the GWC is deep in the crystalline
regime. We represent the particle density of the system using
a lattice of Gaussian wave packets of size 2ξ (see Fig. 2),

ρ(x) =
∑

i

|ψ (x − Ri )|2,

|ψ (x)|2 = 1

2πξ
exp(−|x2|/4ξ 2).

(4)

where Ri = R0
i + ui(t ), describes fluctuations around the

mean lattice sites R0
i . The GWC we consider is far away from

the phase boundary with the liquid phase so that we can treat
the mean fluctuation in the position of the localized electrons,
〈r2〉 ∼ ξ 2, to be much smaller than the Wigner lattice period-
icity, ξ � λw, as in Fig. 2. Since the field ui(t ) measures the
fluctuation around the mean position of a particle, it is natu-
rally O(ξ ). For a GWC at T = 0, ξ (hence, ui) can be tuned
by changing the density alone. A self-consistent solution of
ξ as a function of density is discussed in Ref. [74]. Finally,
since ξ increases with increasing temperature, we will restrict
our discussion to low temperature, T � TL.

In this regime, the above density functional can be written
in terms of harmonics (see Appendix B for a derivation)

ρ(x) 	 ρ0

[
1 − ∇ · u(x) +

∑
l �=0

eiK l ·xρl (x)
]
. (5)

Here, ρl (x) = e−iK l ·u(x) and ρ0 is the average density (over the
entire sample). The second term accounts for long range den-
sity fluctuations over several λw and couples to couples to the
long-range (or q ∼ 0) component of the Coulomb interaction.
The remaining terms take care of the density fluctuations at
a length scale comparable to or smaller than λw and hence
can be referred to as unsmeared density. The wave vectors
K l = {±lκn} denote the Brillouin zone (BZ) vectors of the
undeformed GWC. Here, l = 1, 2, . . . are simply “size mul-
tipliers,’ of the BZ. Formally, the l = 0 term is nothing other
than ρ0 in Eq. (5). The last term above also contains a sum-
mation over the index n appearing through Kl . We perform
this summation implicitly since it does not play any significant
role in our analysis.

The long wavelength theory describing the fluctuations of
the crystal is given by an elastic Hamiltonian

Heff = 1

2

∑
ωn

∫
d2q

(2π )2
uα (q, ωn) αβ (q, ωn) uβ (−q,−ωn),

(6)

where α, β = x, y are summed over, momenta {q} form the
Fourier basis, and the kernel αβ (q, ωn) is the elastic matrix.
Henceforth, we will express all the quantities after perform-
ing the frequency (ωn) summation. In case of a classical
(ωn = 0) free theory, this matrix is αβ = cq2δαβ , with the
real space Hamiltonian Heff = c

2

∫
d2x[∇ · u(x)]2. Here, c is

an elastic modulus. The presence of the moiré potential and
the Coulomb interaction between the particles generates the
following terms in the Hamiltonian:

H1 = He–l + He–e, (7)

where electron-moiré lattice interaction and the electron-
electron interaction terms, respectively, are

Hce–l = −
∫

x
V (x)ρ(x), (8a)

He–e = 1

2

∫
x,x′

U (x − x′)[ρ(x) − ρ0][ρ(x′) − ρ0] . (8b)

We will approximate the (triangular) moiré potential, V (x),
by [19,75]

V (x) = 2Ṽ
3∑

m=1

cos (x · gm + φ), (9)

where Ṽ ∼ O(10 meV) sets the depth of the moiré po-
tential and φ determines the shape of the potential. These
two (intrinsic) parameters can be fixed for a given TMD
using methods developed in Ref. [75]. Lastly, the unit
vectors of the moiré Brillouin zone (MBZ) are given
by gm = 4π√

3λm
(cos 2πm

3 , sin 2πm
3 ). Similarly, the unit vec-

tors of the Wigner Brillouin zone (WBZ) are κn =
4π√
3λw

(cos 2πn
3 , sin 2πn

3 ).

