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Using a cluster extension of the dynamical mean-field theory (CDMFT) we map out the magnetic phase
diagram of the anisotropic square lattice Hubbard model with nearest-neighbor intrachain t and interchain t⊥
hopping amplitudes at half filling. A fixed value of the next-nearest-neighbor hopping t ′ = −t⊥/2 removes the
nesting property of the Fermi surface and stabilizes a paramagnetic metal phase in the weak-coupling regime.
In the isotropic and moderately anisotropic regions, a growing spin entropy in the metal phase is quenched out
at a critical interaction strength by the onset of long-range antiferromagnetic (AF) order of preformed local
moments. It gives rise to a first-order metal-insulator transition consistent with the Mott-Heisenberg picture. In
contrast, a strongly anisotropic regime t⊥/t � 0.3 displays a quantum critical behavior related to the continuous
transition between an AF metal phase and the AF insulator. Hence, within the present framework of CDMFT,
the opening of the charge gap is magnetically driven as advocated in the Slater picture. We also discuss how the
lattice-anisotropy-induced evolution of the electronic structure on a metallic side of the phase diagram is tied to
the emergence of quantum criticality.
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I. INTRODUCTION

The Hubbard model at half filling and finite doping has
been a subject of numerous theoretical studies driven by its
ability to account for a variety of collective behaviors in
strongly correlated quantum systems such as a metal-insulator
transition (MIT) [1,2], antiferromagnetism with its precur-
sors and competitors [3], dimensional crossover from the
one-dimensional (1D) Tomonaga-Luttinger liquid physics to
a higher-dimensional situation [4], pseudogap behavior in the
single-particle spectral function [5], and high-Tc superconduc-
tivity [6]. Even though the MIT is simply a consequence of the
energy competition between Coulomb interactions which tend
to localize electrons and the kinetic energy term which favors
electron itineracy, its actual form is situation dependent with
microscopic details of the electronic structure playing a lead-
ing role [7]. Accordingly, different mechanisms of the MIT
have been proposed to explain the formation of an insulating
phase.

In the Mott-Hubbard picture of a correlation-driven MIT,
a strong on-site Coulomb repulsion U splits the half-filled
conduction band to open a gap in the electronic excitations
between the resultant lower and upper Hubbard bands [8,9].
Thus, the Mott-Hubbard MIT is driven solely by local electron
correlations and does not involve any spontaneous symmetry
breaking. Valuable insight into the fundamental aspects of
the Mott-Hubbard MIT has come from the dynamical mean-
field theory (DMFT) [10]. Although DMFT neglects nonlocal

correlation effects and thus becomes exact only in the limit
of infinite dimensions [11,12], it is able to capture the forma-
tion of local moments and resultant high-frequency features
in the single-particle spectrum—lower and upper Hubbard
sidebands. In addition, DMFT predicts the first-order MIT
line due to the coexistence regime of the metallic and insu-
lating solutions at low temperature. The first-order MIT line
terminates at a critical end point (Tc,Uc) similar to an ordi-
nary liquid-gas transition. Consequently, one expects that the
Mott critical end point belongs to the Ising universality class
[13–15] with the double occupancy playing the role of a scalar
order parameter of the transition. Subsequent studies based on
quantum cluster techniques [16] revealed that the inclusion of
short-range correlations on top of the local dynamics does not
change the order of the Mott-Hubbard MIT which remains
first order [17,18].

Another issue when it comes to addressing the micro-
scopic description of the MIT comes from the spin degrees
of freedom which typically mask the Mott-Hubbard MIT by
driving a magnetic instability of the metallic phase. This is
for example known to happen in the Hubbard model on a
two-dimensional (2D) square lattice at half filling—due to
the perfect nesting of the Fermi surface, the zero-temperature
ground state displays long-range (AF) order for an arbitrary
small on-site repulsion U . Essentially this type of localization
is accounted for already at the single-particle level within a
Slater formalism [19]: The onset of the antiferromagnetism
leads to a doubling of the unit cell size which opens up
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an exponentially small gap � ∝ t exp(−2π
√

t/U ) even for
small but nonzero U at the Fermi level [20]. Increasing U
reduces the double occupancy and the Slater antiferromagnet
progressively evolves into a Mott-Heisenberg insulator [2]
with an AF gap of order of U as verified within a variety of
theoretical approaches [21–35]. In this regime, local moments
form already on the temperature scale T ∼ U and thus the AF
insulator at T = 0 is accounted for by a spin-1/2 Heisenberg
model of localized spins with the superexchange constant
J = 4t2/U .

A prominent exception of the Mott insulator without
any broken-symmetry-induced folding of the Brillouin zone
down to T = 0 is found in the 1D Hubbard model at
half filling [36]. The essential difference in nature between
1D and higher-dimensional situations makes the studies
of dimensional-crossover-driven phenomena very interest-
ing [37–45]. Moreover, a combined effect of strong spatial
anisotropy and geometrical frustration affects the strength of
quantum fluctuations which in turn reduce the amplitude of
broken-symmetry order parameters. This leaves a window
for quantum critical behaviors and the emergence of novel
ground states with anomalous single-particle spectra in their
neighborhood [46–53]. Our previous works in this domain
[54,55] have established intriguing issues such as the unusual
topology of the Fermi surface with dynamically generated
pockets and fingerprints of Mott quantum criticality. Since the
calculations in Refs. [54,55] were carried out in the param-
agnetic (PM) phase of the model, where by construction no
long-range order is possible, it is conceivable that the onset
of long-range order underlies the Mott transition. Thus, our
aim is to revisit the phase diagram by adapting a cluster
extension of DMFT (CDMFT) to handle standard Néel-type
AF order [56].

Strictly speaking, long-range magnetic order on a 2D
lattice with short-range interactions is destroyed by long-
wavelength fluctuations in the order parameter at any finite
temperature [57]. However, at sufficiently low temperature,
T DMFT

N , captured relatively well already by a single-site
DMFT [58], the correlation length grows exponentially with
inverse temperature. This length scale defines an energy and
timescale related to the fluctuations that are responsible for
the destruction of the long-range order. Any experiment that
is not able to resolve this energy or timescale will effectively
perceive long-range order. Hence even at finite temperature,
the fact that the correlation length diverges exponentially as a
function of temperature has a very clear experimental signa-
ture observed in quantum simulations with ultracold atoms in
optical lattices [59–62].

On the basis of CDMFT calculations, it was conceived in
Ref. [63] that the position of maximum of T DMFT

N (U ) on the
2D square lattice is controlled by the critical end point (Tc,Uc)
of the MIT in the normal phase when the AF instability is
artificially suppressed. Assuming that this (in general hidden)
Mott-Hubbard MIT indeed marks the qualitative change in
the microscopic mechanism behind the stability of AF order,
an intriguing question arises: Can one expect a profound
influence on the underlying physics of the AF phase when
the critical end point Tc of the Mott-Hubbard MIT is driven
down to zero upon increasing the degree of lattice anisotropy
as in Ref. [55]? Most importantly, does this Mott quantum

criticality affect the nature of the transition between a PM
metal and the AF insulator? With this question in mind we
proceed to discuss our findings.

