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The effective interaction of downfolded low-energy models for electrons in solids can be obtained by integrat-
ing out the high energy bands away from the target band near the Fermi level. Here we apply the constrained
random-phase approximation (cRPA) and constrained functional renormalization group (cfRG), which can go
beyond cRPA by including all one-loop diagrams, to calculate and compare the effective interactions of the
three-band Emery model, which is often used to investigate cuprate high-temperature superconductors. At
half-filling we find that the effective interaction increases as the charge transfer energy (�d p) increases and
similar behavior is obtained as a function of the interatomic 2p-3d interaction (Ud p). However, the effective
interaction is more sensitive to �d p than Ud p. For most of the parameter sets, the effective static interaction is
overscreened in cRPA compared to cfRG. The low-energy models at half-filling are solved within dynamical
mean-field theory (DMFT). The results show that despite the different static interactions, the systems with
cRPA and cfRG interaction exhibit a Mott transition at similar values of �d p. We also investigate the effective
interaction as a function of doping. The cfRG effective interaction decreases as the electron number increases
and displays a trend opposite to that of cRPA. Antiscreening is observed for the hole-doped case. For all the
cases studied, the near cancellation of the direct particle-hole channel is observed. This indicates that at least for
the downfolding of the on-site interaction terms, methods beyond cRPA may be required.
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I. INTRODUCTION

Tremendous progress has been made in understanding and
predicting new materials with particular properties by ab initio
methods based on density functional theory (DFT) [1], in-
cluding recent advances in topological semimetals [2,3] and
superconductivity in the sulfur hydride systems [4,5]. Despite
the success of DFT for those weakly correlated materials, the
method suffers from intrinsic difficulties and sometimes gives
qualitatively wrong results for strongly correlated materials.
For example, the insulating behavior of some transition metal
oxides is not captured by DFT [6,7]. In strongly correlated
systems, the Coulomb repulsion between the low-energy elec-
trons occupying the partially filled narrow bands in proximity
to the Fermi level is comparable or larger than the bandwidth,
and in such a situation the independent-particle picture of
DFT breaks down. Meanwhile, most macroscopic properties
of materials are mainly determined by those low-energy states
near the Fermi level at low temperatures. Therefore, to accu-
rately account for the low-energy correlation effects beyond
the mean-field level, more sophisticated numerical methods
aimed at the study of many-body model Hamiltonians, like
the fluctuation exchange approximation (FLEX) [8,9], quan-
tum Monte Carlo (QMC) methods [10–12], and dynamical
mean-field theory (DMFT) [13–15], have been employed to
complement DFT calculations. The combination of DFT and

DMFT has been extensively used to study correlated materi-
als ranging from high-temperature superconductors to heavy
fermion systems [16–18].

A crucial step in most of the DFT+DMFT calculations
is the construction of low-energy effective Hamiltonians in
the subspace of relevant states near the Fermi level, which
contains the correlated d or f orbitals, starting from the com-
plete Hilbert space. In this so-called downfolding process,
the parameters of the low-energy effective Hamiltonians are
derived by integrating out the high-energy degrees of freedom
successively, in the spirit of renormalization group methods
[19]. While the downfolding concept is physically intuitive
and straightforward, the parameter-free determination of the
(partially) screened low-energy interactions still remains a
major challenge and bottleneck for practical ab initio calcu-
lations.

To compute the screened Coulomb interaction for the low-
energy effective Hamiltonians, a commonly used method is
the constrained-random-phase approximation (cRPA) [20,21].
In cRPA, the partially screened Coulomb interaction between
electrons in the low-energy subspace is frequency depen-
dent and is determined by U (ω) = [1 − υPr (ω)]−1υ, where
υ is the bare Coulomb interaction and Pr is the particle-hole
polarization function calculated by the RPA-type diagrams,
excluding the contributions from within the low-energy sub-
space. The latter is needed because polarization effects within

2469-9950/2021/103(12)/125130(11) 125130-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.125130&domain=pdf&date_stamp=2021-03-15
https://doi.org/10.1103/PhysRevB.103.125130


HAN, WERNER, AND HONERKAMP PHYSICAL REVIEW B 103, 125130 (2021)

the low-energy subspace are explicitly treated in the solution
of the low-energy effective Hamiltonian. More specifically, at
least one of the lines in the polarization particle-hole bubble
Pr belongs to the high-energy sector. Although cRPA appears
to be a big step forward and has been applied to calculate
the screened Coulomb interactions for various materials and
toy models [22–31], both underestimations [23] and overesti-
mations [27–29] of the screening effects have been reported.
Since many physical properties of strongly correlated materi-
als are sensitive to small changes in U , especially near phase
transition points, a better understanding of the limitations of
cRPA is important for reliable parameter-free ab initio calcu-
lations and predictions.

