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Real-space dynamical mean field theory study of non-Hermitian skin effect for correlated systems:
Analysis based on pseudospectrum
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We analyze a correlated system in equilibrium with special emphasis on non-Hermitian topology inducing
a skin effect. The pseudospectrum, computed by the real-space dynamical mean field theory, elucidates that
additional pseudoeigenstates emerge for the open boundary condition in contrast to the dependence of the
density of states on the boundary condition. We further discuss how the line-gap topology, another type of
non-Hermitian topology, affects the pseudospectrum. Our numerical simulation clarifies that while the damping
of the quasiparticles induces the nontrivial point-gap topology, it destroys the nontrivial line-gap topology. The
above two effects are also reflected in the temperature dependence of the local pseudospectral weight.
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I. INTRODUCTION

In these decades, topological properties of condensed mat-
ters enhance their significance [1–7]. Among a variety of
topological systems, recently, non-Hermitian systems attract
broad interest because of their unique topological phenomena
induced by non-Hermiticity [8–22]. Representative examples
of non-Hermitian topological phenomena are the emergence
of exceptional points [23–29] and a skin effect [11,30–42].
The former is non-Hermitian topological band touching points
in the bulk on which the Hamiltonian becomes nondiagonal-
izable. The latter results in extreme sensitivity to the boundary
conditions. The platform of non-Hermitian topology extends
to a wide range of systems with gain and loss, e.g., photonic
crystals [43–50], open quantum systems [11,24,51–59], me-
chanical metamaterials [60–62], electric circuits [63–65], and
so on.

As well as the above dissipative systems, the non-
Hermitian topology also provides a novel perspective of
strongly correlated systems in equilibrium [66,67]. In such
a system, the single-particle spectrum is described by an ef-
fective non-Hermitian Hamiltonian which is composed of the
noninteracting Hamiltonian and the self-energy [21,27,66–
76]. So far, it has been elucidated that exceptional points
induce the bulk Fermi arc in the single-particle spectrum for
equilibrium correlated systems.

Despite the above progress of non-Hermitian band touch-
ing in the bulk, other topological properties inducing the skin
effect have not been sufficiently explored in correlated sys-
tems. Although Okuma and Sato proposed that the topological
properties of the skin effect are accessible by the pseudospec-
trum [77], an explicit numerical simulation of correlated
systems is still missing. In particular, it remains unclear in
which correlated system the effective Hamiltonian possesses
topological properties of the skin effect.

In this paper, by employing the real-space dynamical mean
field theory (R-DMFT), we analyze a two-dimensional cor-

related lattice model in equilibrium with special emphasis on
the non-Hermitian topology of the skin effect. Our R-DMFT
simulation demonstrates that the nontrivial point-gap topol-
ogy of the skin effect induces additional pseudoeigenstates in
contrast to the dependence of the density of states (DOS) on
the boundary condition [for definition of the point-gap, see
Eq. (7)]. We also elucidate how the line-gap topology, another
type of non-Hermitian topology, affects the pseudospectrum
[for a definition of the line gap, see Eq. (8)]. Our analysis
clarifies that the damping of the quasiparticles has two effects;
it induces the nontrivial point-gap topology and destroys the
nontrivial line-gap topology. The above two effects result in
distinct temperature dependences of the local pseudospectral
weight depending on the momentum kx; for kx = 0, the tem-
peratures suppress the dependence of the local pseudospectral
weight on the boundary conditions in contrast to the case for
kx = π/2.

The rest of this paper is organized as follows. In Sec. II, we
define the correlated model where the effective Hamiltonian
shows the skin effect. In this section, we also describe the
framework of the R-DMFT and how to numerically extract
the pseudospectrum from the R-DMFT data. The R-DMFT
results are presented in Sec. III. In Appendices A and B, we
briefly review several properties of the pseudospectrum.

II. MODEL AND METHOD

A. Two-orbital correlated model

We analyze the following Hamiltonian,

H =
∑

〈i j〉αβσ

hiα jβc†
iασ c jβσ + U

∑
i

(
nib↑ − 1

2

)(
nib↓ − 1

2

)
,

(1)
where c†

jβσ (c jβσ ) creates (annihilates) a fermion with a spin
state σ =↑,↓ in orbital α = a, b at site i. The matrix ele-
ment hiα jβ ∈ C is defined such that the Bloch Hamiltonian is
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FIG. 1. (a) [(b)] Density of states ρ(ω, kx ) =
1

Ly

∑
iyα

[G(ω, kx )]iyαiyα for (kx, T ) = (0, 0.2) [(π/2, 1)].