The rest of the paper is organized as follows. In Sec. II we
introduce the model, specify our implementation and techni-
cal details of the broken-spin-symmetry CDMFT algorithm,
and define observables of interest. Our main results are dis-
cussed in Sec. III. We begin by presenting the anticipated
finite-temperature phase diagram in the plane of interaction
strength U and hopping anisotropy t⊥/t . Next, we elucidate
the evolution of critical temperature and interaction strength
(Tc,Uc) terminating the first-order MIT upon varying the de-
gree of lattice anisotropy. Subsequently, we turn our attention
to the corresponding evolution of the electronic structure in
the PM metal phase. Finally, we examine the reconstruction
of low-energy quasiparticle excitations on going through the
itinerant AF transition identified in the quasi-1D region of
the phase diagram. We summarize our results and point out
possible future directions in Sec. IV.

II. MODEL, METHOD, AND OBSERVABLES

To handle numerically crucial physical ingredients at play
we use here CDMFT. Specifically, the 2 × 2 cluster is a
minimal unit cell which allows one to capture the 1D umk-
lapp scattering process opening a gap in the half-filled band
[36,64–66] and at the same time to treat short-range x- and
y-axis AF spin fluctuations on an equal footing.

Our aim is to extend previous CDMFT studies of the in-
fluence of strong AF correlations on the nature of the MIT in
the 2D Hubbard model [63,67,68] to the quasi-1D case. To
this end, we consider the square lattice Hubbard model with
an anisotropic hopping at half filling,

H = −
∑
i j,σ

ti jc
†
iσ c jσ + U

∑
i

ni↑ni↓ − μ
∑
i,σ

niσ , (1)

with a local Coulomb repulsion U , chemical potential μ,
and electron hopping amplitudes: ti j = t on the intrachain
bonds, ti j = t⊥ on the interchain bonds, and ti j = t ′ = −t⊥/2
between next-nearest-neighbor sites on two adjacent chains.
Thus, the energy dispersion for the noninteracting case reads

εk = −2t cos kx − 2t⊥ cos ky − 4t ′ cos kx cos ky − μ. (2)

A finite value of t ′ breaks the perfect nesting property of
the Fermi surface εk = −εk+Q. It also introduces a mag-
netically frustrating interaction. Both effects are expected
to suppress the weak-coupling tendency towards the onset
of low-temperature symmetry-broken states. Moreover, one
could hope to find a region in the phase diagram where the im-
pact of the next-nearest-neighbor hopping t ′ is strong enough
to push the magnetic transition temperature below the critical
end point temperature Tc, thus exposing the Mott-Hubbard
MIT [69,70]. A downside of the lifted perfect nesting con-
dition is that one has to adjust the chemical potential μ as a
function of t⊥, U , and T to keep the required condition of a
half-filled band.

In CDMFT the original interacting lattice is mapped onto
a cluster quantum impurity problem embedded in a self-
consistent electronic bath. A predefined unit cell of volume
given by the cluster size allows easily to study spin-symmetry-
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broken phases with a commensurate wave vector such as
simple Néel AF order. To implement the CDMFT method, we
decompose the lattice into Nu supercells with Nc atoms each.
As a result, the noninteracting Green’s function G0(K, iωm)
and the spin-dependent self-energy �σ (K, iωm) correspond
to Nc × Nc matrices with wave vectors K that span the re-
duced Brillouin zone of a supercell. In analogy to the DMFT
approach, the CDMFT approximation neglects the K depen-
dency of the self-energy, �σ (K, iωm) ≡ �σ (iωm). The latter
is extracted by solving the effective cluster model: Given
the initial bath Green’s function G0,σ (iωm), we use a cluster
impurity solver to obtain the corresponding cluster Green’s
function Gσ (iωm) and hence—via the Dyson equation—the
cluster self-energy �σ (iωm) = G−1

0,σ (iωm) − G−1
σ (iωm). The

self-consistent loop is closed by requiring that the cluster
Green’s function Gσ (iωm) matches the lattice Green’s func-
tion of the original model formulated in the cluster-site basis:

Gσ (iωm) = 1

G−1
0,σ (iωm) − �σ (iωm)

= 1

Nu

∑
K

1

G−1
0 (K, iωm) − �σ (iωm)

. (3)

This allows us to compute a new bath Green’s function
G0,σ (iωm) which is fed back to the impurity solver and the
procedure is repeated until convergence is reached.

While our preliminary results for the 2D case were ob-
tained using the quantum Monte Carlo (QMC) method of
Hirsch and Fye as the cluster solver [71], we found it advan-
tageous to switch to the continuous-time QMC (CT-QMC)
algorithm [72]. In particular we opted for its weak-coupling
implementation based on a stochastic series expansion for
the partition function in the interaction representation [73,74].
It allowed us to reach temperatures as low as T = t/100
necessary to pin down the evolution of Tc in the quasi-
1D region. In addition, the CT-QMC algorithm provides the
possibility of Monte Carlo measurements directly on the
Matsubara-frequency ωm axis. Thus one avoids the cum-
bersome transformation from imaginary time to Matsubara
frequencies necessary when the Hirsch-Fye solver is used
instead. Note that the next-nearest-neighbor hopping t ′ in
Eq. (2) breaks the particle-hole symmetry of the Hamiltonian
and thus introduces the negative sign problem in the QMC
simulations. Results of the average sign in our studies are
shown in Appendix A.

To determine the domain of stability of the AF phase, in the
actual simulation we explicitly break the SU(2) spin symme-
try by introducing a small staggered magnetic field through
the initial guess for the bath Green’s function G0,σ (iωm).
Hence, if the parameters of a simulation correspond to the
regime with a thermodynamically stable AF phase, in the
course of the CDMFT iterative process one converges to
the solution with a finite staggered magnetization

m = 1

Nc

∑
i

(−1)i〈ni↑ − ni↓〉. (4)

We remark that allowing for a broken-spin-symmetry elec-
tronic bath substantially simplifies studies of otherwise a
very intricate—in a generic nonrelativistic case—problem of a

metal at the spin-density-wave quantum critical point involv-
ing coupling of gapless long-wavelength Goldstone modes to
a Fermi sea [75–80].

Further insight into the underlying physics in differ-
ent parts of the diagram is obtained from the following
observables:

(i) Double occupancy:

D = 1

Nc

∑
i

〈ni↑ni↓〉. (5)

(ii) Lattice Green’s functions gσ (k, iωm) in the original
Brillouin zone with k ∈ [−π, π ]: For consistency with our
previous studies [54,55], we extract it by periodizing the
Green’s function in the cluster-site basis,

gσ (k, iωm) = 1

Nc

Nc∑
μ,ν=1

eik(aμ−aν )

×
[

1

G−1
0 (K, iωm) − �σ (iωm)

]
μ,ν

, (6)

where aμ, aν label cluster sites. It is however fair to remark
that there are other periodization schemes such as the cumu-
lant periodization which yield a faster convergence against the
cluster size to the thermodynamic limit, an issue that becomes
crucial in the proper description of doped 2D Mott insulators
[81,82]. Given that we are interested here in the spectral
properties of a moderately correlated metallic phase stabilized
by strong magnetic frustration, one might still hope that the
applied Green’s function periodization scheme reproduces the
qualitative features of the thermodynamic solution.