Recently, the constrained functional renormalization group
(cfRG) method [32–35] has been proposed to go beyond cRPA
by including all one-loop diagrams and vertex corrections.
The cRPA can be recovered by only keeping the RPA-type di-
agrams. A multiorbital Hubbard model which could be solved
exactly using QMC has been studied to test the accuracy of
cRPA and cfRG at the level of the effective one-band interac-
tion after downfolding [35]. Significant corrections to cRPA
were found and the overestimated screening effects in cRPA
could be explained by the near cancellation of certain loop
corrections in cfRG. Furthermore, antiscreening effects, i.e.,
an enhancement of the bare interactions, were predicted by
cfRG for the cases studied in Refs. [33–35], in contrast to the
general suppression of the bare interactions by cRPA.

In this work, to further explore the differences between
cRPA and cfRG, we apply cRPA and cfRG downfolding
schemes to the two-dimensional three-band Emery model [36]
and calculate the effective interactions for the low-energy
band using different model parameter sets. To further reveal
the origin of the different results obtained by these two meth-
ods, the idea of channel decomposition is used. The effects
of the resulting frequency-dependent cfRG and cRPA interac-
tions are illustrated by solving the corresponding low-energy
single-band models using DMFT.

The rest of the paper is organized as follows. In Sec. II
we introduce the Emery model and present the cRPA and
cfRG downfolding schemes. Section III presents the cRPA
and cfRG calculations for the effective interactions in the
target band. The DMFT results are discussed in Sec. IV, and
the paper is summarized in Sec. V.

II. MODEL AND METHODS

A. Model Hamiltonian

Compared to the extensively investigated one-band Hub-
bard model, a more realistic model to describe the physics
of cuprates is the three-band Emery model, which includes
the copper 3dx2−y2 orbital and the ligand oxygen 2px and 2py

orbitals for the CuO2 planes. It is defined by the Hamiltonian

H =
∑
k,σ

c†
k,σ h0(k)ck,σ

+Udd

∑
i

nd
i,↑nd

i,↓ + Upp

∑
j

n
p j

j,↑n
pj

j,↓

+Ud p

∑
〈i, j〉,σ,σ ′

nd
iσ n

pj

jσ ′ , (1)

FIG. 1. Electronic band structure of the half-filled Emery model
along the high-symmetry directions � → X → M → � in the Bril-
louin zone of the square lattice with the 1MTO hopping parameters
and �d p = 2. The high-symmetry points are defined as � = (0, 0),
X = (π, 0), and M = (π, π ). Energy zero corresponds to the Fermi
level. The red line represents the target band and the two blue lines
show the screening bands.

where c†
k,σ

= (d†
k,σ

, p†
x,k,σ

, p†
y,k,σ

) is the creation operator for
the electrons on 3dx2−y2 , 2px, and 2py orbitals. h0(k) is the
kernel of the noninteracting tight-binding Hamiltonian in mo-
mentum space given in Ref. [37]. The hopping parameters
are chosen to be those of the 1MTO model. The diagonal
elements of h0(k) contain the information about the charge-
transfer energy, which is defined as the energy separation
between the copper 3dx2−y2 orbital and the oxygen 2p orbital,
�d p = εd − εp. In this study we report all energies in eV.

The half-filled noninteracting band structure for �d p = 2
is plotted in Fig. 1 along some specific high-symmetry direc-
tions in the Brillouin zone of the square lattice. The half-filled
upper band (red line) which crosses the Fermi level is our
low-energy target band and the remaining two fully filled
bands (blue lines) are the high-energy bands to be integrated
out successively. As can be seen, for the Emery model, the
high-energy and low-energy degrees of freedom are well sep-
arated by �d p, making the procedure to integrate out the
high-energy bands well defined. At the same time, �d p is
roughly the magnitude of the minimum gap between the target
band and the screening bands, which is the main parameter in
the polarization functions and plays an important role during
the renormalization process [32].

The interaction term of the Hamiltonian in Eq. (1) is given
in real space. Here the labels i and j run over all Cu and O
sites, and 〈i, j〉 denotes the summation over nearest neighbor
Cu-O bonds. The interaction parameters Udd and Upp corre-
spond to the on-site Coulomb repulsion between two electrons
with opposite spins located on the Cu 3d and O 2p orbitals,
respectively. The nearest neighbor Cu-O interaction Ud p is
neglected in many studies but has been shown to be important
to stabilize the charge transfer insulating state of the Emery
model at half-filling [37,38]. In the following study we use
Udd = 13 and Upp = 7. The values of �d p and Ud p will be
varied and specified explicitly in the following subsections.

