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Topological Mott transition in a Weyl-Hubbard model: Dynamical mean-field theory study
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Weyl semimetals are three-dimensional, topologically protected, gapless phases which show exotic phenom-
ena such as Fermi arc surface states or negative magnetoresistance. It is an open question whether interparticle
interactions can turn the topological semimetal into a topologically nontrivial Mott-insulating phase. We inves-
tigate an experimentally motivated model for Weyl physics of cold atoms in optical lattices, with the main focus
on interaction effects and topological properties, by means of dynamical mean-field theory. We characterize
topological phases by numerically evaluating the Chern number via the Ishikawa-Matsuyama formula for
interacting phases. Within our studies, we find that the Chern numbers become trivial when interactions lead
to insulating behavior. For a deeper understanding of the Weyl-semimetal-to-Mott-insulator topological phase
transition, we evaluate the topological properties of quasiparticle bands as well as so-called blind bands. Finally,
we consider a system with an open boundary along one spatial direction in order to study correlation effects of
surface states. In a narrow regime close to the topological phase transition, we find a correlation-induced state in
which the surface becomes metallic while the bulk is semimetallic.
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I. INTRODUCTION

Topological states of matter realized with cold atoms in
optical lattices are a vibrant field at the forefront of mod-
ern quantum research [1–5]. The great control and tunability
of cold atoms in optical lattices make them an ideal ana-
log quantum simulator of tight-binding Hamiltonians [6,7].
Among pioneering experiments in the context of topological
states are the realizations of two prominent theoretical two-
dimensional (2D) models: the Hofstadter [8] and the Haldane
[9] models. The former is realized by imprinting a complex
quantum phase onto the particles upon hopping in the lattice
through laser-assisted tunneling [10,11]. The latter is engi-
neered through elliptic lattice shaking which also imprints
a complex phase according to Floquet’s theorem [12,13].
Both approaches are well described by effective static Floquet
Hamiltonians with gauge fields as a result of high-frequency
driving [14,15].

The current focus of research in this field clearly lies in
2D systems. One reason is the fact that 2D systems host
paradigmatic phases such as the quantum Hall effect. The
possible existence of topological phases is connected to the di-
mensionality and symmetries of the system of interest [16]. In
contrast to 2D, in three-dimensional (3D) systems, even gap-
less states can be topologically protected. Examples are the
Weyl semimetal (WSM) and nodal-line semimetals [17,18].

Moreover, the search for an exotic topological Mott insula-
tor is still a hot topic [19]. Topological Mott insulators are still
not well understood. The idea is that strong interactions cause
the particles to undergo a Mott transition such that charge
degree of freedoms are gapped out. Spin degrees of freedom,

on the other hand, might still show topological properties such
as the bulk-boundary correspondence. Being a highly corre-
lated state due to the Mott gap, topologically nontrivial Mott
insulators are not adiabatically connected to a noninteracting
state. In contrast to a topologically trivial Mott insulator, a
topologically nontrivial Mott insulator should exhibit some
nonzero topological invariant. The original work suggested a
topological Mott insulator in 3D [20]. However, studies of 1D
[21] and 2D [22,23] topological Mott insulators exist as well.
Also, topological Mott insulators incorporating long-range in-
teractions through Rydberg atoms have also been investigated
[24,25].

WSMs host gapless Weyl points (WPs) in the 3D Brillouin
zone (BZ) which are topologically protected, i.e., they cannot
gap out through smooth deformations of the Hamiltonian. One
generally differentiates between WSMs with broken time-
reversal symmetry or WSMs with broken inversion symmetry
[18]. If both are broken, the WPs are not located at the Fermi
level [26]. WSMs have first been observed in 2015 in a TaAs
crystal along with the exotic Fermi arc surface states by means
of photoemission spectroscopy [27] as well as in a gyroid
photonic crystal [28], both with broken inversion symmetry.
Another intriguing feature of WSMs is the chiral anomaly and
the resulting negative magnetoresistance which was also mea-
sured in TaAs crystals [29]. Recently, a nodal-line semimetal
has been engineered as the first instance of a 3D topological
state in a cold-atom setup [30], but the realization of an atomic
WSM is still lacking.

In the interacting case, the Weyl-Mott insulator has
been proposed as an extension to the noninteracting WSM
[31]. The model has a momentum-locked interaction and is
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analytically solvable. This is possible through the assumption
of this particular form of the interaction. Moreover, the system
has a Mott gap as well as a nontrivial topological invariant in
terms of the single-particle Green’s function. Reference [32]
pointed out that this invariant does not imply the presence of
a single-particle Fermi arc because of the absence of the WPs
in the single-particle spectrum. Instead, the system has gapless
particle-hole pair excitations, suggesting the existence of the
Weyl points in the bosonic excitation spectrum. The nonzero
topological invariant indeed implies the presence of a bosonic
surface state. While a single-particle Fermi arc is observable
through photoemission spectroscopy [27], the bosonic surface
is not accessible with photoemission spectroscopy.

In Ref. [31], the interactions which give rise to the Weyl-
Mott insulator are local in momentum space, whereas in
realistic systems, the interactions are rather local in real space.
In this paper, we investigate the effect of realistic onsite in-
teractions on a WSM. To analyze the topological properties
of such a system, we compute the topological invariants in
terms of the single-particle Green’s function. In most cases,
this quantity is well suited to examine the topologically non-
trivial behavior. This evaluation is particularly useful when the
many-body wave function is numerically not accessible. We
use dynamical mean-field theory (DMFT) in order to solve the
present many-body problem approximately [33]. In the con-
text of topological systems, DMFT has been used in numerous
studies in 2D [34–43] as well as 3D systems [44,45]. DMFT
has been applied recently to WSMs: In Ref. [46], the nonlocal
annihilation of WPs within the BZ has been observed which
is impossible in the noninteracting case. Reference [47], on
the other hand, investigated the influence of interactions in
view of the negative magnetoresistance. The interacting WSM
has also been treated in a renormalization analysis hosting
an axion insulator phase and nematic order [48] as well as
by the variational cluster approach to study of density wave
instabilities [49]. Our focus lies on the topological properties
of the many-body phases which we obtain. We find that the
WSM is robust up to a critical interaction strength. In par-
ticular, we observe that the transition from a topologically
nontrivial WSM to a trivial Mott insulator occurs through
the emergence of pairs of quasiparticle bands and so-called
blind bands. Here, the former are topologically nontrivial and
cancel out the nontrivial properties of the original WSM while
the latter are topologically trivial. This ultimately results in an
overall topologically trivial Mott insulator.