(c) [(d)] Spectrum of Ĥeff (0, kx ) for kx = 0 [π/2]. The data
represented with red (blue) dots are obtained by imposing the yOBC
(yPBC). (e) Amplitude of right eigenvectors |〈iy|ψn〉R| for kx = π/2.
(f) Winding number WP(kx ). These figures are obtained for U = 8.
Panels (c)–(f) are obtained for T = 1.

written as

ĥ(k) = t (2 sin kx − 0.5 sin ky)τ̂2 + t (2 cos ky)τ̂3. (2)

Here, the matrices τ are the Pauli matrices. The second term
of Eq. (1) describes the repulsive interaction (U � 0); the
number operator for fermions is defined as niασ := c†

iασ ciασ .
Because the interaction is introduced as the second term of
Eq. (1), the system is half-filled for arbitrary U .

We note that deviation of the self-energy of orbital a from
the self-energy of orbital b is essential for non-Hermitian
phenomena, which is realized by the imbalance of the inter-
action strength for orbital a and b [78,79]. It is also noted
that the noninteracting model ĥ(k) is topologically identical
to the tight-binding model of the honeycomb lattice which
hosts Dirac cones [80]; the model has chiral symmetry, and
the winding number takes 0 or 1 depending on the momentum
(see Sec. III A). These topological properties are important for
the nontrivial point-gap topology [see Figs. 2(c1)–2(c4)]. As
a typical parameter set showing the same topology as the one
of the honeycomb lattice model, we have chosen factors 2 and
0.5 in Eq. (2).

In this paper, we impose the periodic boundary condition
along the x direction (xPBC). Along the y direction, we im-
pose either open boundary conditions (yOBCs) or periodic
boundary conditions (yPBCs). We note that t is taken as the
energy unit (t = 1).

B. R-DMFT

Here, we briefly describe the R-DMFT, an extended ver-
sion of the dynamical mean field theory [81–83], which allows
us to treat systems with boundaries. To be concrete, let us

impose the xPBC and the yOBC on the model defined in
Eq. (1). Here, iy (iy = 0, 1, . . . , Ly − 1) labels the sites along
the y direction. In such a case, the system is inhomogeneous
along the y direction.

Within the R-DMFT framework, such inhomogeneity is
encoded into the site-dependent self-energy 
iybσ which is
computed by mapping the lattice model to a set of effective
impurity models. The impurity model specified by iy is written
as

Zimp,iy =
∫

Dd̄iybσDdiybσ e−Simp,iy , (3a)

Simp,iy = −
∫ β

0
dτ dτ ′d̄iybσ (τ )G−1

iybσ (τ − τ ′)diybσ (τ ′)

+
∫ β

0
dτ Himp,iyδ(τ ), (3b)

Himp,iy = U

(
niyb↑ − 1

2

)(
niyb↓ − 1

2

)
. (3c)

Here, Zimp,iy , Simp,iy , and Himp,iy denote a partition func-
tion, an effective action, and a local Hamiltonian of each
impurity problem, respectively. The Grassmannian variables
are denoted by d̄iybσ and diybσ .

The Green’s functions of the effective bath Giybσ and the
self-energy 
iybσ are obtained by self-consistently solving the
above impurity models (3) and the following equations:

G−1
iybσ = G−1

iybσ + 
iybσ , (4a)

Giybσ = 1√
Lx

[∑
kx

[(ω + iδ)1l − ĥ(kx ) − 
̂σ (ω)]−1

]
iybiyb

,

(4b)

with


̂σ (ω) = diag[0, 
0bσ (ω + iδ), 0, 
1bσ (ω + iδ), . . .]. (4c)

Here, ĥ(kx ) is the Fourier-transformed Hamiltonian along
the x direction for U = 0, and Lx denotes the number of sites
along the x direction.

In order to compute the self-energy of effective impurity
models, we have employed an iterative perturbation theory
[84–86] based solver.

C. Extracting the pseudospectrum from the R-DMFT data

The effective non-Hermitian Hamiltonian Ĥeff (ω, kx ) :=
ĥ(kx ) + 
̂(ω) with the self-energy [see Eq. (4c)] may exhibit
a non-Hermitian skin effect induced by the topological prop-
erties.