A. Interaction with the moiré potential

We now focus on the moiré potential given by the first
term term in Eq. (7). In terms of a reciprocal vector of the
MBZ, Gm = {±mgn}, see Fig. 3, the periodic moiré potential

FIG. 3. Schematic of a MBZ (blue) and a WBZ (red). The BZ
vectors are, |gn| = 4π√

3λm
and |κn| = 4π√

3λw
. In general, since λw > λm,

the WBZ is smaller than the MBZ. For the particular case drawn
above, λw = 3λm. In other words, the third WBZ is the same as the
first MBZ (|κn| = 3|gn|).
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is [19,63]

V (x) =
∑

m

Vm eiGm·x. (10)

As before, m is a size multiplier for the principal MBZ and
a summation over the index n is made implicit. We assume
the potential to be an even function in position space and
set the m = 0 mode to zero. For the potential in Eq. (9), we
obtain V (Gm) = Ṽ eisgn(m)φ . Substituting Eq. (10) in Eq. (8a),
we obtain the following moiré term:

He–l = −ρ0

∑
l,m

Vm

∫
dx ei(K l −Gm )·x ρl (x). (11)

In writing the above expression, we have set the energy of
the moiré lattice, ∼ ∫

x V (x), to zero and neglected the gradient
term in the density as this term represents an external source
term (linear in u) and does not contribute to the physics of
the pinning gap. Note that the integrand here involves both
the WBZ and the MBZ vectors. This term plays a critical role
in imposing a certain set of commensuration constraints. In
general, a GWC need not conform to the lattice symmetries
of a background (e.g., moiré) lattice. With changing density,
one often anticipates the GWC to go through a large set of
commensurate-incommensurate transitions, also known as the
devil’s staircase [76,77], where the incommensurate structures
may also have a completely different lattice symmetry [78]
and associated stability issues. These states and the accom-
panying transitions cannot be described by the elastic (linear
harmonic) theory developed here.

In this paper, we focus exclusively on the case where the
GWC and the background lattice share the same lattice sym-
metry, such as in the experiment of Regan et al. [13]. As we
will show below, this leads to a geometrical condition rG1 =
sK1, where (r, s) are co-primes and the subscript 1 refers to the
principal BZ vectors. Finally, since usually λw � λm, hence
|G1| � |K1|. As a result, r � s. For instance, the WC observed
in Ref. [13] at 1/3 filling, or a state at ν = 1/3n in general,
simply has its BZ shrunk (without any rotation) by a factor
of 2n. This state of affairs obtains because the GWC at 1/3n

filling has a unit cell that is 2n times larger than that of the
moiré lattice. Therefore, for ν = 1/3n, r = 1 and s = 2n.

B. Electronic interaction

Using the underlying translation invariance, we write the
interaction term in, Eq. (7) as

He–e = ρ2
0

2

∫
x,x′

U (x − x′)[∇ · u(x)][∇ · u(x′)]

+ ρ2
0

2

∫
x,x′

∑
l

U (x − x′)eiK l ·(x−x′ )ρl (x − x′). (12)

Note that terms with Kl �= Km have been discarded as they are
highly oscillatory.

We now switch from the cartesian basis ux, uy to one
described by the longitudinal (u ) and transverse (u⊥) com-
ponents with respect to the momentum vectors (q)

uα (q) = u (q)q̂α + u⊥(q)εαβ q̂β, (13)

where α, β = {x, y}, and εαβ is an antisymmetric tensor, εxy =
1 = −εyx. Note that u and u⊥ are the bulk compression and
shear modes respectively. In this basis, the first term, H (1)

e–e, in
Eq. (8b) becomes

H (1)
e–e = ρ2

0

2

∫
x,x′

U (x − x′)[∇ · u(x)][∇ · u(x′)]

= d

2

∑
q

q u (q)u (−q),
ρ2

0 e2

ε
≡ d . (14)

We see that the q = |q| term results from the long-range (in
2D) nature of the interaction, U (q) ∼ 1/q. Had we consid-
ered a shorter-range interaction of the form U (q) ∼ 1/qγ , the
proportionality above would have been modified to q2−γ . The
transverse modes do not change the local density and remain
unaffected by the Coulomb interaction. Typically, long wave-
length electrostatic fluctuations, namely the plasma modes,
are always longitudinal in the absence of a magnetic field
(since q × E = 0, where E is an electric field).

