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Theory of dipole insulators
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Insulating systems are characterized by their insensitivity to twisted boundary conditions as quantified by the
charge stiffness and charge localization length. The latter quantity was shown to be related to the expectation
value of the many-body position operator and serves as a universal criterion to distinguish between metals
and insulators. In this work we extend these concepts to a new class of quantum systems having conserved
charge and dipole moments. We refine the concept of a charge insulator by introducing notions of multipolar
insulators, e.g., a charge insulator could be a dipole insulator or dipole metal. We develop a universal criterion
to distinguish between these phases by extending the concept of charge stiffness and localization to analogous
versions for multipole moments but with our focus on dipoles. We are able to relate the dipole localization scale to
the expectation value of a recently introduced many-body quadrupole operator. This refined structure allows for
the identification of phase transitions where charge remains localized but, e.g., dipoles delocalize. We illustrate
the proposed criterion using several exactly solvable models that exemplify these concepts and discuss a possible
realization in cold-atom systems.
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I. INTRODUCTION

Kohn’s seminal work on the theory of insulators pinpointed
electron localization as the origin of insulating states [1]. In
this work he proposed that a fundamental characteristic of
insulators is their insensitivity to twisted boundary conditions,
and he quantified this through the charge stiffness (Drude
weight)

Dc = 1

V

∂2E0(k)

∂k2
, (1)

where E0(k) is the ground state energy as a function of k,
the twisted boundary condition phase, and V is the volume.
Kohn’s criterion for distinguishing insulators from metals is
that Dc → 0 in the thermodynamic limit for insulators and
is nonvanishing for metals. Decades later, connections were
made between the charge stiffness and superfluid stiffness
leading to criteria that distinguish metals, insulators, and su-
perconductors [2].

More recently Kohn’s criterion was readdressed in the
works of Refs. [3–5] which augmented Kohn’s charge stiff-
ness with the charge localization length ξc. These latter
references also reaffirmed the role of localization in distin-
guishing insulating states from metallic states. Remarkably,
the localization length ξc is related to the magnitude of the
ground-state expectation value of the many-body operator [6]

UX = exp

[
2π iX̂

Lx

]
, (2)
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where X̂ = ∑N
a=1 x̂a is the many-body position operator.

Given a ground state |�0〉, the quantity zX = 〈�0|UX |�0〉 can
be used to determine the localization length in the x direction
from its magnitude |zX | [3,4], while its complex phase is
proportional to the x component of the charge polarization
[6]. The works of Refs. [5,7] went on to relate |zX |, and hence
ξc, to the fluctuations of the x component of the polarization,
which, through the fluctuation-dissipation theorem, can be
tied to the conductivity. This collection of groundbreaking
work sets up a universal criterion for the distinction between
metals and insulators from the many-body expectation value:
|zX | → 1 (0) for insulators (metals) in the thermodynamic
limit. The physical interpretation of this quantity is made
by connecting |zX | to ξc (which tends to a finite value for
insulators and infinity for metals). Furthermore, from fluc-
tuation dissipation, the dipole fluctuations (which tend to ξ 2

c
in an insulator and infinity in a metal) are tied to the DC
conductivity (which tends to zero for insulators, or nonzero
in metals) in the thermodynamic limit [3–5].

In this paper we extend these concepts to a new class of
quantum systems that more naturally supports dipole transport
instead of charge transport. Hence, our focus is on systems
with both conserved charge and conserved dipole moments.
Given a system that is a charge insulator, we develop criteria
for distinguishing classes of matter based on whether they are
dipole conductors or dipole insulators using suitably modified
versions of the concepts mentioned above. The motivation for
this work is based on recent developments in some classes
of matter that are more aptly described in terms of dipole
dynamics rather than charge dynamics. This includes some
fracton phases of matter [8–20] and some multipole band in-
sulators [21,22]. Our primary focus will be on fracton matter,
which is characterized by the lack of mobility of the funda-
mental charges in the system and the constrained dynamics of
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multipole objects [15,18,20,23–39]. Hence, fractons are inher-
ently charge insulators, but since some fracton phases have
locally conserved dipole moments [32], it is natural to ask
if we can distinguish these charge insulator phases based on
whether they are conductors or insulators of dipoles. Instead
of taking a gauge theory approach to address these questions
(see Ref. [40] for some related discussion along these lines),
we will take the technology discussed above for charge insu-
lators and adapt it to describe higher multipole systems. While
serving an important technical purpose, taking this approach
also sheds light on the higher rank gauge fields. In our formu-
lation, these exotic fields play the key role in probing charge
insulating materials that allow for the dynamics of the electric
dipole moments. We believe that our advancements help pave
the way towards the experimental platforms realizing key
aspects of fracton phases of matter.