(iii) Momentum-resolved spectral function at the Fermi
level Ak(ω = 0): We estimate it from the behavior of the
lattice Green’s function at a large imaginary time τ which
gives the integrated spectral intensity in a frequency win-
dow of width T around the Fermi level [83] Ak(ω = 0) ∝
limβ→∞ βg(k, τ = β/2), where β = 1/T and

g(k, τ = β/2) = 1

β

∑
ωm,σ

e−iωm (τ=β/2)gσ (k, iωm). (7)

We use g(k, τ = β/2) to analyze the evolution of the Fermi
surface across the phase diagram.

(iv) Density of states at the Fermi level N (ω = 0) =
1
N

∑
k Ak(ω = 0) ∝ limβ→∞ βg0(τ = β/2), where

g0(τ = β/2) = 1

βN

∑
k,ωm,σ

e−iωm (τ=β/2)gσ (k, iωm). (8)

(v) Momentum-resolved spectral function A(k, ω) =
− 1

π
Im g(k, ω): We have used the stochastic MAXENT imple-

mentation [84,85] of the Algorithms for Lattice Fermions
(ALF) library [86] to rotate the imaginary-time Green’s func-
tion g(k, τ ) to the real-frequency axis.

III. NUMERICAL RESULTS

A. Magnetic phase diagram

Our CDMFT results are summarized in the (U, t⊥) phase
diagram shown in Fig. 1. It was mapped out at a fixed
temperature T = t/40. On the one hand, a strong magnetic
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FIG. 1. Finite-temperature CDMFT phase diagram at T = t/40
of the anisotropic 2D Hubbard model Eq. (1) at half filling encom-
passing paramagnetic (PM) and antiferromagnetic (AF) phases. The
blue shaded area between the U↑ (U↓) lines corresponding to a
simulation with increasing (decreasing) the interaction strength U
(see Appendix B for illustrative raw data), respectively, shows a
coexistence region and implies a first-order metal-insulator transition
(MIT). For interchain couplings t⊥/t � 0.4, a continuous AF transi-
tion (AFT) (dashed line) enables the onset of an AF metal phase
which eventually undergoes a second-order MIT (dotted line) to the
AF insulator. Color-coded circles display the behavior of (a) stag-
gered magnetization m, (b) double occupancy D, and (c) density of
states at the Fermi level N (ω = 0) ∝ limβ→∞ βg0(τ = β/2).

frustration introduced by the next-nearest-neighbor hopping
t ′ = −t⊥/2 stabilizes in the weak-coupling region a PM metal
phase which as shown in Fig. 1(a) extends to a fairly large
interaction Uc/t = 5.17 in the 2D limit. In this case, one finds
a strong reduction of the double occupancy D at Uc indicative
of the local moment 〈S2

z 〉 = 1 − 2D formation [see Fig. 1(b)].
On the other hand, we find that the Mott-Hubbard transition
is preempted by AF order. Indeed, the U↑ line in Fig. 1
corresponds to the transition at a given t⊥ from a PM metal
phase to the AF insulator with increasing U while the U↓
line to the transition from the AF insulator to the PM metal
phase with decreasing U . Examples of such a hysteresis cycle
observed in the raw data of the staggered magnetization m and
double occupancy D are shown in Appendix B. Collecting the
results for different values of t⊥ lead us to the hysteretic region
indicated as the blue shaded area in Fig. 1. This hysteresis
and jumps in both m [Fig. 1(a)] and D [Fig. 1(b)] resolved
for the moderately anisotropic region 0.5 � t⊥/t � 1 clearly
imply a first-order AF transition concurrent with the MIT.
This contrasts with a static mean-field approximation where
depending on the specific form of the band structure tuned
by the magnitude of t ′, both the first order and continuous
transition between a PM metal and the AF insulator can be
reproduced [21,87]. In particular, within the Hartree-Fock
theory of the isotropic 2D Hubbard model one finds only a
continuous transition for the particular choice t ′ = −t/2 used
here. In Sec. III C 1 we provide evidence that the first-order
character of the MIT is actually a consequence of dominant
local temporal fluctuations going beyond the mean-field ap-
proximation.

The situation in the strongly anisotropic part of the phase
diagram is more subtle and requires more attention. In par-
ticular, a weak staggered magnetization in the vicinity of the
AF transition (AFT) (dashed line in Fig. 1) accompanied by
a relatively large double occupancy on the AF side are both
suggestive of the itinerant magnetism.

In order to identify the character of the transition for
t⊥/t = 0.4, we examine in Fig. 2 the behavior of the staggered
magnetization m [Fig. 2(a)], double occupancy D [Fig. 2(c)],
and density of states at the Fermi level N (ω = 0) [Fig. 2(e)]
upon decreasing U for various temperatures. One finds that
the smooth increase of m at the highest T = t/20 gets steeper
at lower temperatures and is replaced by a small discontinuity
at T = t/40. The latter is accompanied by a jump seen both
in D and N (ω = 0). This implies a first-order phase transition
with a critical end point Tc � 1/40 even though a slow con-
vergence of the CDMFT self-consistency loop makes it hard
to firmly assess the existence and range of the hysteresis at
temperatures a little bit below Tc.

In contrast, simulations with a slightly smaller t⊥/t = 0.38
yield a continuous onset of magnetism at T = t/40 and lower
T = t/50 is required to resolve the discontinuity in all the
three observables [see Figs. 2(b), 2(d), and 2(f)]. This result,
together with a shrinkage of the hysteretic region seen in
Fig. 1, is suggestive of a systematic reduction of the critical
end point Tc as a function of the growing lattice anisotropy.
We analyze this issue in more detail in Sec. III B.

A continuous nature of the AF transition identified in
the strongly anisotropic part of the phase diagram paves the
way to an intermediate AF metal phase. Indeed, as shown
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FIG. 2. Temperature dependence of the (a) and (b) staggered magnetization m, (c) and (d) double occupancy D, and (e) and (f) density of
states at the Fermi level N (ω = 0) ∝ limβ→∞ βg0(τ = β/2) obtained on decreasing U for t⊥/t = 0.4 (top) and t⊥/t = 0.38 (bottom) in the
proximity to Tc � t/40.

in Fig. 1(c) there is a narrow region in the vicinity of the
AF transition with small but finite N (ω = 0). Upon a further
increase of the interaction strength, a crossover from the AF
metal to the AF insulator occurs once the staggered magnetic
moment is sufficient to fully gap out the hole and electron
Fermi pockets of the AF metal phase.