In the elastic limit |u(x) − u(x′)| � λw, we Taylor expand
the second term, H (2)

e–e, in Eq. (12). The first-order term van-
ishes because the undeformed GWC has an energy minimum
at u = 0 and the second-order term gives the correction

H (2)
e–e 	 ρ2

0

2

∑
l

∫
x,x′

V (x − x′)eiK l ·(x−x′ )Kl,αKl,β

× [uα (x) − uα (x′)][uβ (x) − uβ (x′)] . (15)

Here, K l,α denote the α = x, y components of K l . Henceforth,
unless mentioned, we will set ρ0 = 1.

As shown in Appendix C, this term can be absorbed
into a redefinition of the elastic coefficients [28,79,80]. We
note that we have considered these elastic constants to be
q-independent, which is a feature of the local elastic theory.
One can also extend this analysis to nonlocal elastic theories
where these constants can be considered to be q-dependent.
Generalizing to an interaction of the form U (x) ∼ 1/|x|γ ,
we find that the full Hamiltonian defining the low-energy
fluctuations of the GWC can be expressed as

Heff =
∫

q
u (q) � u (−q) + u⊥(q) �⊥u⊥(−q) + He–l;

� (q) = c q2 + d q2−γ , �⊥(q) = c⊥q2. (16)

He–l is given by (11). �a are the dispersions of the longitudinal
and the transverse modes. As discussed previously, it is only
the longitudinal mode whose dispersion is affected by γ , see
Fig. 4. Secondly, as discussed in Appendix C, these elastic
constants follow ca ∝ λ

γ
w/ε. Notably, the elastic modulus d

is a density-independent constant only in the low-density limit
far away from WC melting. Also, as screening (ε) increases,
the WC becomes loosely bound due to reduced interaction.
This makes a WC less rigid, or ca decreases with increasing ε.

IV. GAUSSIAN VARIATIONAL MINIMIZATION

In this section, we treat the effective Hamiltonian obtained
in the previous section using the Gaussian variational method
(GVM) developed in Refs. [45,46,81]. This allows us to obtain
the dispersion of the vibrational modes of the GWC and the
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FIG. 4. Dispersion of the longitudinal (solid) and transverse
(dashed) modes of a 2D WC (independent of its coupling to a moiré
potential). Here, we have set ca = 1 = d‖. γ = 1 corresponds to the
long-range Coulomb interaction. With increasing γ , the interaction
becomes increasingly short-range. For γ = 2, as can be seen from
Eq. (16), a gap of size d‖ appears in the longitudinal mode. With
further increase in γ , this gap diverges.

associated pinning gap arising from the interaction between
the Wigner lattice and the moiré lattice. Motivated by the
experiments, we assume the GWCs to be weakly coupled to
the moiré lattice. This allows us to treat the vibrations of the
localized particles as harmonic fluctuations. This is formal-
ized by the GVM as follows. Consider a Hamiltonian H =
1
2

∫
q u(q) �(q)u(−q) + H ′, where the kernel �(q) is known a

priori and H ′ can contain nonlinear or polynomial terms in
the field u(q). For a vector field u(q), this kernel becomes a
matrix. The goal is to approximate the Hamiltonian H by the
following quadratic form:

H0 = 1

2

∫
q

u(q)G−1(q) u(−q) . (17)

The optimal function G(q) is then obtained by minimizing
the variational free energy of the theory H , Fvar = F0 + 〈H −
H0〉0, where 〈. . .〉0 is the expectation value evaluated with H0

with respect to G(q). In Appendix D, we provide a pedagogi-
cal discussion on using this GVM method for the simple case
of a Sine-Gordon (SG) interaction as the Hamiltonian in (16)
closely resembles the SG problem.