In Ref. [77], it has been proposed that the topological
properties inducing the skin effect are accessible by the
ε-pseudospectrum (ε > 0) which can be measured by the
angle-resolved photoemission spectroscopy [87]. In this sec-
tion, we define the ε-pseudo spectrum and describe how to
compute it (for more details, see Appendices A and B).

The ε-pseudospectrum σε[Ĥeff (ω, ky)] with ε > 0 of the
N × N matrix Ĥeff (ω, ky) is defined as a set of pseudoeigen-
values η ∈ C satisfying

‖[η1l − Ĥeff (ω, ky)]v‖ < ε, (5)
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FIG. 2. Pseudospectrum of the effective Hamiltonian Ĥeff (ω = 0, kx ) for Ly = 50 and U = 8. The color denotes the minimum singular
value for a given η. Panels (a1)–(a4) and (b1)–(b4) [(c1)–(c4) and (d1)–(d4)] are the data for kx = 0 [kx = π/2]. Panels (a1)–(a4) and (c1)–(c4)
[(b1)–(b4) and (d1)–(d4)] are obtained by imposing the yPBC [yOBC]. The data shown in panels (a1)–(a4) and (b1)–(b4) [(c1)–(c4) and
(d1)–(d4)] are obtained for T = 1, 0.6, 0.4, and 0.2 [T = 1.4, 1, 0.6, and 0.2].

with a pseudoeigenvector v ∈ CN satisfying ‖v‖2 = 1. The
symbol ‖v‖2 denotes the norm of a vector v; ‖v‖2 :=
[
∑

j v jv
∗
j ]

1/2 with v∗
j being complex conjugation of the jth

component of the vector v. We stress that Heff (ω, ky) depends
on ω, meaning that pseudoeigenvalues η also depend on ω.

For computation of the ε-pseudospectrum, applying the
singular value decomposition is useful; the ε-pseudospectrum
can be computed by searching pseudoeigenvalues η ∈ C sat-
isfying

smin[η1l − Ĥeff (ω, kx )] < ε, (6)

where smin(Ĥeff ) denotes the minimum singular value of a
non-Hermitian matrix Ĥeff . The pseudoeigenvector is obtained
from the unitary matrix of the singular value decomposition
(see Appendix B).

The above two definitions of the pseudospectrum are
equivalent [88], which is shown in Appendix B.

III. R-DMFT RESULTS

In this section, after a brief discussion of the DOS, we
see that Ĥeff shows the skin effect because of the nontrivial
point-gap topology [for a definition of the point gap, see
Eq. (7)]. Our R-DMFT simulation demonstrates that the above
point-gap topology induces additional pseudoeigenstates for

the yOBC. We also elucidate that additional pseudoeigen-
states emerge due to the nontrivial line-gap topology [for a
definition of the line gap, see Eq. (8)].

The above two types of gap are defined as follows. The
point gap of given energy Eref ∈ C opens when

εn − Eref �= 0 (7)

holds for n = 0, 1, . . . , dim Ĥeff − 1. Here, ε’s are the eigen-
values of Ĥeff (ω = 0, kx ). When the point gap opens, the
system may possess the corresponding nontrivial topology
(i.e., point-gap topology) which induces the skin effect for
non-Hermitian tight-binding models [33,35,36].

The line gap opens when

Re εn �= 0 (8)

holds for n = 0, 1, . . . , dim Ĥeff − 1. When the line gap
opens, the system may possess the corresponding nontrivial
topology (i.e., line-gap topology). As we see in Sec. III C,
the nontrivial line-gap topology induces zero modes in finite-
temperature regions [see just below Eq. (10)].

A. Density of states

Let us start with the noninteracting case. As the Bloch
Hamiltonian ĥ(k) preserves the “sublattice” symmetry [89]
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[τ̂1ĥ(k)τ̂1 = −ĥ(k)], the winding number may take a non-
trivial value for a one-dimensional subsystem specified by
kx. Indeed, the winding number takes one for −π � kx �
−2.88, −0.27 � kx � 0.27, and −2.88 � kx � π otherwise
it takes zero. The nontrivial value of the winding number
induces the zero-energy states.