The paper is structured as follows: In Sec. II, we intro-
duce the model for a WSM and investigate its noninteracting
properties. In Sec. III, we analyze the WSM-to-Mott-insulator
transition of the interacting model. In Sec. IV, we compute
topological properties as a function of the interaction strength.
In Sec. V, we discuss the effective quasiparticle spectrum and
elaborate on the interaction-induced WSM-to-Mott-insulator
topological phase transition. In order to study correlation ef-
fects on the surface, we investigate the model with one open
boundary in Sec. VI. Finally, we conclude in Sec. VII.

II. MODEL

We study the tight-binding model proposed by Dubček
et al. [50] which is motivated by the experimental

implementation of the Hofstadter model in Ref. [11], extended
to three spatial dimensions. The corresponding real-space
Hamiltonian for a single spin state τ reads as

Ĥτ = −
∑

j

[(−1)x+yKxĉ†
j+x̂,τ ĉ j,τ + Jyĉ†

j+ŷ,τ ĉ j,τ

+ (−1)x+yKzĉ
†
j+ẑ,τ ĉ j,τ + H.c.], (1)

where j = (x, y, z) is a 3D lattice vector on a cubic lattice, ĉ j,τ

(ĉ†
j,τ ) annihilates (creates) a spin-τ fermion, with τ =↑,↓,

at lattice site j, and ν̂ denotes the unit vector in ν direc-
tion. In the following, we focus on the isotropic case and set
the hopping energies to the unit of energy Kx = Jy = Kz =
1. The momentum-space Hamiltonian is defined as Ĥτ =∫

dk d̂
†
k,τ H (k)d̂k,τ where d̂k,τ is a two-component annihila-

tion operator acting on the two sublattices (see Appendix A),
with H (k) given by

H (k) = −2[cos(ky)σ x + sin(kx )σ y − cos(kz )σ z]. (2)

Here, we have set the lattice constant to unity. Also, the Pauli
matrices σ ν refer to the pseudospin space of the two sites of
the unit cell which breaks inversion symmetry. Details of the
derivation of the Hamiltonian in Eq. (2) are provided in Ap-
pendix A. We read off four degeneracies of the Hamiltonian
in Eq. (2) at the points (kx, ky, kz ) = (0,±π/2,±π/2) in the
first BZ. To confirm whether these degeneracies are indeed
WPs, we compute the Chern number on a closed surface
around a single degeneracy using Fukui’s method [51]. In fact,
any smooth closed surface can be used (see Appendix B). In-
deed, the four points (0,±π/2,±π/2) exhibit nonzero Chern
numbers (+1 or −1), also dubbed topological charge. The
sum over the four topological charges is zero.

III. MOTT TRANSITION

Let us now focus on the properties of the Mott transition of
the model in Eq. (1). We consider fermions with a Hubbard
interaction term U

∑
j n̂ j,↑n̂ j,↓ where U is the interaction

strength and n̂ j,τ = ĉ†
j,τ ĉ j,τ is the particle-number operator of

a spin-τ fermion on lattice site j. Spin states are introduced in
the following way in the four-band interacting Hamiltonian:

Ĥint =
∑

τ

Ĥτ + U
∑

j

n̂ j,↑n̂ j,↓. (3)

The spin degeneracy results in a factor of 2 for the topological
charges of the WPs.

One of the most successful methods for investigating
Hubbard-type Hamiltonians and describing their Mott tran-
sitions is dynamical mean-field theory (DMFT) [33]. It maps
the full Hubbard model onto a set of coupled self-consistent
quantum impurity models which can be solved through dif-
ferent approaches like quantum Monte Carlo [52] or exact
diagonalization [53] (ED). This mapping neglects nonlocal
fluctuations but keeps track of all local quantum fluctua-
tions. This manifests in a momentum-independent self-energy
�ττ ′

(ω, k) = �ττ ′
(ω) with τ and τ ′ denoting spin states. In

real space this means that the self-energy is local �ττ ′
jl (ω) =

�ττ ′
j j (ω)δ jl where δ jl is the Kronecker delta and j and l are
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lattice vectors. As in static mean-field theories, DMFT is
solved self-consistently and thus depends on an initial guess.

Here, we perform real-space DMFT [54,55] calculations
on a 6 × 6 × 6 lattice for the model in Eq. (3) with an ED
solver with four bath sites. In real-space DMFT the Dyson
equation in real space is used to compute the interacting
Green’s function in contrast to standard DMFT which is for-
mulated in momentum space:

[G−1(ω)]ττ ′
jl = [

G0
−1(ω)

]ττ ′

jl − �ττ ′
j j (ω)δ jl . (4)

Here, G0(ω) is the noninteracting Green’s function which
can readily be computed from the noninteracting Hamilto-
nian. In our case the Green’s function is a matrix of size
2 × 63 × 2 × 63 where the 2 inherits from the spin degree
of freedom. This means there are 4 × 63 terms which are
diagonal in real space. This number can be strongly reduced
depending on the symmetries of the system and on the allowed
magnetic solutions.

We are interested in the paramagnetic case. The param-
agnetic solution is sufficient to describe the Mott transition.
Besides, the temperature regimes we consider are above the
superexchange temperature for antiferromagnetic ordering.
The paramagnetic solution is found if diagonal elements of
the self-energy in spin space are identical and off-diagonal
elements vanish:

�
↑↑
j j (ω) = �

↓↓
j j (ω) ≡ � j j (ω), (5)

�
↑↓
j j (ω) = �

↓↑
j j (ω) = 0. (6)

To lowest order in the interaction strength, i.e., Hartree-
Fock, the diagonal self-energies would be responsible for a
Sz magnetization corresponding to the Hartree terms and the
off-diagonal self-energies for the Sx and Sy magnetization
corresponding to the Fock terms. Restricting to the param-
agnetic solutions reduces the number of local self-energies
which have to be computed to 63.

The Hamiltonian in Eq. (3) is symmetric under the trans-
lations j → j + ẑ and j → j + x̂ + ŷ. It is then sufficient to
compute only two separate local self-energies instead of 63,
i.e., solving two separate impurity problems, and copy them
accordingly in the lattice Green’s function.