A. Applying GVM to GWC

We use the GVM to obtain the gap opened by the moiré lat-
tice. Since the displacement is a two component field we have
both � (q) and �⊥(q). The variational free energy becomes

Fvar = T

2

∫
q

∑
a=‖,⊥

{
�a(q)Ga(q) − ln[TGa(q)]

}

−
∑
l,m

Vm δ(K l − Gm)

× exp

[
−T

2

∑
b=‖,⊥

K2
l,b

∫
q
Gb(q)

]
. (18)

Note that in the absence of a magnetic field there is no admix-
ture of the longitudinal and transverse modes.

The Green function that minimizes the free energy in
Eq. (18) can be approximated by G (0)

a (q) 	 1
�a(q)+�a

, where
the gaps �a satisfy the following self-consistent equations
(SCE):

�a =
∑

m∈M
VmG2

m,a exp

(
−T

2

∫
q

∑
b=⊥,

G2
m,b

�b(q) + �b

)
. (19)

Here, a is not in the Cartesian basis but in the orthonormal
basis discussed in Eq. (13). Though at first glance Eq. (19)
seems independent of K l (or λw), we note that the conser-
vation of momentum imposed through the delta function in
Eq. (18), restricts the set of Gm to those satisfying rG1 = sK1.
The set of such restricted (momentum conserving) values of
Gm is denoted by M. For instance, for the WC at 1/3 filling,
since, as explained previously, r = 1, M is trivially the first
MBZ. After integrating, we find that the gap equations take
the form

�a 	
∑

m∈M
VmG2

m,a

(
�⊥

c⊥�2

) T G2
m,⊥

8πc⊥
(

�

c �2

) T G2
m,

8πc

× exp

[
T G2

m,

8πc
�̃

(
π + 2 tan−1 �̃

)]
. (20)

Here, d /

√
4c � − d2 ≡ �̃ and � is a UV cutoff for the

momentum space integration. The zero temperature limit for
the gap above is

∑
m∈M VmG2

m,a ≡ �0
a, and a low-temperature

expansion is obtained to be

�⊥ = A⊥ + B⊥ ln �⊥;

A⊥ = �0
⊥ + T

∑
m∈M

VmG2
m,⊥

[
Dm − G2

m,⊥
8πc⊥

ln c⊥�2

]
,

Dm = G2
m,

8πc
ln

�

c �2
+ G2

m,

8πc
�̃

(
π + 2 tan−1 �̃

)
,

B⊥ = T
∑

m∈M
Vm

G4
m,⊥

8πc⊥
. (21)

Here A⊥ is dependent on � , and B⊥ is a geometric constant.
From this, we obtain a closed-form expression for �⊥ in
terms of � . By bringing the above equation to the form
wew = z, we obtain the solution w = Wk (z), where Wk (z) is
the (multivalued) Lambert W function with its branch indexed
by the integer k. In fact, when w < 0 (for us, w = −�⊥/B⊥),
the solution has two branches, W0(z) and W−1(z). We will drop
the latter solution since it is not a regular function at �⊥ = 0.
Therefore

�⊥ = −B⊥W0

(
−e−A⊥/B⊥

B⊥

)
. (22)

This is the explicit dependence of �⊥ on � (through A⊥
only). Similarly, an SCE for the � component is

� = �0 + T
∑

m∈M
VmG2

m,

G2
m,⊥

8πc⊥
ln

�⊥
c⊥�2

, (23)
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where �⊥ is given by Eq. (22). In the next section, we discuss
the solutions obtained here, especially in conjunction with the
recent experiments.

B. Discussions

Note that the last term in Eq. (20) is an artifact of the
long-range interaction which vanishes if d‖ = 0. This term,
which is the compression term, purely accounts for the elas-
tic contribution to the gap. For d = 0, the gap equation is
equivalent to the vector SG potential, see Eq. (D6).