Our paper is organized as follows. First we provide
definitions/criteria to distinguish dipole metals and insulators
by defining a dipole stiffness Dd and dipole localization scale
λd . We show how λd is related to the ground-state expectation
value of a recently proposed many-body twist operator [41,42]

UXY = exp

[
2π iX̂Y

LxLy

]
, X̂Y =

N∑
a

x̂aŷa (3)

and subsequently to the fluctuations of the quadrupole mo-
ment and dipole conductivity. Additionally, we show that
the Berry phase associated with the twist implemented by
UXY can be used to distinguish between the dipole insulating
phases with different overall quadrupolar polarizations. We
provide some exactly solvable models on which we can test
our criteria and then discuss a possible physical realization
for a dipole metal/insulator in cold-atom systems with ring-
exchange interactions. We point out that such systems allow
phase transitions where the charge gap remains open, but the
dipole gap closes (alternatively where the dipole fluctuations
remain finite, but the quadrupole fluctuations diverge). Fi-
nally, we conclude with a short discussion on the possible
application of our work to higher multipole band insulators
and dipole superconductors.

II. KOHN ANALOGY

The theory of charge transport relies on the global
conservation of charge which manifests in a symmetry trans-
formation of charged operators eiqα where α is a constant
and q is the charge. Similarly, if we want to discuss dipole
transport we need both global charge and dipole conservation,
i.e., both the global particle number and dipole moment are
fixed. The latter condition manifests in an invariance under
symmetry transformations of the form eiα·x, where α is a
constant vector, i.e., these transformations are exponentials
of linear functions of the position coordinates [32,43,44]. A
generic Hamiltonian with dynamics that obeys these conser-
vation laws must commute with both types of transformations.

To determine the conducting/insulating properties of such
systems we need to consider transport in response to applied
fields. Hence, we need to couple our system to a background
gauge field. From conventional electromagnetism we expect
dipole charges and currents to (minimally) couple to the

derivative of the gauge field ∂iA j via di∂iA j , where di is the
dipole moment vector. Alternatively, in the study of fractonic
phases of matter it has been shown that it is often natural to
couple dipolar excitations to symmetric, rank-2 gauge fields
[32,45]. The rank-2 gauge fields Ai j obey a gauge transforma-
tion Ai j → Ai j + ∂i∂ jγ , where γ is an arbitrary function.

For this paper we will focus on the rank-2 coupling as
the models we consider naturally couple to a rank-2 gauge
field. The type of gauge coupling one should consider, i.e.,
rank-1 or rank-2, is context dependent. On one hand, if the
microscopic composition of a dipole into constituent particles
can be probed, then coupling to a rank-1 vector potential may
be more appropriate, since any processes involving charged
particle dynamics will violate the rank-2 gauge invariance. On
the other hand, in situations where charged particle dynamics
are completely frozen, such as in fracton models and the
models we consider below, then rank-2 gauge fields may be
more natural. We provide more discussion of this issue and
mention some subtle distinctions between rank-1 and rank-2
couplings in Appendix A.

While most of the explicit work that couples rank-2 gauge
fields to matter has been focused on discrete lattice models,
Ref. [45] determined a minimal coupling prescription for a
gauge-covariant kinetic operator in a continuum theory

Di j[	] = 	∂i∂ j	 − ∂i	∂ j	 − iAi j	
2. (4)

This operator acts on a charged matter field 	 and includes
coupling to a rank-2 symmetric gauge field Ai j, where a rank-
2 gauge transformation acts as

	 → eiγ (x)	, Di j[	] → e2iγ (x)Di j[	]

Ai j (x) → Ai j (x) + ∂i∂ jγ (x). (5)

Let us now focus on a class of 2D Hamiltonians built from
only the Dxy kinetic operators and potentials that depend on
	. It is straightforward to generalize our considerations to
include other Di j components and to treat other dimension-
alities. We can start with a many-body, dipole-conserving
Hamiltonian Hd with the ground state �0(x1, y1; x2, y2...).
Importantly, since Hd commutes with dipole transformations
of the form eiα j X̂ j

, it also commutes with the twist operators
UX and UY . Thus, the eigenstates of Hd can be chosen to
simultaneously diagonalize UX and UY since they commute
with each other. A physical consequence, drawn from Ref. [5],
is that these eigenstates have vanishing dipole fluctuations
and hence vanishing charge localization length. Explicitly, we
have for UX :

UX �0 = exp

[
2π iX̂

Lx

]
�0 = exp(2π ipx )�0, (6)

where px/Ly is the polarization in the x direction (where px is
defined modulo 1) and similarly for UY and the corresponding
py.