As indicators for the Mott transition, we compute two
quantities: (i) the double occupancy

nd = 1

Ns

∑
j

〈n̂↑, j n̂↓, j〉, (7)

where Ns is the number of lattice sites and 〈. . . 〉 denotes
the ensemble average; (ii) the quasiparticle weight [33],
defined as

Q =
[

1 − ∂�(ω)

∂ω

∣∣∣∣
ω=0

]−1

=
[

1 − �(iωn)

iωn

∣∣∣∣
n=0

]−1

, (8)

where we have introduced the real-frequency self-energy
�(ω) and the self-energy in terms of Matsubara frequencies
�(iωn). Here, � without any real-space coordinate refers to
the average over the two-site unit cell. In practice, our results
showed no difference between the two sites of the unit cell.
For examples of the resulting selfenergy from DMFT, consult
Appendix C.

FIG. 1. Double occupancy nd in (a) and quasiparticle weight
Q in (b) as functions of the interaction strength U for different
temperatures T . The direction of consecutive initial guesses for the
self-energy for the DMFT calculations is labeled by up and down.
The hysteresis between those is highlighted by a shaded area. Ener-
gies are measured in units of the hopping energy.

We present the results for nd and Q in Fig. 1 as functions
of the interaction strength U for different temperatures. The
self-consistent solutions are found successively for different
U . The initial guess for the self-consistent DMFT iteration is
inherited from the previous converged solution for the pre-
vious value of U . Starting with U = 0, i.e., going upwards,
the first guess for the initial self-energy is zero. For the
downwards calculations, the deep Mott solution at U = 20
was used which was previously found by the upwards calcu-
lation. As the difference between those curves, we observe
the typical hysteresis of the paramagnetic solutions shown as
shaded areas [33]. The hysteresis reflects the coexistence of
two solutions, i.e., the correlated WSM and the Mott insula-
tor. The critical interaction strength for this phase transition
is located within this coexistence regime. As we observe in
Fig. 1, this regime is temperature dependent, and thus also
the critical interaction strength. For comparison, the critical
interaction strength for the metal-to-Mott-insulator transition
in the 3D Hubbard model at T ≈ 0.33 is U = 15.4 [56]. Hys-
teresis curves appear if a first-order phase transition is present.
The first-order transitions from topological insulator phases to
Mott insulators have been confirmed by Refs. [37,40,57] in 2D
and 3D.

To determine transport properties of the obtained many-
body phases, we are interested in the density of states

A(ω) = − 1

π
Im

∫
dk TrG(ω, k), (9)

where we have defined the retarded, real-frequency single-
particle Green’s function

G(ω, k) = 1

[ω + 0+ − �(ω) + μ]1 − H (k)
, (10)

which does only apply for the paramagnetic solutions. Here,
1 denotes the 2 × 2 identity matrix in the sublattice repre-
sentation, and μ is the chemical potential which is set to
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FIG. 2. Density of states A(ω) as a function of the frequency ω

for different U at T = 0.1.

U/2 throughout the paper, constraining the system to be half-
filled. In Fig. 2, we show the density of states for different
U at T = 0.1. For U = 1, the density of states is almost
identical to the one of the noninteracting case U = 0. This
is expected since the self-energy is small in this regime. We
also observe the peaks from the two bands of the Hamiltonian
and an approximately quadratic behavior around ω = 0 which
is a property of a semimetal. For U = 10, we observe two
Hubbard bands at approximately ω = ±8. The bands close to
ω = 0 are shrunk compared to the U = 1 case but the system
is still semimetallic. For U = 20, we find an overall gap of
size ∼16 which corresponds to the Mott gap. The structure
of each of the Hubbard bands resembles the structure of the
original density of states at U = 0. Such splitting of the non-
interacting bands, each with the density of states similar to
the noninteracting one, has been observed before in a bosonic
system [36].

In Eq. (10), the self-energy in terms of real frequencies ω

enters. While there are methods which are formulated in real
frequencies [58], most impurity solvers provide the output as
a function of Matsubara frequencies iωn. Here, we use the
maximum entropy method [59] in order to map �(iωn) to
�(ω) (see Appendix C for comparison). This method was
originally developed to analytically continue noisy quantum
Monte Carlo data. It has the advantage to yield smooth out-
comes through Bayesian statistics. Here, we use this method
to analytically continue ED results. Conventionally, the den-
sity of states from ED calculations is rugged due to the finite
number of bath sites. Here, the maximum entropy method can
compensate that. Of course, the result is then approximate.
The results in Fig. 2 show that our approach of combining the
maximum entropy method with ED results yields a reasonable
outcome.

In summary, the double occupancy, the quasiparticle
weight, and the density of states provide clear evidence that
the many-body phase for strong U > 15 is a Mott insulator.
Let us now turn to the topological properties of the interacting
system.

IV. ISHIKAWA-MATSUYAMA FORMULA

In 2D, the Ishikawa-Matsuyama formula manifests the
generalization of a Chern number to interacting systems as
it corresponds to the Hall conductivity up to a constant factor

and is formulated in terms of Green’s functions [60]:

CIM = ενρη

24π2

∫
dk Tr{[G∂νG−1][G∂ρG−1][G∂ηG−1]}, (11)

where k = (k0, k1, k2) with k0 = iωn and ν, ρ, η run over the
elements of k. k1 and k2 refer to the momenta of the two
spatial dimensions in 2D. We also have used the abbrevia-
tion G = G(k) = G(iωn, k1, k2) in Eq. (11). The formula is
rather complicated compared to the noninteracting Thouless-
Kohmoto-Nightingale-den Nijs (TKNN) invariant [61]. It has
been shown, however, that in some regimes the information
about the full frequency range is not necessary and only
the ω = 0 mode is crucial [62]. This is called the effective
topological Hamiltonian approach which makes it possible to
compute topological invariants from an effective, noninter-
acting Hamiltonian Htop = −G−1(ω = 0, k). This, however,
is valid only if the Green’s function has no zeros which is
of course not the case in a Mott insulator. Thus, we have to
consult the formula in Eq. (11). To this end, we define the
single-particle Green’s function within the DMFT framework,
i.e., �(iωn, k) = �(iωn), according to Ref. [63]:

G(iωn, k1, k2) = 1

[iωn − �(iωn) + μ]1 − H (k1, k2)
. (12)