Secondly, since � appears in the denominator of Eq. (20),
the gap vanishes for temperatures larger than a characteristic
temperature, min( 8πc

G2 , 8πc⊥
G2

⊥
) ≡ T∗. This is a feature of the

equivalence of the effective interaction Hamiltonian to that
with the SG potential, see discussions in the Appendix D.
The analysis is valid only if T∗ is much smaller than the
melting temperature (such as TL) of a GWC. Note that since
T∗ ∼ caλ

2
w, this temperature scale can be controlled by means

of the twist angle.
The pinning frequency is related to the zero temperature

gap as [81] ωa
p = √

�0
a/ρ0. Notably, since the pinning fre-

quency scales with the size of the WBZ, ωa
p ∝ Ga, it becomes

increasingly difficult to de-pin a WC of smaller unit cell. This
is since a WC with large unit cell (or small G) will be loosely
bound compared to one with smaller unit cell (as the particles
are more tightly packed). Therefore the former can be easily
de-pinned by an external electric field. Similarly, for a deeper
moiré potential the pinning frequency increases (ωa

p ∝ Ṽ 1/2)
since the particles get tightly bound to the potential min-
ima. Introduction of a spacer layer can further modulate this
frequency. Geometrical factors aside, the pinning gap thus
becomes O(� meV). With increasing temperature, as seen in
Eq. (21), this gap softens as the increasing thermal fluctuation
facilitates de-pinning. The extent to which this gap decreases
depends on various coefficients appearing in Eq. (21). Most
notably, via the elastic constants cα , the logarithm term has a
coefficient that is directly proportional to the dielectric term.
Thus the larger the screening, the smaller the pinning gap.
Therefore, although the geometrical constants associated with
various HoM or HeM TMDs may not affect the pinning gap of
a GWC, the dielectric constant can however alter the physics.
This gap translates into determining which state is a stronger
insulator.

V. CONCLUSION

We have addressed the feasibility of realizing Wigner crys-
tals in a host of HoM and HeM systems. Note however, that
our results are based on estimated material parameters of
the TMD moiré materials. Corrections to these results might
arise principally from three sources. The first is from the full
band structure of the TMD heterostructures [30]. Second, a
material correction arising from twist-angle inhomogeneity
across a sample [82,83], which may cause additional pinning
or de-pinning of the WC could also affect the physics. Similar
effects may also arise from atomic relaxations [84,85]. Third,
the presence or absence of a spacer layer [16], such as a mono-
layer hBN, may also affect the correlation energy, thereby
affecting Wigner crystallization. A first principles calcula-

tion of the elastic coefficients of the GWC is also important
to obtain good qualitative and quantitative estimates for the
pinning gap and the phonon spectrum. All of these aspects
merit further studies as this will help narrow the density and
temperature regimes where WC is feasible.

Due to the presence of a pinning gap, transport measure-
ments to confirm the existence of WC states can be misleading
as there can be many other kinds of insulating states with
similar transport characteristics. Although observation of such
states at fractional occupancy increases their likelihood of
being Wigner states, especially for those observed at incom-
mensurate fillings, however, the possibility of other density
ordered states cannot be ruled out, particularly for commen-
surate fractional occupancies. Devising smoking gun evidence
for various density ordered states may be an interesting task
for theorists and experimentalists alike.

As was mentioned before, once a system meets the ma-
terial constraints to realize a GWC, there exists a plethora
of crystalline states below the filling fraction νmax. These
states constitute a devil’s staircase and have a rich physics of
commensurate-incommensurate transitions [76,86,87]. Due to
various stability criteria, only a few such states might dis-
play clear experimental signatures. However, with careful
analysis or improvements in experimental conditions, one
may gain insight into the other states as well. In fact, a
theoretical framework to understand these commensurate-
incommensurate transitions in presence of an underlying
lattice is an interesting theoretical task and is left for future
work.
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APPENDIX A: HEM AT θ = 5◦

In Table III, we present crystallization parameters for
HeMs for large twist angles. For large twist angles, doping
levels need to be extremely low for obtaining GWCs.