B. cfRG procedure

In this paper we only study the SU(2)-symmetric case and
write the two-particle interaction as V 	

o1o2;o3o4
(k1, k2, k3, k4),
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where 	 is the flow parameter. The variables oi denote orbital
indices and ki = (ki, iωi ) combined momenta and Matsubara
frequencies. The indices 1 and 2 denote the two incoming
particles while 3 and 4 denote the two outgoing particles. Here
the SU(2) symmetry is fulfilled by the requirement that the
configuration for the spin indices of the interaction is fixed
by the Kronecker delta δs1,s3δs2,s4 , which means the incoming
particle 1 and the outgoing particle 3 have the same spin
projection and particles 2 and 4 have the same spin projec-

tion [39]. Since k4 can be determined by momentum/energy
conservation, k4 = k1 + k2 − k3, the two-particle vertex is de-
noted as V 	

o1o2;o3o4
(k1, k2, k3) in the following to abbreviate the

notation.
Without self-energy corrections, the SU(2) symmetric flow

equations in the level-2 truncation for the two-particle inter-
action in the cfRG scheme can be obtained by employing the
Wick-ordered fRG formalism [32] and read as follows:

∂	V 	
o1o2;o3o4

(k1, k2, k3) = ∂	P	
o1o2;o3o4

(k1, k3; s) + ∂	D	
o1o2;o3o4

(k1, k4; t ) + ∂	C	
o1o2;o3o4

(k1, k3; u), (2)

where the Mandelstam variables are introduced as

s = k1 + k2, t = k3 − k1, u = k4 − k1. (3)

The three terms on the right-hand side of the flow equation Eq. (2) are called the particle-particle channel (P), the direct particle-
hole channel (D), and the crossed particle-hole channel (C), respectively. The expressions are given by (using N for the number
of unit cells, T for the temperature)

∂	P	
o1o2;o3o4

(k1, k3; s) = T

N

∑
k

õ1õ2; õ3õ4

V 	
o1o2;õ1õ2

(k1, s − k1, k)∂	

[
G	

õ1õ3
(k)G	

õ2 õ4
(s − k)

]
V 	

õ3õ4;o3o4
(k, s − k, k3), (4)

∂	D	
o1o2;o3o4

(k1, k4; t ) = −2T

N

∑
k

õ1õ2; õ3õ4

V 	
o1õ4;o3õ1

(k1, k + t, k1 + t )∂	

[
G	

õ1õ3
(k)G	

õ2 õ4
(k + t )

]
V 	

õ3o2;õ2o4
(k, k4 + t, k + t )

+ T

N

∑
k

õ1õ2; õ3õ4

V 	
o1õ4;o3õ1

(k1, k + t, k1 + t )∂	

[
G	

õ1õ3
(k)G	

õ2 õ4
(k + t )

]
V 	

õ3o2;o4õ2
(k, k4 + t, k4)

+ T

N

∑
k

õ1õ2; õ3õ4

V 	
o1õ4;õ1o3

(k1, k + t, k)∂	

[
G	

õ1õ3
(k)G	

õ2 õ4
(k + t )

]
V 	

õ3o2;õ2o4
(k, k4 + t, k + t ), (5)

∂	C	
o1o2;o3o4

(k1, k3; u) = T

N

∑
k

õ1õ2; õ3õ4

V 	
o1õ4;õ1o4

(k1, k + u, k)∂	

[
G	

õ1õ3
(k)G	

õ2 õ4
(k + u)

]
V 	

õ3o2;o3õ2
(k, k3 + u, k3). (6)

The diagrammatic representation of the flow equation is
depicted in Fig. 2. The dot over the four-point vertex denotes
the derivative with respect to the cutoff 	 and the slashed loop
line represents the single-scale propagator S	 = dG(0),	

o1o2
/d	.

Only one type of one-loop diagram is generated for the P
channel (PP) and C channel (PHcr). There are three one-loop
diagrams for the D channel, one corresponding to the RPA-
type diagram (RPA) and the other two to the vertex corrections
(VC1, VC2). The cRPA can be reproduced by keeping only
the RPA-type series diagram (the red diagram) in the D chan-
nel. It is readily seen that the cfRG goes beyond cRPA by
including more one-loop diagrams and these can produce
significant corrections to the cRPA effective interaction [35].