These zero-energy states survive even in the presence of
the Hubbard interaction U . For U = 8, the DOS ρ(ω, kx ) =
1
Ly

∑
iyα

[Ĝ(ω, kx )]iyαiyα is plotted in Figs. 1(a) and 1(b). For
kx = 0 and the yOBC, the DOS shows a sharp peak at ω = 0
due to the edge states whereas such a peak cannot be observed
for kx = π/2. As discussed in Sec. III C, the emergence of the
sharp peak can be more clearly understood in terms of the
non-Hermitian topology whose topological invariant is a non-
Hermitian extension of the winding number [see Eq. (10)].

B. Eigenvalues of the effective Hamiltonian

Now, we discuss whether the effective Hamiltonian
Ĥeff (ω, kx ) := ĥ(kx ) + 
̂(ω + iδ) exhibits the skin effect, i.e.,
extreme sensitivity to the boundary conditions of the spectrum
and eigenvectors. As we see below, the effective Hamilto-
nian shows the skin effect for kx = π/2. Figures 1(c) and
1(d) show the eigenvalues of Ĥeff (ω = 0, kx ) for kx = 0 and
kx = π/2, respectively. These figures show that in contrast to
the case for kx = 0, the spectrum for kx = π/2 shows signif-
icant dependence of the boundary condition. In addition, as
shown in Fig. 1(e), almost all right eigenvectors |ψn〉R (n =
0, 1, . . . , dim Ĥeff − 1) are localized at iy = 0 for kx = π/2
and the yOBC.

The above significant dependence of the spectrum is con-
sistent with the nontrivial value of the winding number
WP(kx, Eref ) of the point gap,

WP(kx, Eref ) =
∫ π

−π

dky

2π i
∂ky ln det[Ĥeff (0, k) − Eref 1l], (9)

where Eref denotes the reference energy. Figure 1(f) indicates
that the winding number takes one at kx = π/2 where the skin
effect is observed, whereas it takes zero at kx = 0.

The above results, (i.e., the significant dependence of the
eigenvalues, the winding number WP, and the localization of
eigenvectors), indicate that the effective Hamiltonian exhibits
the skin effect for (ω, kx ) = (0, π/2). The similar behaviors
of the energy spectrum and the localization can be observed
as long as the winding number takes a nontrivial value.

So far, we have seen that for kx = π/2, the point-gap topol-
ogy of the effective Hamiltonian Ĥeff (ω = 0, kx ) becomes
nontrivial and induces the skin effect [see Figs. 1(c)–1(e)],
although the DOS does not show the corresponding extreme
sensitivity to the boundary conditions [see Fig. 1(b)]. We
note that this behavior is consistent [90] with the argument
in Ref. [77].

C. Pseudospectrum

As proposed by Ref. [77], the nontrivial value of the wind-
ing number WP, characterizing the skin effect, is reflected in
the the pseudospectrum. Figure 2 shows a pseudospectrum
of Ĥeff (ω = 0, kx ). Figures 2(a1)–2(a4) and 2(b1)–2(b4) are

the data for kx = 0 which we discuss in the latter half of this
section.

Figures 2(c1)–2(c4) and 2(d1)–2(d4) indicate that the
point-gap topology induces an additional structure of the
pseudospectrum for the yOBC. In order to see this, let us
note that for kx = π/2, the winding number WP(π/2, Eref )
with Eref = −2 + 0.5
(Ly/2)b↑(ω = 0) takes one for 0 < T �
0.09. Figures 2(c1)–2(c4) show the pseudospectrum for kx =
π/2 and the yPBC. These figures indicate that for the yPBC,
the pseudospectrum shows a loop as the spectrum of Ĥeff

does. For the yOBC, the pseudospectrum shows additional
structures; besides the loop structure observed for the yPBC,
the area enclosed by the loops also becomes pseudoeigenval-
ues [see Figs. 2(d1)–2(d4)]. The above data indicate that the
nontrivial topology of the point gap induces the edge states of
the pseudospectrum.

We recall that the nontrivial point-gap topology is induced
by finite temperatures; finite-temperature results in a finite
lifetime of quasiparticles which is an origin of the loop struc-
ture of Ĥeff (ω = 0, kx ) [see Figs. 1(d) and 1(f)].

Besides the point gap, one may find a line gap, another
type of gaps for non-Hermitian systems. Our numerical data
show that the nontrivial topology of the line gap also affects
the pseudospectrum [see Figs. 2(a1)–2(a4) and 2(b1)–2(b4)].