Thus, in analogy with earlier studies restricted to PM solu-
tions [54,55], the continuous nature of the MIT stems from
a smooth vanishing of the volume of Fermi pockets at the
critical interaction. However, unlike in Ref. [55], where a
dynamically generated breakup of the Fermi surface was the
consequence of remnant 1D umklapp scattering, electron and
hole Fermi pockets form here due to the doubling of the unit
cell driven by AF order. As we discuss in Sec. III C 4, it results
in a different topology of the Fermi surface in the vicinity of
the MIT.

Finally, let us point out another important consequence
of varying the ratio between inter- and intrachain hopping
amplitudes—the existence of a certain critical point where the
noninteracting 2D closed Fermi surface undergoes a topolog-
ical change into an open surface. For the specific choice t ′ =
−t⊥/2 used in our studies, this is known to happen at t⊥/t �
0.62 [44]. As we demonstrate in Sec. III C 3, this topological
(Lifshitz) transition is accompanied by a van Hove singular-
ity in the single-particle density of states crossing the Fermi
level. From a weak-coupling point of view, a large density of
states might lead to divergent noninteracting susceptibilities
in both particle-hole and particle-particle channels signaling
enhanced ordering tendencies. Nevertheless, w find that phase
diagram boundaries are insensitive to the van Hove singu-
larity passing smoothly across the region 0.6 � t⊥/t � 0.7
with enhanced N (ω = 0) [see Fig. 1(c)]. Together with a
reduced double occupancy, this is yet another indication that

the AF instability in this part of the phase diagram is not
of a weak-coupling origin but instead it should be consid-
ered as driven by the ordering tendency of preformed local
moments.

B. Critical end point Tc

In this section we provide a detailed analysis of the critical
end point (Uc, Tc) terminating the first-order MIT as a function
of t⊥. Identifying (Uc, Tc) for a given t⊥ requires numerous
simulations at a variety of temperatures and as a function of U .
We reduced this numerical effort by identifying first a crude
estimate of the critical end point from simulations on a rough
grid of temperatures. Next, we pinpointed (Uc, Tc) to a better
degree of accuracy by performing additional simulations on
an appropriately refined grid restricted to the vicinity of the
critical end point.

Figure 3 collects the resultant data for the AF order
parameter m and the double occupancy D for three repre-
sentative values of t⊥ corresponding to different parts of the
phase diagram. They range from t⊥/t = 0.8 [Figs. 3(a) and
3(b)] through t⊥/t = 0.5 [Figs. 3(c) and 3(d)] to t⊥/t = 0.3
[Figs. 3(e) and 3(f)]. As apparent, for both t⊥/t = 0.8 and
t⊥/t = 0.5 one finds a temperature range where the continu-
ous behavior of m(U ) and D(U ) changes into a discontinuous
jump. In contrast, for t⊥/t = 0.3 we observe the persistence
of a smooth behavior down to our lowest temperature T =
t/100.

This motivated us to repeat the above analysis for other
values of t⊥ with the aim of elucidating the evolution of Tc as a
function of the interchain hopping. For each t⊥ we define Tc as
a midpoint between the temperature at which D(U ) develops
a singular behavior and the adjacent lower T where D(U )
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FIG. 3. Temperature dependence of the staggered magnetization m (top) and double occupancy D (bottom) obtained on decreasing U in
the case of (a) and (b) weak anisotropy t⊥/t = 0.8, (c) and (d) moderate anisotropy t⊥/t = 0.5, and (e) and (f) strong anisotropy t⊥/t = 0.3.

displays a clear jump. A striking outcome of this elaborate
analysis is a nearly linear dependence of Tc vs t⊥ (see Fig. 4).
A linear fit to the data points in the 0.3 � t⊥/t � 0.8 range
yields an estimate of a critical hopping t c

⊥/t = 0.31 ± 0.03 at
which the MIT ceases to be first order [see Fig. 4(b)].

This result can be rationalized by invoking a basic concept
behind the DMFT algorithm [10]. It describes the forma-
tion of renormalized quasiparticles as a self-consistent Kondo
screening of local moments by the electronic bath. In the
case of a single-site DMFT, this screening involves only lo-
cal spin-flip processes while in CDMFT also nonlocal spin
flips contribute. In addition, Kondo screening competes with
the AF superexchange interaction between local moments.
Given a substantial reduction of the double occupancy down
to D = 0.1348(4) in the PM metal on the verge of the MIT
in Fig. 1(b), indicative of well-formed local moments 〈S2

z 〉 =
1 − 2D, this competition is expected to be particularly strong
in the isotropic 2D limit. In this limit we understand the Mott
transition as a consequence of the jump to a small concen-
tration of doubly occupied sites (doublons) and empty sites
(holons) triggered by the strong attraction of the doublon and
holon scaled by U , which also drives the first-order transition
due to the holon-doublon binding as described by the DMFT
approximation. Magnetism is just a consequence of the zero
doublon and holon state that is thermodynamically unstable
to magnetic ordering. In this sense magnetism rides on the
MIT. This is very different from the MIT in semimetals (i.e.,
Hubbard model on a honeycomb lattice) where the charge gap
is a reflection of the magnetic ordering as in the case of a
Slater insulator [88,89].

Upon growing lattice anisotropy, the observed increase in
D on the metallic side of the MIT indicates that the system
crosses over to a weak-coupling regime. This diminishes the
impact of local moments on the nature of the MIT and reduces

continuously the magnitude of a jump in D, and thus Tc, down
to zero.

C. Electronic properties

As discussed in Sec. III A, lattice anisotropy controls the
behavior of the doubly occupancy and hence the degree of
localization in the metallic phase. This shall have a strong
impact on the electronic properties of the metal. Below we
systematically analyze the evolution of both Fermi-surface
and momentum-resolved single-particle spectra A(k, ω). It
allows us to reveal dynamical effects arising from quantum
fluctuations and to identify the underlying physics in different
parts of the phase diagram.

1. Quasi-2D region: Local moment formation

We begin with a weakly anisotropic case with t⊥/t = 0.8.
Figure 5 displays the evolution of the Fermi-surface segment
across two quadrants of the Brillouin zone with increasing
U in the PM phase at constant temperature T = t/40. The
dynamical contribution to the self-energy in CDMFT yields
a finite lifetime of quasiparticles. As a result, one finds a
relatively sharp Fermi surface only for the smallest value
U/t = 1 [see Fig. 5(a)], while the dynamical effects become
already discernible at U/t = 2 as Fermi-surface blurring [see
Fig. 5(b)]. As shown in Figs. 5(c) and 5(d), a further increase
of the interaction strength U induces a substantial transfer
of spectral weight from the Fermi level to finite-frequency
parts of the single-particle spectrum indicative of a correlated
metal.

A few additional comments are in order:
(i) It is known that in a small cluster the effects of periodic

boundary conditions are particularly strong which typically
results in some artificial features in the single-particle spectra.
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FIG. 4. (a) CDMFT estimate of the critical temperature and in-
teraction strength (Tc,Uc ) terminating the first-order MIT extracted
from the vanishing of the double-occupancy jump; for t⊥/t = 0.3 we
could not resolve any signature of the discontinuous behavior down
to our lowest temperature T = t/100. (b) Linear fit to the data points
in the 0.3 � t⊥/t � 0.8 range which gives t c

⊥/t = 0.31 ± 0.03.