In general, the two-particle interaction V 	 at the en-
ergy scale 	 generated by integrating out the high energy
bands during the renormalization group flow is a function
of spin indices, orbital indices, wave vectors, and Matsubara
frequencies. The rich information incorporated in this effec-
tive interaction might lead to qualitatively different physical
effects. For example, the frequency dependent interaction
downfolded from the frequency independent bare interactions

was shown to be crucial to open up a gap in undoped La2CuO4

[38]. On the other hand, this complexity makes it challeng-
ing to perform numerical simulations for realistic multiband
systems. To simplify the calculations, we use the intraorbital
on-site and instantaneous bilinear interaction approximation
of Ref. [34] where the interaction term is represented by

V 	
o1o2;o3o4

(k1, k2, k3) = P	
o1o2;o3o4

(k1, k3; s) + D	
o1o2;o3o4

(k1, k4; t )

+C	
o1o2;o3o4

(k1, k3; u)

� P	
o1o3

(s)δo1o2δo3o4 + D	
o1o2

(t )δo1o3δo2o4

+C	
o1o2

(u)δo1o4δo2o3 . (7)

In this approximation, each channel depends on one collec-
tive wave vector and one bosonic Matsubara frequency, s,
t , or u, respectively. This allows one to understand the D
channel as a potentially retarded interaction between density
fermion bilinears. In the intraorbital on-site approximation,
the two fermion operators of this bilinear have the same site,
orbital, and spin index, with the latter being summed over.
Yet, the two bilinears coupled by this interaction in the D
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RPA

PP PHcr

VC1 VC2

= +

++-2

FIG. 2. Diagrammatic representation of the fRG flow equations.
The cRPA is equivalent to the red diagram denoted as RPA. The dot
over the interaction vertex on the left-hand side of the flow equation
denotes the derivative with respect to the cutoff 	. The internal solid
line represents the free propagator and the slashed solid line denotes
the corresponding single-scale propagator.

channel can differ, i.e., o1 	= o2 in the second line above, and
hence nonlocal interactions are captured as well. The C- and
P-channel terms can, in the same approximation, be inter-
preted as potentially retarded spin exchange and pair-hopping
terms, such that the effective interaction contains on-site and
nonlocal, orbital-dependent density-density, exchange, and
pair-hopping interactions.

The above equations are written in the orbital basis as
the interaction part of the three-band model is given in the
orbital basis. However, it is physically much more intuitive to
describe the downfolding procedure in the band basis. More
specifically, the loop term in the particle-particle channel can
be written as

G	
õ1õ3

(k)G	
õ2 õ4

(s − k)

=
∑
n1,n2

Uõ3,n1 (k)Uõ4,n2 (s − k)

× [
G	

n1
(k)G	

n2
(s − k)

]
U †

n1,õ1
(k)U †

n2,õ2
(s − k), (8)

where n1 and n2 are band indices and U are the unitary matri-
ces which diagonalize the noninteracting Hamiltonian h0(k)
in Eq. (1). Here we use the flat-cutoff scheme where the reg-
ulator simply switches off the high-energy bands irrespective
of their energy and momentum and the propagator G	

n (k) is
given by

G	
n (k) =

{
	G(0)

n (k) for n ∈ high-energy bands,

G(0)
n (k) for n ∈ target bands.

(9)

The above form of the propagator excludes the contribution
from the loop term composed of two target-band propagators
as the 	 derivative equals 0 in this case. The effective interac-
tion V 	

o1o2;o3o4
in the orbital basis can be obtained by integrating

the flow equations from 	 = 1 down to 	 = 0. Then the
effective interaction V 	

tt,tt (k1, k2, k3) in the target band denoted
by the band index t can be obtained by projections with the
orbital-to-band transformation unitary matrices U ,

V 	
tt ;tt (k1, k2, k3) =

∑
o1o2o3o4

Uo1,t (k1)Uo2,t (k2)

×V 	
o1o2;o3o4

(k1, k2, k3)U †
t,o3

(k3)U †
t,o4

(k4).

(10)

The zero-frequency momentum average of this quantity with
all high-energy bands removed at 	 = 0 can be used to
define the effective target-band on-site repulsion (see also
Refs. [34,35])

Ueff = 1

N3

∑
�k1,�k2,�k3

V 	=0
tt ;tt (k1, k2, k3)

∣∣
s=u=t=0

. (11)

In the following we calculate and compare three different
types of effective interactions V 	

o1o2;o3o4
(k1, k2, k3) in Eq. (10),

which are then used in Eq. (11): the bare interaction, the
cRPA-screened interaction, and the cfRG interaction. The
bare interaction is the unrenormalized interaction projected
onto the target band using Eq. (10) with band index t given by
the target band. The bare interaction is Matsubara frequency
independent as the orbital-to-band transformations are only
momentum dependent. Both the cRPA and the cfRG interac-
tions are functions of momenta and Matsubara frequencies as
visible from Eq. (7). For the static effective on-site repulsion
Ueff in Eq. (11), we set all these collective frequencies s, t ,
and u to zero. In principle, even for on-site bare interactions,
the projected effective interactions will have nonlocal terms.
For the given situation these nonlocal terms will however be
rather small, as can be inferred, e.g., from Ref. [34].