For the sake of brevity, we drop all the arguments. So, we find

∂k0 G−1 = (
1 − ∂k0�

)
1 = (

1 + i∂ωn�
)
1, (13)

∂kν
G−1 = ∂kν

H = jν, (14)

where jν = jν (k1, k2) is the current in ν = 1, 2 direction
with the 2D momenta k1 and k2. Consequently, Eq. (11)
simplifies to

CIM = i

8π2

∫
dk1dk2dωnTr[G j1G j2G

(
1 + i∂ωn�

)
− (1 + i∂ωn�)G j2G j1G]. (15)

In order to apply this formula in our 2D model, we again
embed a closed 2D surface in the 3D BZ. Following the above
discussion of the noninteracting case (see also Appendix B),
we will put the 2D momentum (k1, k2) onto a surface enclos-
ing the WPs in the 3D BZ of the interacting system to compute
topological charges of the WPs in the interacting case. To
see the functional relation between the 2D surface momenta
(k1, k2) and the 3D momenta (kx, ky, kz ), consult Appendix B.

The momentum-dependent part of the formula in Eq. (15)
can be calculated analytically depending on the surface en-
closing the WP over which we want to integrate. For the two
components of the currents, this implies

jr =
∑

ν

jν
∂kν

∂kr
, r = 1, 2 and ν = x, y, z. (16)

The frequency derivative is performed numerically as

∂ωn�(iωn) ≈ �(iωn+1) − �(iωn)

2πT
, (17)

according to the definition of the fermionic Matsubara fre-
quencies ωn = πT (2n + 1) with n being an integer. Before
computing the topological charge of the interacting system
by enclosing the WPs with a surface, we have to find their
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FIG. 3. Ishikawa-Matsuyama invariant CIM for the interacting
Hamiltonian in Eq. (3) as a function of U for different temperatures
on a sphere in the BZ with radius RS = π/2 enclosing the WP at
kWP = (0, π/2, π/2) for one spin state. Here, we again highlight the
hysteresis by a shaded area.

position within the BZ as a function of U because their posi-
tion could, in general, depend on the interaction. To this end,
we maximize the imaginary part of the Green’s function at
the Fermi level −Im TrG(ω = 0, k) which corresponds to the
contribution to the density of states [see Eq. (9)]. The obtained
momentum yields the position of the WPs. Interestingly, as the
result, we find that the position of the WPs does not depend
on the strength of the interaction, which is not shown here.
However, we note that the inclusion of a staggered potential
as, e.g., in Ref. [39], might change this since it is another
energy scale competing with the interaction strength. Also
note that the described procedure of determining the positions
of the WPs does not rely on an effective noninteracting theory,
in contrast to the procedure of Ref. [46].

In Fig. 3, we show the Ishikawa-Matsuyama invariant CIM

calculated on a sphere with radius RS = π/2 enclosing the
WP at kWP = (0, π/2, π/2). For moderate as well as large U ,
we find well-quantized results. Close to the Mott transition,
the CIM is not quantized anymore. This is due to the finite
temperature which becomes comparable to the gap in the
vicinity of the phase transition (see Fig. 2). The result in Fig. 3
is comparable to a result of a similar DMFT study of the
Bernevig-Hughes-Zhang model [64].

V. QUASIPARTICLE SPECTRUM AND BLIND BANDS

It is anticipated that the topological invariant on the enclos-
ing surface vanishes when the WPs gap out since the system
then lacks the singularity which has to be enclosed (compare
Figs. 2 and 3). The resulting many-body state is globally
gapped. Due to the lack of WPs there are neither sources
nor sinks of Berry curvature. The many-body state is thus
topologically trivial. For finite magnetization, topologically
trivial [34,39] as well as nontrivial [65–69] states have been
found.

We want to understand in more detail how this topological
phase transition to a topologically trivial Mott insulator oc-
curs. To this end, we again focus on the paramagnetic case.
Our conventional understanding of topological phase transi-
tions is the closing of a quasiparticle band gap. Quasiparticle
bands exhibit Chern numbers and correspond to the poles of

the single-particle Green’s function. It has been discussed,
however, on the level of single-particle Green’s functions, that
not only poles of the Green’s function can exhibit nontrivial
Chern numbers but also zeros of the Green’s function. The
zeros of the Green’s function are dubbed blind bands. Refer-
ence [70] proposed the interaction-induced topological phase
transition through a gap closing of blind bands. Herein, not
only the quasiparticle bands, but also the blind bands exhibit
nontrivial Chern numbers. The gap closing of blind bands then
can induce a topological phase transition. In our case, we do
not find nontrivial blind bands but rather a topological phase
transition stemming from the quasiparticle bands only.

The topological properties of the interacting system are
described by a formula for a generalized Chern number C̃
which relates the Chern numbers of quasiparticle bands and
the Chern numbers of blind bands and was derived from the
Ishikawa-Matsuyama formula [41]:

C̃ =
N∑

n=1

∫
dk1dk2Im

〈
∂k1ψ

(
ωp

n (k), k
)∣∣∂k2ψ

(
ωp

n (k), k
)〉

−
M∑

m=1

∫
dk1dk2Im

〈
∂k1ψ

(
ωz

m(k), k
)∣∣∂k2ψ

(
ωz

m(k), k
)〉
.

(18)

Herein, we have defined the eigenstates |ψ j (ω, k)〉 of the
Green’s function according to

G(ω, k)|ψ j (ω, k)〉 = g j (ω, k)|ψ j (ω, k)〉. (19)

Since the Green’s function is not Hermitian away from ω = 0,
the eigenvalues gj (ω, k) are not real in general and there is no
generic ordering. Since we are only interested in zeros and
poles of g j (ω, k), we order the eigenvalues by their absolute
values. In Eq. (18), we have also defined the quasiparticle
bands ω

p
n (k) and the blind bands ωz

m(k) as the poles and zeros
of the Green’s function, respectively:

g j
(
ω = ωp

n (k), k
) → ∞ and g j

(
ω = ωz

m(k), k
) = 0. (20)

We have dropped the band index j for the states in Eq. (18)
since j is fully determined by ω

p
n (k) and ωz

m(k), respectively.
Furthermore, we focus on the weakly interacting case and
the deep Mott-insulating case. In the intermediate regime, the
poles and zeros are not sufficiently pronounced. Note that the
physics in the deep Mott regime will certainly differ from this
treatment as, e.g., particle-hole excitations are neglected. We
emphasize that our discussion focuses on the framework of
single-particle Green’s functions.