To see this, first, we introduce the winding number WL(kx )
of the line gap. Because the non-Hermitian Hamiltonian pre-
serves the sublattice symmetry τ̂1Ĥeff (ω, k)τ̂1 = −Ĥeff (ω, k),
the following winding number:

WL(kx ) =
∫ π

−π

dky

4π i
tr[τ̂1Ĥ−1

eff (0, k)∂ky Ĥeff (0, k)] (10)

is quantized as long as the line gap opens. For instance, WL(0)
takes one for T � 0.6 and U = 8, whereas WL(π/2) takes
zero for T � 0.06 and U = 8. As well as in the DOS [91]
[see Fig. 1(a)], The nontrivial line-gap topology for kx = 0 is
reflected in the pseudospectrum. Figures 2(a1)–2(a4) [2(b1)–
2(b4)] show a pseudospectrum for kx = 0 and the yPBC
[yOBC]. In the low-temperature region T � 0.6, the pseu-
dospectrum shows a peak on the imaginary axis Re η = 0 only
for the yOBC [see Figs. 2(b3) and 2(b4)], which corresponds
to the nontrivial topology of WL(0). Increasing the tempera-
ture closes the line-gap, and the peak located on the imaginary
axis disappears [see Figs. 2(b1) and 2(b2)]. The above facts
mean that additional pseudoeigenenergy is induced by the
nontrivial line-gap topology which is destroyed by increasing
the temperature.

So far, we have seen that temperatures affect the two types
of topology in the opposite way; increasing the temperature
makes the point-gap topology nontrivial, in contrast, it de-
stroys the nontrivial topology of the line gap. This fact is also
reflected in the following quantity:

Aps(ω) =
∑

{η(ω)}

1

ω + iδ − η(ω)
. (11)

Here the summation is taken over all pseudoeigenvalues η(ω)
which are computed at each value of ω. We call Aps(ω)
the local pseudospectral weight because it is analogous to
the local spectral weight [92,93]. In Figs. 3(a) and 3(b),
the local pseudospectral weight is plotted for several values

125145-4



REAL-SPACE DYNAMICAL MEAN FIELD THEORY STUDY … PHYSICAL REVIEW B 103, 125145 (2021)

1

0 010

FIG. 3. (a) and (b) The local pseudospectral weight for sev-
eral cases of the boundary conditions and temperatures. Panel
(a) [(b)] shows the data for kx = 0 [kx = π/2]. These data are ob-
tained for U = 8. (c) and (d) Phase diagrams of the interaction U
vs temperature T . In panel (c) [(d)], numbers in squares indicate
the values of WL(kx = 0) [WP(kx, Eref ) with kx = π

2 and Eref = −2 +
0.5
(Ly/2)b↑)(iδ)]. We note that for U � 10 the Mott transition is not
observed. The system is half-filled for an arbitrary value of U .

of the temperature. Figure 3(a) indicates that only for low
temperatures (e.g., T = 0.01), Aps at kx = 0 changes depend-
ing on the boundary conditions, which is no longer observed
for T = 0.07. Figure 3(b) indicates that for high temperatures
(e.g., T = 0.07) Aps at kx = π/2 changes depending on the
boundary conditions.

The above temperature effects are summarized in Figs. 3(c)
and 3(d); the nontrivial topology of the line gap (the point gap)
is destroyed by increasing (decreasing) the temperature.

IV. SUMMARY

By making use of the R-DMFT, we have analyzed the two-
dimensional correlated system in equilibrium whose effective
Hamiltonian exhibits the skin effect due to the nontrivial
point-gap topology. As well as the DOS, we have also com-
puted the pseudospectrum which was recently proposed in
Ref. [77].

Our R-DMFT simulation has demonstrated that the above
nontrivial point-gap topology induces additional pseudo-
eigenstates for the yOBC in contrast to the dependence of the
DOS on the boundary condition. We have further elucidated
effects of the line-gap topology on the pseudospectrum. Our
R-DMFT study has elucidated that in contrast to the point-gap
topology, the damping of quasiparticles is harmful for the line-
gap topology, which is reflected in temperature dependence of
the local pseudospectral weight.