In analogy with Kohn’s work [1], let us consider the effects
of shifting the rank-2 gauge potential in the Hamiltonian by a
constant Axy → Axy + q. The field Axy minimally couples to
a dipole current density jxy ≡ jd that captures the flow of x
dipole in the y direction and y dipole in the x direction. Thus,
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in analogy to the charge current we can write

jd (q) = − 1

V

∂E (q)

∂q
, (7)

where E (q) is the ground state energy of Hd with Axy shifted
by q. Using linear response, we can also formulate a dipole
conductivity as

jd = σd Exy, (8)

where Exy = ∂t Axy is the rank-2 analog of the electric field. In
Appendix B we show that we can define a dipole stiffness that
is directly related to this dipole conductivity as:

π lim
ω→0

Imωσd (ω) ≡ Dd , (9)

where

Dd = −π

V

∂2E (q)

∂q2

∣∣∣∣
q=0

. (10)

Completing the analogy with charge currents, we propose to
use this quantity to distinguish between dipole metals and
insulators: For a regular charge insulator we expect that Dd

either vanishes, in the case of a dipole insulator, or takes a
finite value in the case of a dipole metal. We note that we have
only coupled the system to the Axy gauge-field component,
and in general, there will be analogous quantities for the other
components of Ai j .

To lead into the next section, let us now make the connec-
tion between the rank-2 gauge field shift and the many-body
twist operator UXY (q) = e−iqX̂Y . If we act on the class of
Hamiltonians we are considering, we can define

Hd (q) = U −1
XY (q)HdUXY (q), (11)

where Hd (q) differs from Hd by the replacement Axy →
Axy + q in the kinetic terms (4). Indeed the UXY (q) operator
obeys [Di j,UXY (q)]	 = −iq	2 and thus acts to shift Axy in
Eq. (4) [46].

We find another interesting application of the twisted
Hamiltonian by starting with a Hamiltonian Hd that has a
charge-neutral, unpolarized ground state �0 that is a charge
and dipole insulator. Then one can consider the “instan-
taneous” eigenstates of Hd (q) that are given by |�q〉 =
U −1

XY (q) |�0〉. Treating q as a small, slowly varying parameter,
we can write a perturbative expansion for these states as:

|�q〉 = U −1
XY (q) |�0〉 ≈ eiγQ(q) |�0〉 + · · · , (12)

where we kept the phase factor γQ(q) that is fixed in the initial
state to vanish: γ0(q) = 0. Then it is natural to introduce a
Berry phase in the one-parameter space spanned by q:

γQ = Im
∫ 2π/LxLy

0
dq〈�q|∂q|�q〉, (13)

where γQ ≡ γQ(2π/LxLy).
Now let us provide a physical interpretation of this quan-

tity. We note that the twisting process can be thought of as an
adiabatic evolution of our system from one with Axy = 0 to
a system with Axy = 2π/LxLy. We can carry out this process
via a time-dependent rank-2 gauge field over a large period of

time T :

Axy(t ) = 2π

LxLy

t

T
. (14)

In other words, we turn on a constant rank-2 electric field
Exy = −∂t Axy = −2π/LxLyT and track the ground state evo-
lution over a time period T . On the other hand, away from
the boundaries of the system, Axy is equivalent to the spatial
gradient of a regular vector-potential Ai and so, the Exy field
has a natural interpretation in terms of the ordinary rank-1
electric fields:

Exy = 1

2h̄
(∂xEy + ∂yEx ). (15)

Assuming that the ground state of our system is one of a
charge-neutral, unpolarized insulating system, the gradient of
an electric field couples to the quadrupole moment resulting
into a phase factor:

γQ = 1

h̄

∫ T

0
dt Qxy

1

2
(∂xEy + ∂yEx )

=
∫ T

0
dt QxyExy =

∫ T

0
dt Qxy∂t Axy(t ) = 2πQxy

LxLy
, (16)

where Qxy is the xy quadrupole moment which we assumed
to be static. Thus, the rank-2 Berry phase γQ naturally cor-
responds to the quadrupolar polarization, which might have
been anticipated from the results of Refs. [41,42] where the
twist operator UXY was first introduced.