For example, in Fig. 5(d) there is a noticeable depletion of
weight at kx = π/2. However, as we show later, its position is
t⊥ independent and pinned to kx = π/2, and thus we consider
it merely as a spurious feature of the 2 × 2 cluster.

(ii) Since the 2 × 2 CDMFT captures short-range AF spin
fluctuations, the imaginary part of the self-energy can acquire
a strong momentum dependence. If that is the case, the dis-
appearance of the Fermi surface starts near the so-called hot
spots, i.e., regions with an enhanced quasiparticle scattering
rate. This gives rise to a pseudogap in the single-particle
spectrum that precedes the Mott-Hubbard MIT [17,90–97].
One could argue that the absence of momentum selective
opening of the charge gap up to U/t = 4.15 [see Fig. 5(d)],
where the system is on the verge of the transition to the AF
insulator, is simply because the critical interaction strength is
smaller when AF spin order is allowed. However, we believe
that it is the consequence of a large next-nearest-neighbor
hopping |t ′| = t⊥/2 used in the present studies which brings
about a strong frustration of the AF spin correlations. Because
of the first-order nature of the transition, the transition takes

FIG. 5. Evolution of the Fermi-surface cuts across two quadrants
of the Brillouin zone with increasing U at t⊥/t = 0.8 in the PM
phase at T = t/40. The dashed black line shows the noninteracting
Fermi surface. The second Fermi-surface segment in the Brillouin
zone corresponds to a mirror image about the y axis.

place before an appreciable momentum dependence mani-
fested by the momentum differentiation gets started when U
is increased. This conclusion is supported by previous studies
of the 2D half-filled Hubbard model within the eight-site dy-
namical cluster approximation which reported the suppression
of momentum-space differentiation as the magnitude of t ′
increases [98].

(iii) Dynamical correlations can also renormalize the
Fermi-surface topology via the real part of the self-energy
[99]. Nevertheless, the inspection of Fig. 5 indicates that
increasing U does not modify noticeably the Fermi-surface
shape such that it continues to follow the noninteracting one.
Furthermore, anisotropic hopping amplitudes t⊥ �= t break the
fourfold rotational (C4) symmetry. This can lead to a sur-
prisingly large directional anisotropy in the spectral intensity
reflecting a large dynamically generated anisotropy in the
self-energy close to the Mott-Hubbard MIT [100]. We do
not observe here such anomalies possibly due to a combined
effect of a relatively small critical interaction sufficient to
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FIG. 6. Single-particle spectrum A(k, ω) with increasing U at t⊥/t = 0.8 in the PM phase at T = t/40. The solid white line shows the
free dispersion. The dashed blue (green) line with a weaker (steeper) slope in (d) denotes the Fermi velocity for the interacting (free) case,
respectively.

trigger the transition from a PM metal to the AF insulator and
a strong magnetic frustration.

In order to gain further insight into the onset of a correlated
metal, we plot in Fig. 6 the corresponding momentum-
resolved single-particle spectra A(k, ω). On the one hand, the
spectral function in a weak-coupling regime U/t = 1 follows
essentially the noninteracting dispersion shown as the solid
white line in Fig. 6(a). On the other hand, qualitative changes
in the spectrum produced by dynamical correlations are al-
ready found at U/t = 2: Apart from the overall broadening,
weak renormalization effects near the k = (0, 0) momentum
become visible as a reduced bandwidth of the coherent quasi-
particle dispersion with respect to the noninteracting one
[see Fig. 6(b)]. As shown in Figs. 6(c) and 6(d), a further
increase in U leads to the transfer of the zero-frequency
spectral weight into higher-frequency regions as already an-
ticipated in Fig. 5. As a result, one observes the formation of
the incoherent lower and upper Hubbard bands: The former
appears predominantly in the region of the Brillouin zone
around the k = (0, 0) momentum while the latter emerges
as k moves towards the (π, π ) point. At the same time,
the flattening of the quasiparticle dispersion near the Fermi
level signals an increased effective mass of the quasiparticles
and thus a growing localization tendency. To quantify this
effect we have plotted in Fig. 6(d) the Fermi velocity for the
noninteracting and interacting cases. We see a reduction of ap-
proximately 30% around (π, 0) and 40% around (π/2, π/2)
momenta.

2. Quasi-2D region: Thermal melting of local moments

A jump in the double occupancy across the MIT im-
plies its first-order nature. It is thus natural to expect that
the physical mechanism that underlies the opening of the
charge gap, i.e., the local moment formation, is robust in
temperature.

We confirm this in Fig. 7 by examining the tempera-
ture evolution of A(k, ω) for a fixed t⊥/t = 0.8 and at the
corresponding critical interaction U � Uc in the PM phase.
Indeed, one finds the persistence of the coherent quasiparticle
band near the Fermi level coexisting with incoherent high-
frequency parts of the spectrum up to T = t/10 [see Fig. 7(a)].
This is in accordance with a sizable double-occupancy jump
at this temperature illustrated in Fig. 3(b). Indeed, in the
strongly correlated metal with U/t � 1, the high-energy
scale ∼U determines the spectral properties already in the
high-temperature regime T � U . It leads to the formation
of incoherent high-energy features (which are precursive of
the lower and upper Hubbard bands in the Mott insulator) in
addition to the quasiparticle peak at the Fermi level. In the
DMFT picture of the first-order metal-insulator transition be-
low Tc, spectral weight is transferred from the zero-frequency
quasiparticle peak to (already preformed) high-frequency fea-
tures and the transition is signaled by a jump in double
occupancy.

At even higher T = t/7.6 [Fig. 7(b)], i.e., the highest
T at which one observes a jump in the double occupancy,
a remnant quasiparticle band is still resolved in a narrow
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FIG. 7. Evolution of the spectral function A(k, ω) with increas-
ing temperature T at t⊥/t = 0.8 and at the critical interaction U � Uc

in the PM phase.

frequency window near the Fermi level. Finally, at our highest
T = t/6.7 [Fig. 7(c)] the low-frequency quasiparticle band is
washed out but the high-frequency features continue to be
visible. At this temperature T > Tc, we could only detect a
smooth transition from the PM to AF phase [see Figs. 3(a)
and 3(b)]. That is in accord with our line of arguing that the
incoherent high-frequency features should stay intact across
the critical end point Tc since they start to form already at
higher temperature �U .

FIG. 8. Spectral function A(k, ω) at the critical interaction U �
Uc in the PM phase at T = t/40 in the moderately anisotropic region:
(a) t⊥/t = 0.7 and (b) t⊥/t = 0.6.

3. Moderate anisotropy: Fermi-surface topology change

The presence of saddle points of energy dispersion yields
a van Hove singularity in the single-particle density of states.
Typically the access to study the behavior of a system near
a van Hove singularity is achieved by the fine tuning of
the electron density such that the Fermi surface approaches
the singularity. Here, we provide evidence that the lattice
anisotropy is yet another control parameter that allows one
to drive the van Hove singularity to cross the Fermi level.