We consider that numerical simulations based on more
accurate methods (e.g., methods based on the cluster DMFT
[94,95] or a more accurate impurity solver, such as the nu-
merical renormalization group [96–98] or continuous-time
quantum Monte Carlo method [99–101]) should yield the
essentially same results because the above non-Hermitian
topological properties are independent of quantitative de-

tails of the self-energy. Namely, in the absence of the Mott
transition, the renormalization factor (and the self-energy)
continuously change by changing the interaction, although it
depends on the impurity solvers how accurately the correla-
tions are into account (see Fig. 1 of Ref. [102]). Thus, before
Mott transition, the essentially same physics of the nontrivial
point- (line-) gap topology is considered to be observed by
employing more accurate results although the parameter re-
gion (e.g., interaction strength) shifts. We note, however, that
it is also interesting to analyze the non-Hermitian topological
properties in the Mott insulator, which is left an open question
to be addressed.

We also note that although the relation of the pseudospectra
and the angle-resolved photoemission spectroscopy has been
discussed theoretically [77], the experimental observation has
not been addressed yet, which is also left as a crucial open
question to be addressed.
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APPENDIX A: REMARKS OF THE PSEUDOSPECTRUM

The following facts are discussed in Ref. [88]. However,
we summarize them in order to make the paper self-contained.

1. Three definitions of the pseudospectrum

Consider an N × N matrix Â ∈ CN×N . Then, there exist
three definitions of the ε-pseudospectrum σε (Â) with ε > 0.
Before the details, we define a 2-norm of a matrix,

‖Â‖2 = maxv

‖Âv‖2

‖v‖2
. (A1)

We recall that ‖v‖2 denotes the norm of a vector v; ‖v‖2 :=
[
∑

j v jv
∗
j ]

1/2 with v∗
j being the complex conjugation of the jth

component of the vector v.
In the following, we see the three definitions of the ε-

pseudospectrum.
The first definition. The ε-pseudospectrum is a set of pseu-

doeigenvalues η ∈ C satisfying

‖[η1l − Â]−1‖2 > ε−1. (A2)

The second definition. The ε-pseudospectrum is the set of
eigenvalues η ∈ C of the matrix Â + Ê defined by a matrix
Ê ∈ CN×N with ‖Ê‖2 < ε. Namely, η ∈ C satisfies

(Â + Ê )v = ηv, (A3)

with the eigenvector v (‖v‖2 = 1).
The third definition. This equation is the same as the one

defined in Eq. (5); the ε-pseudospectrum is the set of η ∈ C
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satisfying

‖(η1l − Â)v‖2 < ε (A4)

for a normalized vector v (v ∈ CN and ‖v‖2 = 1).
In the next section, we prove the equivalence of these three

definitions.

2. Equivalence of the three definitions

Based on the argument provided in Ref. [88] (in particular,
see p. 16 of the textbook), we prove the equivalence of the
above three definitions.

In the following, we address the proof by the following
three steps.

(i) Eq. (A3) ⇒ Eq. (A4). Supposing that Eq. (A3) holds,
we have Eq. (A4), which can be seen as follows.

Equation (A3) can be rewritten as

(η1l − Â)v = Êv. (A5)

We note that the inequality ‖Êv‖2 < ε holds because Ê satis-
fies ‖Ê‖2 < ε. Thus, we obtain

‖(η1l − Â)v‖2 < ε, (A6)

with a vector v satisfying ‖v‖2 = 1.
(ii) Eq. (A4) ⇒ Eq. (A2). Supposing that Eq. (A4) holds,

we have Eq. (A2), which can be seen as follows. First, we note
that Eq. (A4) indicates the relation,

‖(η1l − Â)v‖2 = s < ε, (A7)

with v = 1 and a non-negative number s ∈ R. Thus, with a
vector u ∈ CN satisfying ‖u‖2 = 1, we have

(η1l − Â)v = su, (A8)

which is further rewritten as

(η1l − Â)−1u = s−1v. (A9)

Recalling Eq. (A1), we have

‖(η1l − Â)−1‖2 � ‖(η1l − Â)−1u‖2 = s−1 > ε−1. (A10)

Therefore, we obtain Eq. (A4) from Eq. (A2).
(iii) Eq. (A2) ⇒ Eq. (A3). Supposing that Eq. (A2) holds,

we have Eq. (A3), which can be seen as follows.
Because Eq. (A1) holds, there exists u ∈ CN satisfying

‖(η1l − Â)‖2 = ‖(η1l − Â)−1u‖2 = s−1 > ε−1, (A11)

which results in

(η1l − Â)−1u = s−1v. (A12)

This relation is further rewritten as

(η1l − Â)v = su. (A13)

Because su = Êv (Ê := suv†) holds, we have

(η1l − Â)v = Êv. (A14)

Noting that ‖Ê‖2 = ‖suv†‖2 = s < ε, we obtain Eq. (A3).
Putting the above arguments (i)–(iii) together, we end up

with the equivalence of the three definitions.