Besides the static Ueff, we discuss a frequency-dependent
Ueff(ωn) as

Ueff(ωn) = 1

N3

∑
�k1,�k2,�k3

V 	=0
tt ;tt (k1, k2, k3)

∣∣
s=u=t=ωn

. (12)

Fixing the total incoming frequency s and the two transfer
frequencies t and u to the same value is of course an ap-
proximation to the full three-frequency dependence of the
effective interaction. At least, this compromise, introduced
in Ref. [34], captures the true frequency dependence in the
limit of very small or very large values of these frequencies.
Furthermore, for the QMC solution of the effective model
within DMFT, this reduction is currently necessary. Below we
use DMFT(QMC) to solve the half-filled low-energy effective
one-band models with the frequency-dependent cfRG and
cRPA effective interactions. The calculations are performed
on a 16 × 16 lattice at a temperature T = 0.1. Note that as we
are integrating out degrees of freedom at intermediate energy
scales, all renormalizations have a rather mild structure in
momentum space. We have checked that the differences to
24 × 24 lattices are minute.

III. RESULTS

In this section we calculate the effective interactions in
the low-energy target band for the three-band Emery model
with cRPA and cfRG as a function of the charge-transfer
energy �d p and the interatomic 2p-3d interaction Upd , in both
undoped or doped situations. We begin the discussion with
the results for the undoped state, which corresponds to each
CuO2 unit cell occupied by five electrons. Since the two high-
energy bands are completely filled, we use the parameter n to
denote the filling of the target band for simplicity and n = 1
corresponds to half-filling of the target band. Subsequently,
the electron-doped (n > 1) and hole-doped (n < 1) cases will
be discussed.
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FIG. 3. Upper panel: The frequency dependence of the effective
on-site (i.e., momentum averaged) interaction in the target band at the
Fermi level. Lower panel: The momentum dependence of the static
(zero frequency) effective interaction in the target band. All values
are given in units of eVs.

A. Frequency and momentum dependence
of the effective interactions

As can be seen from the cfRG flow equations, Eq. (2), the
downfolded effective interaction will develop rich frequency
and momentum structures even for static bare interactions.
We show the momentum averaged effective interactions Ueff

as defined in Eq. (11) as a function of Matsubara frequency
for Upd = 2, �d p = 2 at half-filling in the upper panel of
Fig. 3. The bare effective interaction without loop corrections
is Matsubara frequency independent but lower than the Udd

interaction in the three-band model, due to the transformation
(11). The cfRG and cRPA results are nontrivial functions of
Matsubara frequency ωn. In the static limit, cfRG and cRPA
screen down the bare interaction to less than 80% and this
screening effect is slightly stronger in cRPA than that in
cfRG. Initially, the cfRG effective interaction is decreasing
with increasing ωn, while the cRPA effective interaction is
increasing. However, the frequency dependence of the cfRG
effective interaction is nonmonotonic and exhibits an upturn
around ωn ≈ 13. This nonmonotonic behavior of the cfRG
interaction is expected, as screening becomes ineffective at
high frequencies and both the cfRG and cRPA effective inter-
actions should approach the bare interaction. The maximum
at zero frequency in the cfRG interaction can be understood
as an effect of the antiscreening C channel that mixes into

the charge channel most strongly at small frequencies. The
frequency-dependent effective interaction has been argued to
play a crucial role in opening the gap for the insulating state
of La2CuO4 [38] and it shares similar features within the
cuprate family [40]. Note that the analytic continuation from
Matsubara to real frequencies remains a challenging task and
is left for future work.

The lower panel of Fig. 3 illustrates the momentum
dependence of the zero frequency interactions along the high-
symmetry directions of the Brillouin zone. All of the three
interactions have a strong momentum dependence with the
maximum values at the � point. As k moves from � = (0, 0)
to X = (π, 0) and X to M = (π, π ), the interactions decrease
and reach the minimum value at M point. Along M to �,
the opposite behavior is observed. Compared with the bare
interaction, the suppression is stronger along X to M and
becomes smallest at the � point. The overall suppression of
the static value is weaker in cfRG than in cRPA.

One main take-away message from these figures is that
the differences between the frequency and momentum de-
pendencies of the three interaction types, bare, cRPA, and
cfRG, is less prominent that the overall suppression effects
in cRPA and cfRG. Hence, in a first analysis one can con-
centrate on the local, zero-frequency effective interaction, the
“effective U .”