We show the absolute value of the eigenvalues of the
Green’s function in Fig. 4 as a function of ω exemplarily
for (k1, k2) = (0, 0) on the WP-enclosing sphere which cor-
responds to k = (0, π/2, π ) (see Appendix B for details). For
U = 1, there are two poles corresponding to two quasiparticle
bands. These bands approximately correspond to the noninter-
acting energy bands since the interaction is small compared to
the bandwidth. Poles in this plot are finite since we use a fi-
nite broadening factor η in the analytically continued Green’s
function G(ω + iη, k) with the definition in Eq. (12). Also,
the exact pole will not be matched perfectly because of the
equidistant discretization of the frequency axis. For U = 20,
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FIG. 4. Absolute value of the eigenvalues of the Green’s function
in log scale exemplarily for a specific k on the WP-enclosing sphere.

we observe four poles and additionally a zero at ω ≈ 0. We
also observe that the zero is doubly degenerate.

In Fig. 5, we show the numerically determined momentum-
resolved quasiparticle bands ω

p
n (k) in blue and blind bands

ωz
m(k) in orange of the single-particle Green’s function. The

respective Chern number C is computed with the Fukui
method [51] and is written next to the band. For U = 1, the
spectrum resembles that of the noninteracting case which is
expected for such small interaction strength. Also, the Fermi
level lies between the two bands which carry opposite non-
trivial Chern numbers. This is consistent with a topologically
nontrivial many-body phase (see Fig. 3).

For U = 20, we observe four quasiparticle bands and a
twofold-degenerate blind band. This shows the preserved dif-
ference N − M between the number of quasiparticle bands
and the number of blind bands. We also note that the blind
band is flat. This is because in the single-particle Green’s
function (12), a zero emerges only if the self-energy diverges.
As the self-energy is momentum independent within DMFT,
the blind band has no momentum dependence and is thus
flat. Additionally, the blind bands contribute zero Chern num-
ber to the total Chern number. Out of the four quasiparticle
bands, the lower two are occupied which have opposite Chern
numbers. The total Chern number is thus zero which is con-
sistent with the obtained topologically trivial Mott insulator
(see Fig. 3). Each of the Hubbard bands consists of sub-
bands with the same quasiparticle spectrum as the original

FIG. 5. Quasiparticle bands ωp
n (k) and blind bands ωz

m(k) of the
single-particle Green’s function on a sphere with radius RS = π/2
enclosing the WP at (0, π/2, π/2) in the BZ. The Chern number C
is written next to the respective band. Note that this 2D plot shows
a function of the azimuth k1 = θS only. Values as a function of the
polar angle are plotted implicitly on top of each other.

FIG. 6. Quantification of the density of states on a sphere with
radius RS = π/2 enclosing the WP at (0, π/2, π/2) in the BZ:
distance � between peaks of the density of states A(ω) closest to
ω = 0 and quadratic fitting coefficient a of A(ω) ≈ aω2 at ω ≈ 0 as
a function of U for T = 0.1. We also plot �(U = 0) ∗ Q with the
data from Fig. 1(b) which is an approximation for �.

noninteracting band structure. Since the sum of Chern num-
bers of all the bands in the original band structure is zero, the
Hubbard bands are topologically trivial as well. This is similar
to the topologically trivial Mott insulator found in the bosonic
Haldane-Hubbard model studied with DMFT which showed
the equivalent structure of subbands [36].

We conclude that in our situation, the topological Mott
transition does not occur due to an emerging topologically
nontrivial blind band which crosses the gap as suggested by
Ref. [70] for a possible interaction-induced topological phase
transition. Rather, the topological properties stem fully from
the quasiparticle bands. This requires a closing of the quasi-
particle band gap. To see this quantitatively, we compute two
new quantities derived from the density of states A(ω): (i) the
distance between the peaks of A(ω) closest to ω = 0 which we
denote �. It is qualitatively equivalent to the gap of the quasi-
particle bands of the the 2D sphere in the 3D BZ surrounding
the WP. (ii) the coefficient of a quadratic fit of the spectral
function A(ω) ≈ aω2 at ω ≈ 0. The coefficient a is useful
since it reflects the property of a semimetal that the density
of states vanishes at ω = 0. In Fig. 6, we show � as well as
a as a function of U . We indeed observe towards the expected
topological phase transition point at U ≈ 13 that � decreases
and approximately without reaching zero. At the same time a
increases and becomes large close to U ≈ 13. Both indicate a
closing of a quasiparticle gap as well as a flattening of the the
semimetallic quasiparticle bands which ultimately ends in a
first-order transition. In the Fermi-liquid regime, the value of
� can be approximated by the quasiparticle weight. In Fig. 6,
we plot the product of the noninteracting value of � and the
quasiparticle weight Q according to Fig. 1(b).

As we discussed before, the WPs do not move in the
BZ while tuning the interaction strength. In the considered
cases the topological phase transition is first order. First-order
transitions generally end in a critical point where the transi-
tion becomes second order. The first-order transition occurs
inside a coexistence region in the T -U phase diagram where
both the Fermi liquid and the Mott insulator are solutions.
The critical interaction strength Uc1(T ) marks the beginning
and critical interaction strength Uc2(T ) marks the end of the
coexistence region. At the point where Uc1(T ) = Uc2(T ), the
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FIG. 7. Coexistence regime of Fermi-liquid and Mott-insulator
solutions. Uc1 marks where the hysteresis begins and Uc2 where
it ends. For small temperatures, the coexistence region shrinks
abruptly. This we account to the DMFT algorithm at very low
temperatures.

critical point where the phase transition becomes second or-
der is located. In order to determine the coexistence region
approximately, we perform DMFT calculations with a better
resolution compared to Fig. 1. This is done for the upwards as
well as the downwards DMFT procedure. We then calculate
the difference of quasiparticle weight between both directions
Qup(T,U ) − Qdown(T,U ). The points in the phase diagram
where this quantity is larger (smaller) than some threshold
determine Uc1(T ) [Uc2(T )]. We choose 10% for the threshold
in order to get rid of numerical noise. The result is shown
in Fig. 7. From there, we read off that the critical point
could be located approximately at (T ≈ 0.3,U ≈ 11). For
T = 0.05, the coexistence region shrinks abruptly. We assume
that this stems from underfitting in the ED solver at small
temperatures.