APPENDIX B: PROOF OF EQ. (6)

1. Eq. (5) ⇔ Eq. (6)

Supposing that Eq. (5) holds, we have Eq. (6), which can
be seen as follows.

First, we apply the singular value decomposition,

η1l − Ĥeff = Û �̂V̂ , (B1)

where Û and V̂ are unitary matrices and �̂ is a diagonal
matrix whose diagonal elements λi ∈ R (i = 1, 2, . . . , N ) are
non-negative.

Thus, the left-hand side of Eq. (5) is rewritten as

‖(η1l − Ĥeff )v‖2 = (v†V̂ †�̂Û †Û �̂V̂ v)1/2

= (v†V̂ †�̂2V̂ v)1/2

=
(∑

j

|v′
j |2λ2

j

)1/2

, (B2)

where v′
j is defined as v′

j := ∑
i Vjivi.

The above facts indicate that η is an ε-pseudoeigenvalue
(ε > 0) when

smin(η1l − Ĥeff ) < ε (B3)

is satisfied. Here, smin(η1l − Ĥeff ) denotes the minimum of the
singular values λ’s.

Therefore, we obtain Eq. (6). Equation (B2) also indicates
that the pseudoeigenvector v is given by v j = (V †) j1.

2. Another proof

Equation (6) can also be proven from Eq. (A1). This can
be seen by noting the following fact: for an arbitrary matrix
B̂ ∈ CN×N :

‖B̂‖2 = smax(B̂), (B4)

where smax(B̂) is the maximum singular value of a N × N
matrix B̂ ∈ CN×N .

With Eq. (B4), we obtain

‖[η1l − Ĥeff ]
−1‖2 = smax([η1l − Ĥeff ]

−1)

= [smin(η1l − Ĥeff )]−1. (B5)

Combining the above equation and Eq. (A2) results in Eq. (6).
In the following, we prove Eq. (B4). First, we note that with

the singular value decomposition (B̂ := ÛB�̂BV̂B), we have

‖B̂v‖2 =
√

v†B̂†B̂v

=
√

v†V̂ †
B �̂BÛ †

BÛB�̂BV̂Bv

=
√

v†V̂ †
B �̂2

BV̂Bv. (B6)

Here ÛB and V̂B are unitary matrices, and �̂B is a diagonal
matrix whose diagonal elements λBi (i = 1, 2, . . . , N ) are sin-
gular values of B̂. The vector v is an arbitrary vector v ∈ CN .

By making use of Eq. (B6), we obtain Eq. (B4),

‖B̂‖2 = maxn‖B̂n‖2

= maxn

√
n†V̂ †

B �̂2
BV̂Bn
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= maxn′

√
n′†�̂2

Bn′

= maxn′

(∑
j

|n′|2B jλ
2
B j

)1/2

= smax(B̂), (B7)

where we have defined a vector n′ := V̂ n satisfying ‖n′‖2 =
1. Thus, we obtain Eq. (B4).

As discussed above, we can also obtain Eq. (6) starting
from Eq. (A1).

APPENDIX C: SELF-ENERGY

Here, we plot the self-energy 
iyb↑(ω) which is used for
computation of the pseudospectrum.

Figure 4 is the data for iy = 0, 1, 2, 24, Ly = 50, and U =
8. Figures 4(b) and 4(d) indicate that the imaginary part does
not diverge, meaning that the interaction strength U = 8 is
smaller than the critical value of the Mott transition.
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FIG. 4. (a) [(b)] The real (imaginary) part of the self-energy

iyb↑(ω) for U = 8 and T = 0.2. (c) [(d)] The real (imaginary) part
of the self-energy 
iyb↑(ω) for U = 8 and T = 0.6. These data are
obtained under the yOBC. We note that data for iy = 0, 1 deviate
from those of the bulk, whereas data for iy � 2 are almost the same
as those of the bulk.
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