APPENDIX B: HARMONIC EXPANSION OF DENSITY

Following Ref. [45], we derive the elastic limit of the
density written in Eq. (5). A continuum limit can be easily
obtained if we treat the equilibrium GWC configuration, R0

i =
Ri − u(R0

i ), as a slowly varying smooth vector field, ϕ(x),
over the position of the particles

ϕ(x) = x − u(ϕ(x)) . (B1)

Clearly a solution of ϕ(x) is given by, ϕ(Ri ) =
ϕ(R0

i + u(R0
i )) = R0

i . Using the above equality, we can
rewrite the density in terms of this new field as

ρ(x) =
∑

i

δ(2)[Ri − ϕ(x) − u(ϕ(x))] (B2a)

	 det[∂αϕβ (x)]
∑

i

δ(2)(Ri − ϕ(x)) (B2b)

= det[∂αϕβ (x)]
∫

dq
(2π )2

ρ0(q)eiq·ϕ(x) . (B2c)
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TABLE III. Wigner crystallization criteria for a HeM at θ = 5◦. The material parameters here are the same as those in Table II. Therefore
the rs values remain the same for ne = 1012 cm−2. Similarly, the nmax

e(h) values remain the same, however, νe(h)
max is different since the supercell

density has changed.

HeMs WSe2/WS2 MoSe2/MoS2 MoTe2/MoSe2 MoSe2/WS2 MoSe2/WSe2 MoS2/WS2 MoTe2/WSe2

λm [nm] 3.4 3.4 3.2 3.4 3.8 3.6 3.2
U/W |e(h) 1.3 (2.1) 1.6 (2.8) 1.4 (4.2) 1.1 (2.8) 2.4 (1.9) 2.2 (8.0) 1.0 (4.6)
TL [K] 16.8 14.5 12.6 14.9 13.4 15.6 15.0
νe(h)

max 0.05 (0.13) 0.08 (0.24) 0.06 (0.53) 0.04 (0.24) 0.17 (0.11) 0.15 (1.98) 0.04 (0.66)

The first simplification was done using the elastic limit,
∂αuβ � 1. In the last line, we have used the integral represen-
tation of the delta function. In the presence of an undeformed
GWC, we can introduce its reciprocal vectors, eiK l ·Ri = 1, to
write

ρ0(q) =
∑

i

eiq·Ri = ρ0(2π )2
∑

l

δ(2)(q − K l ) . (B3)

Here, ρ0 is the average number density. Introducing the above
simplification in Eq. (B2c) and using Eq. (B1), we obtain

ρ(x) =ρ0 det[∂αϕβ (x)]
∑

l

eiK l ·ϕ(x)

=ρ0 det[1 − ∂αuβ (ϕ(x))]
∑

l

eiK l ·[x−u(ϕ(x))]

	ρ0 − ρ0∇ · u(x) + ρ0

∑
l

eiK l ·[x−u(x)] . (B4)

We again used the elastic limit by first Taylor-expanding the
determinant operator, det, and then substituting u(ϕ(x)) ≈
u(x) which works for x close to the equilibrium position
and in the elastic limit. This leads us to Eq. (5). Note there
is complete decoupling between the gradient term and the
terms with K l . This occurs because u(x) has negligible Fourier
components outside the WBZ.

APPENDIX C: ELASTIC INTERACTION HAMILTONIAN

In this Appendix, we clarify the derivation of Eq. (15).
First, we Fourier transform the second part of Eq. (12),

H (2)
e–e = 1

2

∑
l

∫
x,x′

U (x − x′)eiK l ·(x−x′ )Kl,αKl,β

×
∫

q,q′
uα (q) uβ (q′)

(
eiq·x − eiq·x′)(

eiq′ ·x − eiq′ ·x′)
.

(C1)

In order to simplify it further, we introduce the center of mass
coordinate, 2X = x + x′ and the relative coordinate 2δ = x −
x′ to obtain

H (2)
e–e =

∑
l

Kl,αKl,β

∫
q

uα (q)uβ (−q)

×
∫

δ

dδU (δ)[1 − cos(q · δ)]eiK l ·δ. (C2)

In coming to this line, we have also integrated out q′, which
introduced a delta function, δ(2)(q + q′). Next, we perform
the last integration for a generic potential of the form,

U (x) = e2/ε|x|γ . One can obtain the long-range Coulomb
potential by setting γ = 1, and with increasing γ the potential
becomes increasingly short-range. For such a U (δ), we find
that

H (2)
e–e =

∑
l

Kl,αKl,β

∫
q

uα (q)uβ (−q)

× e2

ε

(
2

|K l |γ − 1

|K l − q|γ − 1

|K l + q|γ
)