VI. SURFACE STATES

We now investigate surface states of the Dubček model
with Hubbard interaction. To this end, we run real-space
DMFT calculations where in two directions we apply periodic

FIG. 8. Quasiparticle weight in the bulk and at the surface as a
function of the interaction strength U at T = 0.1. For comparison,
we plot Q as a function of U in the y-periodic system according to
the data in Fig. 1(b). The results correspond to the upwards computa-
tions of the DMFT algorithm. Since the downwards calculation will
presumably not show the interesting features around U = 12.8, we
do not show them here.

FIG. 9. Quasiparticle weight resolved with respect to the real-
space coordinate y for three different interaction strengths.

boundary condition and in the third direction we apply open
boundary conditions. In this manner, three different config-
urations of boundary conditions are thinkable. Our results,
however, did not show any difference in the physics between
these three configurations. Thus, for the discussion we focus
on the case where the x and z directions are extended and
in the y direction the system is finite with Ny lattice sites.
The noninteracting Hamiltonian in this configuration is Ĥτ =∫

dkxdkzĤτ (kx, kz ) with Ĥτ (kx, kz ) given by

Ĥτ (kx, kz ) = − Jy

Ny−1∑
y=1

(
ĉ†
τ,y+1,kx,kz

ĉτ,y,kx,kz + H.c.
)
1

− 2
Ny∑

y=1

(−1)yĉ†
τ,y,kx,kz

ĉτ,y,kx,kz

× [Kx sin(kx )σ y + Kz cos(kz )σ z], (21)

which, in matrix representation, is a matrix of size 2Ny × 2Ny.
Here, Ny corresponds to the size of the system in y direction
and the 2 stems from a small two-site unit cell in x direction to
which the Pauli matrices apply. The Hamiltonian in Eq. (21)
can be derived by following the derivation in Appendix A and
omitting the Fourier transform in y direction.

From the paramagnetic DMFT calculations we obtain in
this configuration a self-energy �y(iωn) and �y(ω) which is
position resolved in the y direction. We performed DMFT cal-
culations for Ny = 6. In order to quantify correlation effects,

FIG. 10. y-resolved spectral function at the Fermi level Ayy(ω =
0) for three different values of U .
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FIG. 11. Spectral function A(ω) in the bulk and at the surface for three different values of U : showing semi-metallic Fermi liquid behavior
at U = 10, Mott-insulating behavior at U = 15, and the correlated surface states at U = 12.8. The inset corresponds to a zoom of the correlated
surface states.

we define the y-resolved quasiparticle weight

Qy =
[

1 − �y(iωn)

iωn

∣∣∣∣
n=0

]−1

(22)

as well as the y-resolved spectral density

Ayy(ω) = − 1

π
Im

∫
dkxdkz

× 1

[ω + 0+ + μ]1 − diag[�y(ω)] − H (kx, kz )

∣∣∣∣
yy

,

(23)

where the Hamiltonian is represented in matrix representation
and the self-energy is a diagonal matrix. In order to incor-
porate the two-site unit cell in the x direction, we average
over those two sites. In Fig. 8, we present the y-resolved
quasiparticle weight Qy defined in Eq. (22) as a function of
the interaction strength U for y = 1 and 3, respectively. y = 1
is a site which is located directly at surface of the system
and y = 3 = Ny/2 is presumably a bulk site. We compare the
function Qy=3 with the function Q of the extended system
in which the y direction is also periodic. We observe that
these two curves agree very well and conclude that Ny = 6
is a sufficiently large choice for the system. We furthermore
observe the quasiparticle weight at the surface Qy=1 is overall

FIG. 12. The density of states Ayy(ω) according to Fig. 11 for
U = 12.8 in comparison with the rescaled noninteracting density of
states Ayy(Q1ω) where Q1 corresponds to the surface quasiparticle
weight at U = 12.8.

smaller than the corresponding bulk value. There is even a
regime in which Q1 is much smaller and almost zero while Q3

is still finite. Exemplarily, this occurs at U = 12.8. So we will
focus on this value in the following and also U = 10 and 15 as
reference values. These are highlighted in Fig. 8. In Fig. 9, we
show the spatially resolved quasiparticle weight as a function
of y for the three values of U . For U = 10, we observe that Qy

is finite for all sites, i.e., a semimetallic Fermi-liquid phase.
For U = 15, we see that Qy is zero for all sites, i.e., the system
is in a Mott-insulating state for all sites in the y direction. For
U = 12.8, we find a clear quantitative difference between bulk
and surface, i.e., a bulk value of Q3 ≈ 0.25 and a surface value
of Q1 ≈ 0.025.

Furthermore, we look at the spectral density at the Fermi
level as a function of y in Fig. 10. It is important to note that
the spectral density is normalized locally, i.e.,∫

dω Ayy(ω) = 1 for every y. (24)

We observe that for the cases U = 10 and 15, the spectral den-
sity is low at the Fermi energy in the bulk as one expects from
a semimetal. Also, it seems that at the surface the spectral den-
sity is not much different from the bulk value. This suggests
that there might not be metallic states like Fermi arcs present.
In fact, for the Dubček model [50], one expects Fermi arc
states at the surface spanned by the unit vectors (x̂ + ŷ)/

√
2

and ẑ. In our theory, we cannot address this surface and thus
focus on the principal directions. For the case of U = 12.8
in Fig. 10, the spectral density of the Fermi level is larger
at U = 12.8 than for U = 10 or 15. Also, one can identify
a difference between the bulk density of states and the surface
density of states. To understand better this phenomenon, we
present the energy-resolved spectral density Ayy(ω) defined in
Eq. (23) in Fig. 11 for the bulk y = 3 as well as the surface
y = 1. For U = 10, we observe the Fermi-liquid regime, in
which the semimetallic density of states is visible. Note that
the surface density of states is shrunk with respect to the bulk
density of states, i.e., peaks are shifted towards ω = 0. For
U = 15, bulk and surface densities of states approximately
coincide and are gapped. For U = 12.8, we see a qualitative
difference between the bulk and the surface density of states.
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FIG. 13. Momentum-resolved spectral function at the Fermi level in the transversal BZ in the bulk and at the surface for three different
values of U . Dark blue corresponds to zero and yellow to 0.1/(2π )2.

Here, the bulk density of states shows the semimetallic behav-
ior we already know from the y-periodic system (see Fig. 9).
The surface density of states, however, shows a metallic peak
at the Fermi level which we enlarged in the inset of Fig. 11.