III. DIPOLE LOCALIZATION AND QUADRUPOLE
FLUCTUATIONS

Coming back to our discussion of dipole metals and dipole
insulators, we will now show how the twist operator UXY =
UXY (q = 2π/LxLy) can be used to determine a dipole local-
ization scale λd (with units of area) in a many body system.
The properties of λd in the thermodynamic limit also lead to
a criterion to distinguish dipole metals from insulators, solely
in terms of the ground state localization properties.

In order to define λd we still enforce dipole conservation so
that the ground state |�0〉 of Hd is an eigenstate of the UX and
UY operators. Now let us consider the expectation value zXY =
〈�0|UXY |�0〉 ≡ 〈UXY 〉0 for the single-dipole state |�0〉. As-
suming that the dipole is localized on a scale much smaller
than the system size LxLy, we can expand the expectation
value in the thermodynamic limit

zXY = 1 + 2π i〈X̂Y 〉0

LxLy
− 4π2〈X̂Y X̂Y 〉0

L2
x L2

y

+ O
(
1/L3

x L3
y

)
. (17)

From this expression we can read off that

1

2π
Im log zXY ≈ 〈X̂Y 〉0

LxLy
= qxy, (18)

log |zXY |2 ≈ − 4π2

L2
x L2

y

[〈X̂Y X̂Y 〉0 − 〈X̂Y 〉2
0

]
, (19)

where the approximation becomes exact in the thermody-
namic limit. These results indicate that the phase of zXY is the
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quadrupole density qxy (as expected from Refs. [41,42]) and
that we can define a ‘dipole correlation area’

λ2
d ≡ −L2

x L2
y

4π2
log |zXY |2 ≈ 〈X̂Y X̂Y 〉0 − 〈X̂Y 〉2

0, (20)

where λd has units of area. From the right-hand side we see
that λd is capturing the fluctuations of qxy, e.g., the spread
of x-oriented dipole in the y direction and vice versa. We
remind the reader that since the ground state is an eigenstate
of UX ,UY , the dipole fluctuations 〈X̂ 2〉0 = 〈Ŷ 2〉0 = 0.

Following Resta [3] we propose a following extension of
this quantity for the state |�Nd 〉 containing Nd dipoles:

λ2
d = − Nd

4π2ρ2
d

log |zXY |2, (21)

where zXY = 〈�Nd |UXY |�Nd 〉 and ρd = Nd
LxLy

is the dipole den-
sity. Most of the models considered in the following section
will have exactly one dipole per unit cell meaning that ρd =
1/a2 with a being the lattice constant in both directions. Also
note that the equality (21) is strict only in the thermodynamic
limit: Nd → ∞, Lx, Ly → ∞ with ρd = const. One can also
derive the localization area from the many-body localization
tensor that can be related to the quantum metric over the space
of rank-2 twists. We show this and provide an example context
toward the end of Sec. V.

To complete the analogy to the charge case, let us now
relate the dipole conductivity σd to the magnitude of UXY

and hence to the quadrupole fluctuations through a fluctuation
dissipation theorem. For a finite system with open boundaries,
the total dipole current for a Hamiltonian H can be written as
Jd

xy = (i/h̄)[H, X̂Y ] [41] (we note that we set electric charge
to unity throughout). As shown in Appendix B, the real part
of the dipole conductivity can be expressed via standard linear
response calculations as

Re σd (ω) = π

V h̄ω

∑
n �=0

〈0| Jd
xy |n〉 〈n| Jd

xy |0〉

× [δ(ωn − ω) − δ(ωn + ω)], (22)

where |n〉 is an eigenstate of H, and h̄ωn = En − E0. Us-
ing the commutation relation above we have 〈0| Jd

xy |n〉 =
−ωn 〈0| X̂Y |n〉, and we can rewrite the integral of the real part
of the conductivity in terms of X̂Y as

V h̄

π

∫ ∞

0

dωRe σd (ω)

ω
=

∑
n �=0

〈0| X̂Y |n〉 〈n| X̂Y |0〉 . (23)

Finally, we will make use of the fact that the energy eigen-
states |n〉 form a complete set and that we can replace∑

n �=0 |n〉 〈n| with 1 − |0〉 〈0|. Using this, we can express the
real part of the conductivity as

V h̄

π

∫ ∞

0

dωRe σd (ω)

ω
= 〈X̂Y X̂Y 〉0 − 〈X̂Y 〉2

0, (24)

which is the fluctuation dissipation theorem for the dipole
conductivity. This result can be applied to periodic systems
by making use of Eq. (19).