We illustrate it in Fig. 8 which shows A(k, ω) at the critical
interaction U � Uc in the PM phase at T = t/40: A saddle-
point region at k = (π, 0) located below the Fermi level at
t⊥/t = 0.7 [see Fig. 8(a)] crosses the Fermi level upon in-
creasing the lattice anisotropy such that at t⊥/t = 0.6 it is
found above the Fermi energy [see Fig. 8(b)]. The flat dis-
persion crossing the Fermi level contributes low-energy states
and gives rise to the enhanced density of states N (ω = 0)
found in Fig. 1(c) in the range 0.6 � t⊥/t � 0.7. One can
also notice in Fig. 8(b) that the incoherent spectral weight at
high negative frequency occupies a narrow energy range and
its maximum moves towards the noninteracting dispersion.
Moreover, at the same t⊥ where the saddle-point region at k =
(π, 0) crosses the Fermi level, the system undergoes a Lif-
shitz transition whereby the Fermi-surface topology changes

125137-9



RACZKOWSKI, ASSAAD, AND IMADA PHYSICAL REVIEW B 103, 125137 (2021)

FIG. 9. Topological (Lifshitz) transition of the Fermi surface: At
t⊥/t = 0.7 (a) the Fermi surface is closed around the Brillouin zone
corner at k = (π, π ) while at t⊥/t = 0.6 (b) one finds an open quasi-
1D Fermi surface. In both panels, the value of U corresponds to the
critical interaction U � Uc in the PM phase at T = t/40 while the
dashed black line shows the noninteracting Fermi surface.

from a closed to an open one (see Fig. 9). Thus we confirm
a one-to-one correspondence between this type of Lifshitz
transition and the van Hove singularity crossing the Fermi
level [101].

4. Quasi-1D region: Itinerant antiferromagnetism

The vanishing critical end point Tc identified in Sec. III B
suggests that local temporal fluctuations are no longer the
primary mechanism driving the localization on a strongly
anisotropic lattice. Namely, a well-established hallmark of
DMFT is that by taking into account local temporal fluctu-
ations, it reproduces a three-peak spectrum (lower Hubbard
band, quasiparticle peak, upper Hubbard band) of a strongly
correlated metal. At the critical U , the metal-insulator transi-
tion is signaled then by the disappearance of the quasiparticle
peak and the transition is found in DMFT to be first order
below the critical end point Tc. The vanishing Tc is the quasi-
1D region indicates that there must be a different mechanism
of localization at play, otherwise the transition would continue
to be of first order. Indeed, as we discuss below, we find there
a continuous splitting of the quasiparticle band in the single-
particle spectrum (which closely resembles, as we show in
Fig. 10, that of the free electrons) due to doubling of the unit
cell in the AF phase.

First of all, let us recall a relatively large double occu-
pancy on the PM side of the phase diagram in Fig. 1(b),
ranging from D = 0.1795(2) at t⊥/t = 0.4 to D = 0.1978(1)
at t⊥/t = 0.2 on the verge of the magnetic transition. This
has a direct impact on the resultant k-resolved spectral func-
tion. As apparent in Fig. 10(a), already at t⊥/t = 0.4, the
position of the intensity maximum for a given momentum
k matches rather well the noninteracting dispersion. Mean-
while, it is only at high frequency where A(k, ω) displays
some broadening which can be considered as remnants of
the two Hubbard bands. The same observation holds true

FIG. 10. Spectral function A(k, ω) at the critical interaction U �
Uc in the PM phase at T = t/40 in the strongly anisotropic region
with (a) t⊥/t = 0.4 and (b) t⊥/t = 0.3. For comparison, (c) shows
A(k, ω) for t⊥/t = 0.3 at our lowest T = t/100.

for A(k, ω) at t⊥/t = 0.3. To exclude the possibility that a
close resemblance between the CDMFT and noninteracting
spectra at T = t/40 results merely from dominant thermal
effects, we display in Fig. 10(c) A(k, ω) at t⊥/t = 0.3 at our
lowest temperature T = t/100. The absence of any emerging
correlation-driven effects in the spectrum, which continues
to follow the noninteracting dispersion relation, confirms
the irrelevance of a local moment physics and provides
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further support in favor of quantum critical behavior be-
low a critical anisotropy t c

⊥/t = 0.31 ± 0.03 as established in
Fig. 4(b).

In the above statement we make use of the fact that the
double occupancy D is a measure of the correlation strength:
In the noninteracting limit U = 0, D takes its uncorrelated
value 1/4. As U grows, D decreases until it is fully suppressed
which corresponds to the spin-1/2 Heisenberg limit. The
single-particle spectral function in the PM phase depends then
on whether the numerical approach captures the aforemen-
tioned reduction of double occupancy. At the static mean-field
level, local moments cannot be generated without breaking
the SU(2) spin symmetry as double occupancy continues to
keep the uncorrelated value 1/4. Consequently, the spectral
function in the PM phase is identical to the noninteracting
one. In contrast, the DMFT approximation accounts for local
electronic correlations which systematically reduce the double
occupancy even before the magnetic transition takes place.
That is reflected in the redistribution of spectral weight and
leads to the onset of high-energy features coexisting with the
low-energy quasiparticle band as we illustrate it in Fig. 6
for t⊥/t = 0.8. However, for small t⊥/t = 0.3, we observe
that the reduction of double occupancy is much weaker. It
matches the absence of the extra high-energy features in the
corresponding spectral function in Figs. 10(b) and 10(c). As
such it is essentially accounted for by a noninteracting dis-
persion. Hence, the PM phase in this range of t⊥/t does not
feature well-formed local moments and can be described by
weak-coupling approaches.

Another signature of a reduced quasiparticle scattering off
local moments at t⊥/t = 0.4 is the substantially restored co-
herence of low-energy quasiparticle excitations. Indeed, the
resultant distinct Fermi surface found for both t⊥/t = 0.38
[Fig. 11(a)] and t⊥/t = 0.4 [Fig. 12(a)] contrasts sharply with
that found at t⊥/t = 0.8 where a clear loss of spectral weight
is apparent [cf. Fig. 5(d)]. However, a precise physical mech-
anism of the magnetic phase transition for t⊥/t = 0.38 differs
at T = t/40 from that for t⊥/t = 0.4. We discuss now both
cases separately.