It is important to note that Q1 at U = 12.8 does not vanish
(see Fig. 9). We can use this value to rescale ω in the argument
of the density of states of the noninteracting case [33] as we
show in Fig. 12. The semimetallic density of states is squeezed
together by a very small factor of Q ≈ 0.025. This means that
the two peaks of the semimetallic density of states come very
close. Because of the interactions, the density of states also
broadens at the same time. Thus, the broadening is strong
enough to merge the two semimetallic peaks in the density
of states into a single metallic peak at ω = 0.

We are interested in the structure of the surface states
which we have observed in Fig. 11. Therefore, we compute
the spectral function within the transverse BZ for ω = 0, i.e.,
spanned by the momenta kx and ky. This can be achieved by
omitting the twofold momentum integration in Eq. (23). Note
that this quantity is still normalized according to Eq. (24). We
show the bulk transverse BZ at the Fermi level in the upper
panel of Fig. 13. For U = 10, we observe the WPs which
are visible because of a finite broadening. For U = 12.8, the
WPs are more pronounced and at U = 15 they are completely
gapped out by the Mott gap. The surface BZ is shown in the
lower panel and for U = 10 and 15, we observe a similar
picture as in the bulk. In the case of U = 12.8, however, the
structure of the spectral function within the BZ is different.
Here, the surface spectral density between the positions of the
bulk WPs is finite which suggests the existence of a metallic
state. This is indeed what we anticipated from the analysis
of the energy-resolved spectral function in Fig. 11. This state
is fully connected, yet it geometrically differs from a Fermi

arc. Also, a Fermi arc is already visible in the single-particle
spectrum of the noninteracting model [50] whereas for the
present state strong interactions have to be applied. At this
stage, it is, however, not clear what the impact of the finite size
of the system is. Also, we have only presented results of the
upwards direction of the DMFT iterations [see the discussion
below Eq. (8)]. The present state is presumably not visible in
the downward direction.

VII. CONCLUSION

We have investigated an experimentally relevant model
in the field of cold atoms in optical lattices by means of
DMFT. We have calculated the double occupancy, the quasi-
particle weight, as well as the density of states to determine
a paramagnetic Mott-insulating phase for strong Hubbard
interactions. Through numerical evaluation of the Ishikawa-
Matsuyama formula, which is more general than the effective
topological Hamiltonian approach, we have determined the
topological WSM-to-Mott-insulator transition. We investi-
gated this topological phase transition in further detail by
extracting quasiparticle bands and blind bands which both
can carry Chern numbers. It turns out that the topological
phase transition occurs through a first-order transition. This
enables the nonlocal annihilation of the Weyl points. The flat
blind bands do not contribute to the topological properties
of the system. Ultimately, we have studied correlated surface
physics by breaking the periodicity of the y direction. For
weak and strong interaction strengths the system is completely
semimetallic and Mott insulating, respectively. For a narrow
region close to the topological phase transition, however, we
find a correlated surface state which is metallic while the bulk
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is semimetallic. This state is different from a Fermi arc as it
requires strong interactions.
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APPENDIX A: FOURIER TRANSFORM OF THE
REAL-SPACE HAMILTONIAN

Here, we derive the compact form of the k-space Hamil-
tonian in terms of Pauli matrices. To this end, we start from
the real-space Hamiltonian defined in Eq. (1) and define two
sublattices A and B, where A contains all the sites for which
x + y is even and B contains all the sites for which x + y is
odd. We find

Ĥτ = −
∑
j∈A

[Kxĉ†
j+x̂,τ ĉ j,τ + Jyĉ†

j+ŷ,τ ĉ j,τ

+ Kzĉ
†
j+ẑ,τ ĉ j,τ + H.c.]

−
∑
j∈B

[−Kxĉ†
j+x̂,τ ĉ j,τ + Jyĉ†

j+ŷ,τ ĉ j,τ

− Kzĉ
†
j+ẑ,τ ĉ j,τ + H.c.]. (A1)

Now, we define two new sets of operators

ĉ j,τ =
{

â j,τ if j ∈ A,

b̂ j,τ if j ∈ B,
(A2)

which simplifies the Hamiltonian as

Ĥτ =
∑
j∈A

[−Kxb̂†
j+x̂,τ â j,τ − Jyb̂†

j+ŷ,τ â j,τ

− Kzâ
†
j+ẑ,τ â j,τ + Kxâ†

j+x̂,τ b̂ j,τ

− Jyâ†
j+ŷ,τ b̂ j,τ + Kzb̂

†
j+ẑ,τ b̂ j,τ + H.c.]. (A3)

Fourier transformation of the operators leads to

Ĥτ = 2
∫

dk[−iKx sin(kx )(â†
k,τ

b̂k,τ − b̂†
k,τ

âk,τ )

− Jy cos(ky)(â†
k,τ

b̂k,τ + b̂†
k,τ

âk,τ )

+ Kz cos(kz )(â†
k,τ

âk,τ − b̂†
k,τ

b̂k,τ )]. (A4)

Defining the spinor operator d̂k,τ = (âk,τ , b̂k,τ )T leads to

Ĥτ = 2
∫

dk d̂
†
k,τ [Kx sin(kx )σ y − Jy cos(kx )σ y

+ Kz cos(kz )σ z]d̂k,τ , (A5)

which corresponds to the Hamiltonian in Eq. (2) given in the

main text according to Ĥτ = ∫
dk d̂

†
k,τ H (k)d̂k,τ .

APPENDIX B: CHERN NUMBER IN
CURVILINEAR COORDINATES

Here, we show that the analytical form of the Chern num-
ber stays invariant in an arbitrary 3D curvilinear coordinate
system. We transform the expression for the Chern number
which is typically defined in the Cartesian BZ (kx, ky, kz )
to the curvilinear coordinate system (k1, k2, k3). The flux
element reads as

B dS = dS · ∂k × A, (B1)

where A = i〈ψ |∂k|ψ〉 is the Berry connection with ∂k being
the nabla operator and |ψ〉 ≡ |ψ (k)〉 being the k-dependent
Bloch state. We express the Berry connection in curvilinear
coordinates

A = i〈ψ |∂kr |ψ〉 êr

hr
, (B2)

where hr = |hr | is the Lamé factor where hr = (∂kr kν )êν with
ν = x, y, z running over the Cartesian coordinates and r =
1, 2, 3 running over the curvilinear coordinates. Here, êν is
the unit vector in kν direction and êr is the unit vector in kr

direction. The Lamé factor is related to the metric tensor as
grs = hr · hs.