B. Undoped case for different �d p with fixed Ud p

The charge-transfer energy �d p is one of the key pa-
rameters in the Emery model and the value of �d p varies
substantially between different cuprate families. The strength
of the d-p hybridization and the charge (spin) distribution
on the CuO2 layer are controlled by the value of �d p. The
physical properties of the Emery model have been found to
vary fundamentally with �d p in the underdoped regime [41]
and even at half-filling [42]. Moreover, both theoretical and
experimental results suggest that �d p is anticorrelated with
the maximal transition temperature Tc,max in cuprates [43–46],
that is, reducing �d p yields a larger Tc,max. However, it is
difficult to determine the accurate value of �d p from ab initio
calculations. As mentioned before, the gap between the low-
energy target band and the high-energy screening bands is
roughly given by �d p. Thus, it is interesting to investigate the
screening effect of the Emery model as a function of �d p. In
this subsection we set Ud p = 2 and scan the charge-transfer
energy �d p.

From the upper panel of Fig. 4 one can clearly see that
the screening is slightly stronger for cfRG compared to cRPA
when �d p < 1 and becomes weaker as �d p increases. As the
values of �d p in most of the cuprates families are larger than
1 [42], overscreening of the static U in the cRPA downfold-
ing scheme is expected for realistic ab initio calculations.
Screening is less effective for larger �d p in cfRG, where
the effective interaction is screened down to 70% of the
bare interaction for the smallest �d p and 92% of the bare
interaction for the largest �d p used in this study. This is
consistent with the physical picture that a stronger correlation
for the target band is obtained with a larger �d p as the d-p
hybridization is weaker. However, the ratio of the cRPA effec-
tive interaction to the effective bare interaction (U cRPA

eff /Ubare)
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FIG. 4. Upper panel: The effective interaction and the bandwidth
of the target band as a function of �d p. Lower panel: The channel
coupling functions as a function of �d p. Data for Udd = 13.

for different �d p remains almost unchanged. Note however
that larger �d p also implies a narrower conduction band
(see Fig. 4), i.e., the effective correlation strength increases
even more with �d p than what is suggested by the increase
of U (0).

According to Eq. (2), the final cfRG interaction can be
decomposed into the sum of three channels (D, C, and P).
To gain further insights into the cfRG results, we show the
three channel coupling functions and the bare interactions
in the lower panel of Fig. 4. From this plot we see that
both the direct and crossed particle-hole coupling functions
are positive while the particle-particle coupling functions
are negative for all the �d p studied. With increasing �d p,
the absolute values of the three channel coupling functions
increase. The direct particle-hole coupling function is ap-
proximately equal to the bare interaction, which implies that
the RPA contribution (RPA in Fig. 2) to the screening is
almost canceled by the vertex corrections (VC1 and VC2
in Fig. 2). This near-cancellation behavior has also been
found in Ref. [35]. Since the particle-particle coupling func-
tion is more negative than the positive crossed particle-hole
coupling function, the bare interaction is screened down in
cfRG.

FIG. 5. Upper panel: The effective interaction and the bandwidth
of the target band as a function of Ud p. Lower panel: The renormal-
ized channel coupling functions as a function of Ud p.

C. Undoped case for different Ud p with fixed �d p

The interatomic 2p-3d interaction Ud p in the Emery model
is often neglected because Ud p is small compared to Udd .
However, detailed numerical calculations have been per-
formed to argue that in DMFT calculations the inclusion
of Ud p, at least at the Hartree level, is crucial to drive a
metal-insulator transition of the charge-transfer type for the
Emery model [37,38]. Furthermore, excitonic fluctuations in
the doped cuprates [47] and photoinduced band shifts [48]
may also be affected by Ud p. In this subsection we discuss the
momentum averaged static effective interactions Ueff(ωn = 0)
as a function of Ud p at half-filling for fixed charge-transfer
energy �d p = 2.

The results are presented in Fig. 5. Here the reduction
of the bare interaction is stronger for cRPA. In contrast to
the �d p dependence, in both cases, the ratios of the down-
folded effective interaction to the bare effective interaction for
different Ud p are almost the same. Also the width of the
conduction band does not depend on Ud p.

The overall changes of the effective interactions as a func-
tion of Ud p are less significant compared to the variation with
�d p. Our data indicate that larger Ud p corresponds to stronger
correlations in the low-energy target band. Together with the
DMFT result that a charge gap opens in the one-band Hubbard
model if the effective interaction goes beyond some critical
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FIG. 6. Upper panel: The effective interaction as a function of
doping. Lower panel: The renormalized channel coupling functions
as a function of doping. Here we set set Ud p = 2 and �d p = 2.

value [15], the trend found in Ref. [37] is consistent with our
results. In the lower panel of Fig. 5 the three channel cou-
pling functions together with the bare interactions are given.
Again, the near cancellation of the direct particle-hole cou-
pling function is observed. However, the coupling functions
in the crossed particle-hole and particle-particle channels are
nearly independent of Ud p.