In accordance with a continuous nature of the transition
at t⊥/t = 0.38, one observes in the AF phase a smooth
disappearance of the Fermi surface near “hot” regions [see
Fig. 11(b)]. A more detailed inspection of the low-frequency
part of A(k, ω) on the AF side of the transition shows
the backfolding of the quasiparticle dispersion due to the
broken translation symmetry and the resultant depletion
of spectral weight just below (above) the Fermi level in
Figs. 11(c) and 11(e) [Fig. 11(d)], respectively. This deple-
tion should be considered as a precursive feature of electron
and hole pockets that open up at larger U . Indeed, one
finds that the backfolded quasiparticle band crosses the Fermi
level at two momenta—the spectral weight at the second
crossing is much weaker than the original quasiparticle dis-
persion and causes a faint “ghost” side of the pockets. In
fact, the observed gradual reconstruction of the low-energy
quasiparticle dispersion can be reproduced by a functional
form

E±
k = εk + εk+Q

2
±

√(εk − εk+Q

2

)2

+ �2, (9)

FIG. 11. Single-particle properties in the proximity of magnetic
transition for t⊥/t = 0.38 at T = t/40. Fermi surface cuts on the
(a) PM and (b) AF side of the transition. In (b) the measured value
of the staggered magnetization m = 0.0749(6). As a consequence
of relatively weak magnetic order, the whole Fermi-surface arc con-
tinues to exist on the AF side with a partial suppression of the
spectral weight at the hot spots in the AF phase. (c)–(e) Low-energy
part of the spectral function A(k, ω) along (0, 0) → (π, 0), (0, 0) →
(π, π ), and (0, π ) → (π, π ) paths in the AF metal at U/t = 2.28
and (f)–(h) at U/t = 2.3 with the magnetization m = 0.1419(4).
Red, white, and green arrows in (b) indicate the actual momentum
range shown in (c) and (f), (d) and (g), and (e) and (h), respectively,
while the dashed yellow line shows the AF Brillouin zone.
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FIG. 12. Single-particle properties in the proximity of magnetic
transition for t⊥/t = 0.4 at T = t/40: Fermi-surface cuts on the
(a) PM and (b) AF side of the transition. In (b) the measured value of
the staggered magnetization m = 0.1275(8). Due to strong AF order,
the Fermi-surface arc breaks into disconnected pockets. (c)–(e) Low-
energy part of A(k, ω) along the Brillouin zone paths as in Fig. 11
in the AF metal at U/t = 2.365 and (f)–(h) in the AF insulator at
U/t = 2.6.

where Q is the AF wave vector and � = Um/2, consistent
with that of the mean-field band structure in the spin-density-
wave state. Hence, we identify the origin of the itinerant
antiferromagnetism as Slater-like with quasiparticle scattering

off the essentially static staggered moment whose growing
magnitude controls the size of the pockets as U grows [see
Figs. 11(f)–11(h)].

In contrast, the magnetic transition at t⊥/t = 0.4 is weakly
first order and significant AF order builds up right away at
the critical interaction. This rapid development is a conse-
quence of a remnant local moment physics which enhances
localization effects. This is reflected in disconnected Fermi-
surface segments on the AF side of the magnetic transition
[see Fig. 12(b)], accompanied by a definite gap between the
lower and upper quasiparticle bands illustrated in Figs. 12(c)–
12(e). Upon further increasing U , the bands shift away from
the Fermi level, gradually reducing the size of Fermi pockets
in the intermediate AF metal phase which ultimately brings
about the transition into the AF insulator [see Figs. 12(f)–
12(h)]. Hence, we find aspects of both local and nonlocal
correlation participating in the emergence of the insulating
phase.

We turn now to the analysis of the low-frequency part of
A(k, ω) as a function of U for smaller hoppings t⊥/t = 0.3
and t⊥/t = 0.2 with the goal of elucidating the location of
the corresponding MITs. In each case, a continuous loss of
metallicity upon increasing U is accompanied by the occur-
rence of more pronounced backfolded quasiparticle features
such that they are visible in a broader momentum range (see
Figs. 13 and 14). Let us also point out that the identified redis-
tribution of spectral weight restricted to a narrow frequency
region on the scale of the charge gap of the AF insulator
is a generic feature of the magnetic instability in a weakly
correlated metal driven predominately by the Fermi surface.
This contrasts with the strong-coupling regime where the on-
set of AF order in the Mott insulator involves the spectral
weight transfer within the two Hubbard bands such that it
accumulates at their lower edges [68,102]. Hence, the emer-
gent magnetic ordering modifies the spectral properties over a
broad energy range that is much larger than the AF charge gap
itself.

The resultant MIT phase boundary anticipated from
Figs. 12–14 complements the CDMFT phase diagram shown
in Fig. 1. Together with the line indicating the onset of the
staggered magnetization, they both delimit the domain of sta-
bility of itinerant antiferromagnetism. It matches qualitatively
the region of phase space with strongly reduced but neverthe-
less finite N (ω = 0) [see Fig. 1(c)].

Let us conclude the discussion of the established AF metal
phase by contrasting its Fermi-surface topology with that ob-
tained in the previous studies in Refs. [54,55] restricted to the
normal phase of the model Eq. (1). In this case the destruc-
tion of the Fermi surface starts at momenta k = (π/2,±π/2)
where the interchain hopping matrix elements vanish and is
driven by the remnant 1D umklapp scattering [47,51]. The
resultant broken Fermi surface of the compensated metal
displays elliptic electron and hole pockets around the k =
(π/2, 0) and (π/2,±π ) points (see Fig. 5 of Ref. [55]).

IV. SUMMARY AND CONCLUSIONS

Understanding the nature and factors controlling the degree
of electron localization is crucial for exploring the functional
applications of quantum materials such as transition metal
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FIG. 13. Low-energy part of the spectral function A(k, ω) at
t⊥/t = 0.3 and T = t/40 along (0, 0) → (π, 0) (a) and (d), (0, 0) →
(π, π ) (b) and (e), and (0, π ) → (π, π ) (c) and (f) paths in the
Brillouin zone at U/t = 2.2 (top) and U/t = 2.4 (bottom) across the
transition from an AF metal to the AF insulator.

oxides. In this paper we have made a contribution to this issue
by studying the interplay between electron correlation, frus-
tration, and dimensionality effects in the anisotropic Hubbard
model at half filling. To this end, we have adapted CDMFT
to handle long-range AF order. An important outcome from
our study is that the quasi-1D region of the magnetic phase
diagram harbors an AF metal. Consequently, in the CDMFT
scenario one finds a crossover from a local moment physics of
a correlated isotropic 2D metal to the itinerant AF behavior in
the strongly anisotropic case.

It is very interesting that, independently of a specific im-
plementation of CDMFT, i.e., paramagnetic or broken spin
symmetry, one observes a full suppression of the critical end
point Tc of the MIT upon approaching the quasi-1D region.
In both cases, the emergent quantum criticality can be traced
back to a growing relative importance of spatial versus local
fluctuations. Indeed, strong quasiparticle scattering off local
moments along the whole Fermi surface explains its sudden
disappearance and the resultant first-order character of the
MIT in the 2D case. On the contrary, damping of low-energy
quasiparticles in the quasi-1D region begins near “hot” re-
gions of the Fermi surface. This leads to the formation of hole

FIG. 14. Same as in Fig. 13 but for t⊥/t = 0.2 at U/t = 2 (top)
and U/t = 2.2 (bottom).

and electron Fermi-surface pockets in a resultant compensated
metal which ultimately undergoes a continuous MIT.