Now, we express the curl in curvilinear coordinates

∂k × A = εrst

hsht

(
∂kr hsAs

)
êt (B3)

= iεrst

hsht

(
∂kr 〈ψ |∂ks |ψ〉)êt . (B4)

Here, s, t = 1, 2, 3. The surface element of the surface
spanned by the first and the second coordinate of the curvi-
linear coordinate system reads as

dS = h1 × h2dk1dk2 (B5)

= (h1ê1) × (h2ê2)dk1dk2 (B6)

= h1h2ê1 × ê2dk1dk2 (B7)

= h1h2ê3dk1dk2. (B8)
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FIG. 14. Berry curvature on the sphere and the torus as a function
of the spherical and toroidal angles.

Finally, the Berry curvature element follows as

dS · ∂k × A = h1h2ê3 · êt
iεrst

hrhs

(
∂kr 〈ψ |∂ks |ψ〉)dk1dk2

= i
(
∂k1〈ψ |∂k2 |ψ〉 − ∂k2〈ψ |∂k1 |ψ〉)dk1dk2

= − 2 Im
〈
∂k1ψ

∣∣∂k2ψ
〉
dk1dk2 (B9)

which has the familiar analytical form of the Chern number.
Integrating the coordinates k1 and k2 within the respective
boundaries, the resulting expression directly yields the Chern
number without a complicated coordinate transformation.

Examples: Sphere and torus

Let us consider two example curvilinear coordinate sys-
tem to enclose the WPs: the sphere and the torus. The
parametrized surfaces of the sphere (k1, k2) = (θS, φS ) and the
torus (k1, k2) = (θT , φT ) can be expressed as⎛

⎝kx(θS, φS )
ky(θS, φS )
kz(θS, φS )

⎞
⎠ = kWP + RS

⎛
⎝sin(θS ) cos(φS )

sin(θS ) sin(φS )
cos(θS )

⎞
⎠ (B10)

for the sphere and⎛
⎝kx(θT , φT )

ky(θT , φT )
kz(θT , φT )

⎞
⎠ = kWP + RT

⎛
⎝cos(φT )

sin(φT )
0

⎞
⎠

+ rT

⎛
⎝cos(θT ) cos(φT )

cos(θT ) sin(φT )
sin(θT )

⎞
⎠ (B11)

for the torus. kWP denotes the position of the WP in the BZ.
The Chern number, or topological charge, then follows by
substituting (θS, φS ) and (θT , φT ), respectively, for (k1, k2) in
Eq. (B9). Note that for the torus, the kWP has to be shifted,
e.g., by RT êx, in order to properly enclose the WP. The results
for the Berry curvature as a function of (θS, φS ) and (θT , φT ),
respectively, are shown in Fig. 14 for the model in Eq. (2). In-
tegrating these Berry curvatures yields 1 and −1, respectively,
according to the two different WPs enclosed. For the sphere,
we have used kWP = (0, π/2,−π/2) and RS = π/2 and for
the torus we have used kWP = (−RT , π/2, π/2), RT = π/6,
and rT = π/6.

APPENDIX C: SELF-ENERGIES AS DMFT RESULTS

To better understand the correlated nature of our re-
sults, we provide the self-energies which were obtained from
the DMFT calculations exemplarily for U = 10 and 20.
Figure 15 shows the self-energy �(iωn) as a function of the

FIG. 15. Self-energy as a function of Matsubara frequencies for
U = 10 and 20 for T = 0.1 We only show the self-energy of one site
of the unit cell as it appears that the self-energy of the other site is
identical in the present cases.

Matsubara freuqencies at T = 0.1. In Fig. 16, we present
the self-energy after analytical continuation with the Max-
Ent method. One can see the symmetry of Re�(−iωn) =
Re�(iωn) and Im�(−ω) = Im�(ω) as well as the anti-
symmetry of Im�(−iωn) = −Im�(iωn) and Re�(−ω) =
−Re�(ω).

APPENDIX D: REAL VALUEDNESS OF THE
ISHIKAWA-MATSUYAMA FORMULA

The invariant in Eq. (15) is purely real. To show this, we
reintroduce the frequency argument and define

�1(iωn) = G(iωn) j1G(iωn) j2G(iωn)
[
1 + i∂ωn�(iωn)

]
,

(D1)

�2(iωn) = [
1 + i∂ωn�(iωn)

]
G(iωn) j2G(iωn) j1G(iωn)

(D2)

FIG. 16. Self-energy as a function of real frequencies for U = 10
and 20 for T = 0.1 We only show the self-energy of one site of the
unit cell as it appears that the self-energy of the other site is identical
in the present cases.
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which yields

CIM = i

8π2

∫
dk dωnTr[�1(iωn) − �2(iωn)]. (D3)

Let us consider the Hermitian conjugate of �1:

[
G(iωn) jG(iωn) j2G(iωn)

[
1 + i∂ωn�(iωn)

]]†
(D4)

= [1 + i∂ωn�(iωn)]†G†(iωn) j†
2G†(iωn) j†

1G†(iωn) (D5)

= [1 − i∂ωn�
†(iωn)]G(−iωn) j2G(−iωn) j1G(−iωn)

(D6)

= [1 + i∂−ωn�(−iωn)]G(−iωn) j2G(−iωn) j1G(−iωn)

(D7)

= �2(−iωn), (D8)

where we have used the fact that the currents ji are Hermitian
matrices as well as the symmetries of the Green’s function
G†(iωn) = G(−iωn) and the self-energy �∗(iωn) = �(−iωn).
We thus find that Eq. (D3) can be rewritten as

CIM = i

8π2

∫
dk dωnTr[�1(iωn) − �

†
1(−iωn)]

= i

8π2

∫
dk dωnTr[�1(iωn) − �

†
1(iωn)]

= i

8π2

∫
dk dωn

∑
l

2i Imλl (iωn)

= − 1

4π2

∫
dk dωn

∑
l

Imλl (iωn), (D9)

which is purely real. From the first line to the second line, we
have used that we integrate over the full frequency range. In
the third line we have expressed the trace of �1(iωn) in terms
of its eigenvalues λl (iωn).
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