. (C3)

For further simplification, we confine our discussion to the
low-energy limit. This allows us to Taylor-expand the last
term in Eq. (C3) for the limit |q| � |K l |. The first term in this
expansion, which is linear in q, vanishes because it involves
integrating over a cos θl term. Here, θl are the angles between
the q vector and K l . Therefore, retaining up to the O(q2) term
we obtain

H (2)
e–e 	 γ

e2

ε

∑
l

Kl,αKl,β

|K l |2+γ

∫
q

q2uα (q)uβ (−q)

× [(2 + γ ) cos2 θl − 1]. (C4)

Note that unlike the long-distance term, H (1)
e–e in Eq. (14), the

leading dispersion corresponding to H (2)
e–e remains quadratic

regardless of the choice of γ .

H (2)
e–e =

∫
q

c q2u (q)u (−q) + c⊥q2u⊥(q)u⊥(−q). (C5)

APPENDIX D: GVM FOR SINE-GORDON POTENTIAL

In this Appendix, we demonstrate the GVM method dis-
cussed in the main text for a sine-Gordon (SG) potential,

H = 1

2
c
∫

dx [∇φ(x)]2 − g
∫

dx cos[2φ(x)]. (D1)

Here, c and g are free parameters. Using the simplifications
discussed in the main text [and using �(q) = cq2], we obtain
the variational free energy to be

Fvar = −T

2

∫
q

ln[TG(q)] + T

2

∫
q

cq2G(q)

− gexp

[
T

2

∫
q
G(q)

∂2

∂φ2

] ∫
dx cos(2φ)

∣∣∣∣
φ=0

. (D2)

Further simplifications of the last term leads us to

Fvar = − T

2

∫
q

ln[TG(q)] + T

2

∫
q

cq2G(q) − ge−2
∫

q TG(q)
.

(D3)
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In these equations, we fixed the sample area to
∫

dx = 1. The
saddle point solution of the above free energy is

G−1 = cq2 + 4ge−2
∫

q TG(q)
. (D4)

We now set G−1(q) = cq2 + m and solve m self-consistently,

m = 4ge
−2T

∫ �

q
1

cq2+m 	 4g
( m

c�2

)T/2πc
. (D5)

Here, � is a UV cutoff in the momentum-space. A notable
feature of this solution is that beyond a certain temperature
maximum, T > 2πc, the SG mass must vanish simply due
to the presence of the cutoff in the denominator above. Such
a maximal temperature will also appear in our discussion in
Sec. IV B. Additionally, from Eq. (D5), one can also deduce
the scaling behavior of the mass, m ∼ g1/(1−τ ), where τ =
T/2πc.

Pertaining to our discussion of GVM in the context of
GWC, we extend the previous solutions for a SG potential to
an n-component vector SG system. The interaction term here
becomes H ′ ∼ ∫

dx cos(
∑

n pnφn). The kernel corresponding
to the field φn is cnq2. As before, we obtain the variational free

energy

Fvar = − T

2

∑
n

∫
q
{ln[TGn(q)] − cnq2Gn(q)}

− ge− T
2

∑
n a2

n

∫
q G(q)

. (D6a)

Since, due to the vanishing average of cosine functions, there
are no cross terms such as cos φm cos φn (with m �= n), the
saddle-point equation (setting n = 1 and an = 2 goes back to
the original case)

G−1
n = cnq2 + ga2

ne− T
2

∑
n a2

n

∫
q Gn(q)

, (D6b)

∴ mn = ga2
n exp

[
−

∑
n

Ta2
n

8πcn
ln

(
cn�

2

mn

)]
. (D6c)

We can solve this SCE exactly and, in this case as well,
there exists a similar temperature window where gap van-
ishes, Ta2

n/8πcn ≡ τn > 1. And, like before, the scaling of mn

with the coupling constant becomes, mn ∝ g(1−∑
n τn )−1

. These
solutions are not exactly transferable for our discussions in
the main text since there the kernel has a d q2−γ part. See
Sec. IV B for the case when d = 0, where the above results
are perfectly applicable.
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