D. Doped case for fixed Ud p and �d p

The doped system is more interesting, since many of the
correlation driven exotic phases (pseudogap, strange metal,
and various density wave states) have been proposed and
observed in the doped cuprates [49–51]. In many numerical
studies, the model parameters are treated as independent of
doping, however, it should be noted that the values of �d p

and Ud p may change upon doping due to the shift of the O 2p
and Cu 3d states [52]. Accordingly, the values of the effective
interactions should change, as discussed in the previous sub-
sections for the undoped cases. To simplify the discussion and
focus on the changes of the effective interactions originating
from doping, we ignore this effect in this subsection and set
Ud p = 2 and �d p = 2.

We show in Fig. 6 the doping dependence of the mo-
mentum averaged static effective interactions and the channel

decomposed results. Obviously the bare interaction remains
constant as a function of doping since the orbital-to-band
transformation matrices are independent of band filling. In
cfRG, the correlation strength is suppressed with increasing
filling n, and the crossed particle-hole channel is responsible
for this decrease of the effective interaction. This suggests
that the correlations are stronger in the hole-doped system
compared with the electron-doped system. Similar to our
results for the undoped cases, the near cancellation in the
direct particle-hole channel is also found here. Contrary to
the crossed particle-particle channel, the effective interaction
in the particle-particle channel slightly increases with dop-
ing. Besides the direct particle-hole channel, the contributions
from the crossed particle-hole channel outweigh the particle-
particle channel for n < 0.7, which results in the antiscreening
effect. Here the cRPA results follow an opposite trend com-
pared to cfRG as a function of doping. The screening effects
become weaker with increasing n. The two downfolded inter-
action curves cross near n = 1.1, below which the effective
interaction is stronger for cfRG. In Refs. [40,53] the cRPA re-
sults suggest that most electron-doped cuprates have a smaller
U compared to the hole-doped ones. At first sight this seems to
contradict with our results. However, their results are obtained
by doping different parent compounds, which means that dif-
ferent model parameters are used during the calculation. It
still remains an experimental challenge to systematically scan
the phase diagram from hole doping to electron doping for a
single material [54].

IV. DMFT SOLUTION OF THE LOW-ENERGY MODEL

If the interactions are restricted to the local density-density
component, the downfolded single-band models with fre-
quency dependent Ueff(ωn) can be solved with DMFT using
the techniques developed in Refs. [55,56]. In DMFT the
lattice system is mapped to an impurity model with a self-
consistently determined bath of noninteracting electrons (or
hybridization function) [15]. It is known that DMFT ignores
nonlocal correlations in the self-energy, but it is a well-studied
technique that allows one to detect the Mott transition, which
is the main effect caused by the dominant part of the elec-
tronic interactions. Here, we focus on the changes in the Mott
transition between cRPA and cfRG effective interactions as
seen by DMFT as a measure for the difference between these
two downfolding schemes and for the relevance of the cfRG
corrections. An efficient method for solving the effective im-
purity model is the hybridization expansion continuous-time
Monte Carlo technique [57], which expands the partition
function of the impurity model in powers of the hybridiza-
tion function and stochastically samples the corresponding
diagrams. In the case of frequency-dependent interactions,
all the fermionic creation and annihilation operators in these
diagrams are linked by a bosonic function K (τ ), which is the
twice integrated retarded interaction [58,59],

K (τ ) = 1

β

∑
n 	=0

Ueff(ωn) − Ueff(0)

(iωn)2
(e−iωnτ − 1), (13)

while the instantaneous interaction is given by the static value
Ueff(0). The output of the impurity solver is the impurity
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FIG. 7. Effective interactions (top panels) and local spectral functions (bottom panels) for the downfolded single-band models with �d p =
1.75, 2, and 4 (from left to right).

Green’s function G, which at self-consistency becomes the
DMFT approximation to the local lattice Green’s function.

In Fig. 7 we plot U (ωn) and the resulting DMFT spectral
functions A(ω) = − ImG(ω)

π
, obtained with maximum entropy

analytical continuation [60], for three different values of �d p.
For �d p = 1.75, the model is metallic, while for �d p = 2 it
is a small-gap insulator and for �d p = 4 a large-gap insulator.
This metal-insulator transition is a consequence of the �d p

dependence of Ueff(ωn) and the bandwidth of the low-energy
model (Table I). It becomes clear though from the upper
panels of Fig. 7 that the static values of Ueff are not sufficient to
quantify the interaction effects, because of the frequency de-
pendence, which is qualitatively different for cfRG and cRPA
downfolding. For example, the insulator-metal transition hap-
pens at almost the same critical �d p for the cfRG and cRPA
interactions, despite their substantially different static values,
because of the opposite low-energy screening properties (see
also Sec. III A). While the static cfRG interaction is larger than
the static cRPA interaction, it initially decreases as a function
of ωn, as a result of low-energy antiscreening processes, which
are not captured by cRPA. The latter downfolding procedure

TABLE I. Static interactions and bandwidths of the downfolded
models for different �d p.