Specifically, when the CDMFT loop is constrained to con-
verge to the PM solution, the MIT is driven by remnant 1D
umklapp scattering and corresponds to the vanishing of the
Fermi pockets driven by their continuous shift away from
the Fermi level [54,55]. Likewise, when AF spin order is
allowed, imperfect nesting of the model band structure paves
the way to the itinerant AF transition followed by a MIT
whose continuous nature is again the consequence of a smooth
disappearance of Fermi pockets. In the actual simulations
we explicitly broke the translational symmetry of the lattice
by allowing for a nonvanishing staggered magnetic moment.
The latter is equivalent to divergence of the static spin sus-
ceptibility at the AF wave vector Q = (π, π ) measured on
a sufficiently large cluster size capturing correctly the cor-
relation length scale of spin fluctuations. From this point of
view it becomes clear that introducing the lattice anisotropy
tips the balance between local temporal fluctuations respon-
sible for the Mott-Hubbard physics—and thus the first-order
MIT—and spatial AF spin fluctuations playing a key role in
the established continuous transition from an AF metal to the
AF insulator.

The established CDMFT phase diagram with PM, AF
metal, and AF insulator phases bears similarity with that
of the extended Hubbard model featuring at the mean-field
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FIG. 15. Same as in Fig. 1 but with color-coded circles display-
ing the behavior of the average sign in CT-QMC simulations within
the 2 × 2 CDMFT at T = t/40.

level PM, charge-ordered metal, and charge-order insulator
phases [103,104]. In the latter case one finds a tricritical point
where all the three phases coexist. This very special point
terminates also the continuous transition between the PM
and charge-ordered metal phases. In our analysis we were
unable to locate such a tricritical point. Instead as a function
of the anisotropy t⊥/t we find three situations: (i) a first-order
transition from a PM metal to the AF insulator, (ii) a crossover
region where the dynamical correlations trigger a weakly
first-order AF transition but they are not strong enough to
fully localize charge carriers, and (iii) a continuous transition
between the PM and AF metal phases. Still, an attempt to
induce the tricritical point could be made by fine tuning of the
noninteracting band structure, i.e., the ratio of t ′/t⊥.

Another possible scenario in the strongly anisotropic limit
would be the interaction-driven emergence of the genuine
Mott insulator without any symmetry breaking character-
ized as the quantum spin liquid and sandwiched by the PM
metal and the AF insulator. Such an intervening Mott in-
sulating quantum spin liquid phase is beyond the scope of
the CDMFT approximation. Since the auxiliary-field quan-
tum Monte Carlo algorithm is hindered in the presence of
geometrical frustration by the negative sign problem [86], a
many-variable variational Monte Carlo method is an appeal-
ing option [105] to clarify this point of view.

Our second important result is evidence that the next-
nearest-neighbor hopping t ′ brings about an efficient mech-
anism to suppress the AF instability. In particular, we
found that in the isotropic 2D situation with t ′ = −t/2, the
PM metal extends to a fairly large interaction U/t = 5.17
below which previous CDMFT studies of the half-filled t-t ′-
Hubbard model reported a finite d-wave superconducting
order parameter [106]. Since those studies did not consider
long-range AF order, it was possible that the latter prevails
and leads to the insulating behavior at T = 0 instead. Our
findings corroborate the scenario that the frustration of AF
spin interactions by finite t ′ shifts the onset of antiferro-
magnetism to a critical interaction which is large enough
to expose d-wave superconductivity [107,108]. Moreover,

FIG. 16. (a) Staggered magnetization m and (b) double occu-
pancy D measured in decreasing (U↓, solid line) and increasing
(U↑, dashed line) interaction sweeps at various temperatures for
t⊥/t = 0.8.

given our evidence for itinerant antiferromagnetism with
Fermi-surface pockets, it would be worth examining, e.g.,
using the spin fluctuation approach [109], the leading su-
perconducting pairing instabilities in the spatially anisotropic
situation.

ACKNOWLEDGMENTS

We would like to acknowledge enlightening discussions
with B. Lenz, K. Takai, and Y. Yamaji. This work was sup-
ported by the German Research Foundation (DFG) through
Grant No. RA 2990/1-1. F.F.A. acknowledges financial sup-
port from the DFG through the Würzburg-Dresden Cluster of
Excellence on Complexity and Topology in Quantum Mat-
ter - ct.qmat (EXC 2147, Project-ID 39085490) as well as
through the SFB 1170 ToCoTronics. M.I. acknowledges the
support by MEXT as “Program for Promoting Researches
on the Supercomputer Fugaku” (Basic Science for Emer-
gence and Functionality in Quantum Matter and the HPCI
project HP200132) and KANKEHI (Grant No. 16H16345).
The authors gratefully acknowledge the Gauss Centre for Su-
percomputing e.V. [110] for funding this project by providing

125137-14



LOCAL MOMENTS VERSUS ITINERANT … PHYSICAL REVIEW B 103, 125137 (2021)

computing time through the John von Neumann Institute for
Computing (NIC) on the GCS Supercomputer JUWELS [111]
at Jülich Supercomputing Centre (JSC).

APPENDIX A: NEGATIVE SIGN PROBLEM OF THE
CT-QMC CLUSTER SOLVER

At half filling the CT-QMC solver is sign free in the
particle-hole symmetric case. However, a finite value of the
next-nearest-neighbor hopping t ′ = −t⊥/2 used in our studies
breaks the particle-hole symmetry and leads to a negative sign
problem. The average sign in CT-QMC simulations within
the 2 × 2 CDMFT framework across the phase diagram at
T = t/40 is shown in Fig. 15. As is apparent, the sign problem
is most severe in the isotropic 2D case. However, it becomes
milder upon increasing the lattice anisotropy such that at
t⊥/t = 0.3 we did not observe it around the magnetic tran-
sition point down to our lowest T = t/100. In this case, the
limiting factor comes from the (βNc)3 scaling of the CT-QMC
cluster solver.

APPENDIX B: EVIDENCE OF HYSTERETIC BEHAVIOR
AROUND THE FIRST-ORDER TRANSITION

In this Appendix, we provide numerical evidence for
hysteretic behavior around the transition point in the AF mag-
netization m and double occupancy D measured in decreasing
(U↓) and increasing (U↑) interaction sweeps. As an exam-
ple, Fig. 16 shows the raw data measured at t⊥/t = 0.8 at
various temperatures. In the U↓ sweep corresponding to the
AF → PM transition (solid line in Fig. 16), a converged AF
solution at a given U was used as an input for the next CDMFT
simulation with a slightly smaller U . In the U↑ sweep corre-
sponding to the PM → AF transition (dashed line in Fig. 16),
we initialized the CDMFT loop with a small staggered field;
with an increasing number of iterations, the solution evolved
then either into a PM or AF state. Repeating this procedure
at gradually larger U allowed us to find the second branch

FIG. 17. Same as in Fig. 16 but for t⊥/t = 0.38.

of the hysteresis loop below the critical end point Tc. For
comparison, we also provide in Fig. 17 the raw data for t⊥/t =
0.38. In this case, the magnetic transition at T = t/40 is
continuous and one has to use lower temperatures T � t/66.5
to reveal a narrow hysteretic behavior.
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