�d p Ueff(0) cfRG Ueff(0) cRPA Bandwidth

1.75 3.92 3.68 3.83
2 4.19 3.85 3.69
2.5 4.78 4.20 3.35
3 5.41 4.57 3.08
4 6.67 5.34 2.54

leads by construction to a monotonically increasing Ueff(ωn).
Hence, the effective interaction strength in the two down-
folded models is comparable, which leads to similar critical
�d p, while the shape of the spectral functions is different. It
will be interesting to see if this holds for a more general class
of systems.

A direct measure of the effective interaction strength is
the average double occupation D = 〈n↑n↓〉, which is plotted
as a function of �d p in Fig. 8. These results confirm that
the cRPA and cfRG interactions, if the full frequency de-
pendence is taken into account, produce similar correlation
effects. According to this measure, the cfRG interaction is
effectively weaker than the cRPA interaction in the vicinity of
the insulator-metal transition, despite the larger static values,
while it is effectively stronger for �d p � 2.5.

FIG. 8. Double occupancy D as a function of �d p.

125130-8



INVESTIGATION OF THE EFFECTIVE INTERACTIONS … PHYSICAL REVIEW B 103, 125130 (2021)

The frequency dependence of the interaction contains in-
formation on the screening processes involving the p bands,
which propagates into the DMFT solution of the low-energy
model. In particular, the spectra obtained with the cRPA in-
teraction feature broad satellites at an energy comparable to
the d-p splitting in the original band structure, as has been
discussed in the context of previous DMFT+UcRPA(ω) stud-
ies [38,61]. The spectrum for the cfRG interaction does not
exhibit such satellites, presumably because of the qualita-
tively different frequency structure with an antiscreening peak
around ω = 5 in the real-frequency spectrum ImUeff(ω).

V. SUMMARY

We have presented a study of the downfolded effective in-
teractions for the Emery model by comparing cRPA and cfRG
schemes. The momentum and frequency structure was stud-
ied and we calculated the effective interactions by scanning
the values of the charge transfer gap �d p and the inter-
atomic 2p-3d interaction Upd at half-filling. By including all
five one-loop diagrams in cfRG, we have found significant
corrections to the cRPA effective interactions for some param-
eter sets. The static interaction was generically found to be
overscreened by cRPA, which suggests that including other
one-loop terms and vertex corrections can lead to different
predictions. According to our data, the effective interaction in-
creases as �d p increases, and the trend is similar as a function
of Upd if one of the parameters is fixed. This indicates that
the charge transfer insulating state is stabilized by a larger
�d p or Upd , which is compatible with the results obtained
in Ref. [37]. The effective interaction was found to be more
sensitive to �d p than Upd .

We also studied the doping dependence of the effective
interactions. Away from half-filling, the cfRG interaction de-
creases with increasing particle density mainly due to the
decrease of the crossed particle-hole channel, while the op-

posite trend is observed for cRPA. An antiscreening effect
which cannot be captured by cRPA, is found by cfRG in the
hole-doped case. For all the cases studied in this paper, a near
cancellation of the direct particle-hole channel is observed.

In the end it should be noted that the comparison of the
two downfolding methods is at the level of the effective inter-
actions. It will be very interesting, in the future, to compare
the ground state properties by solving the effective one-band
models, which requires advanced numerical methods. We
have presented here DMFT results which capture the fre-
quency dependence of the local density-density interactions.
These results showed that the effective correlation strength of
the cRPA and cfRG downfolded models is actually quite sim-
ilar, despite the substantial differences in the static values of
U . This is the result of an opposite trend in the ωn dependence
of the interactions. More advanced formalisms are needed to
investigate the effect of the non-density-density and nonlocal
interactions induced by the downfolding.

Finally, we should mention that the exact downfolding
not only produces a frequency-dependent effective interac-
tion, but also a renormalized bare propagator GcRPA

0 or GcfRG
0 .

The bandwidth is usually reduced by self-energy corrections
[11,62], but the momentum dependence of the renormal-
ization can be nontrivial. These renormalization effects are
ignored in our paper. A reduction of the bandwidth would lead
to stronger correlations in the low-energy model, which could
further enhance the discrepancy between the cfRG and cRPA
downfolded models. The investigation of this effect is left for
a future study.
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