Now, after the development of this group of analogies
between charge localization and dipole localization, we can
provide a criterion to distinguish dipole insulators and dipole

metals, given that the system is already a charge insulator
(and has a conserved dipole moment). The criterion is just
whether or not the ground state has delocalized dipoles. For
dipole insulators λd is finite, or equivalently, |zXY | → 1 as the
system size becomes infinite. In dipole metals we have λd →
∞, |zXY | → 0, and the quadrupole fluctuations diverge as
we approach the thermodynamic limit. Interestingly it seems
there are two ways for a dipole insulator to delocalize: (i) the
quadrupole fluctuations can diverge and the system will be-
come a dipole metal, while remaining a charge insulator; (ii) if
we lose exact dipole conservation the dipole fluctuations could
become finite and eventually diverge if the system becomes an
ordinary charge metal.

Let us now provide intuition for our criterion using two
essentially classical examples. First we will present the results
for a localized dipole probability density, and then we will
show results for an extended dipole wave configuration.

A. Localized dipole

Consider the localized dipole probability density

|�(x1, x2)|2 = 1

πσ 2
δ(x1 − x2 − d )e−|x1+x2−2R|2/4σ 2

. (25)

This probability distribution describes, e.g., an electron at x1

and a hole at x2 separated by a fixed (dipole) vector d and
where the center of mass of the dipole is Gaussian localized
near R with a variance of σ 2. This wave function is an eigen-
state of UX and UY with eigenvalues e2π idx/Lx and e2π idy/Ly ,
respectively, and we can identify d as the total dipole of the
system. For σ 	 Lx, Ly, we find to leading order

zXY = exp

[−π2|d|2σ 2

L2
x L2

y

]
exp [2π iqxy],

λd = |d|σ/
√

2, (26)

qxy = (dyRx + dxRy)/LxLy.

In the thermodynamic limit LxLy � σ 2, |d|2 we find that the
magnitude |zXY | → 1, and thus, this configuration would be
classified as a localized dipole state. Interestingly, we find that
λd can diverge if either σ or |d| becomes large, i.e., if the
dipole can move around freely or if the dipole itself becomes
unbound. We note in passing that the qxy calculated here is not
independent of the choice of origin since we only consider a
single dipole and the total dipole moment of the system is
nonvanishing.

B. Dipole wave

To provide an example of a system hosting dipole currents,
let us use a simple version of the rank-2 Lagrangian density
from Ref. [45] that contains only xy kinetic terms for dipoles,
similar to what we have been considering above:

L = |∂t	|2 − m2|	|2 − λ|	∂x∂y	 − ∂x	∂y	|2. (27)

Performing a Legendre transform, we arrive at the Hamilto-
nian density:

H = |∂t	|2 + m2|	|2 + λ|	∂x∂y	 − ∂x	∂y	|2. (28)
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This Hamiltonian density itself is sensitive to the action of the
UXY (q) twist:

H(q) = U −1
XY (q)HUXY (q)

= |∂t	|2 + m2|	|2 + λ|	∂x∂y	 − ∂x	∂y	 − iq	2|2.
(29)

Using a class of classical ‘dipole wave’ solutions (see Ap-
pendix C for more detail)

	p(t, x, y) = εei(pxy−ωt ), (30)

we can calculate both the dipole current (7) and the dipole
stiffness (10) at the twist value q:

jd (q) = λ

V

∫
dxdy

[
iDxy[	p]†	2

p

− i(	†
p)2Dxy[	p] + 2q|	p|4

]
= 2λε4(p + q) (31)

Dd = 2
πλ

V

∫
dxdy|	p|4 = 2πε4λ. (32)

Both of these quantities are nonzero. On the other hand, using
the twist operator method to calculate regular charge current
and Drude weight for this Hamiltonian trivially gives zero
meaning that the system at hand is a conventional insulator.
So H along with the elementary field configuration 	p does
indeed describe a well-defined dipole-conducting system.

IV. LATTICE MODELS FOR 1D DIPOLE
METALS AND INSULATORS

As was mentioned in the previous section, dipole conser-
vation manifests in an invariance under symmetry transfor-
mations of the form eiα·x. Let us consider how that restricts
the form of possible lattice Hamiltonians. A generic term in a
Hamiltonian in a second-quantized language is proportional to
c†

i1
...c†

in
c j1 ...c jm . As is well known, an invariance with respect

to global phase rotations c†
i → e−iθ c†

i , ci → eiθ ci allows only
terms with the same number of creation and annihilation op-
erators, e.g., a quadratic hopping term c†

i c j . As a result, any
Hamiltonian that respects a global U (1) charge-conservation
symmetry conserves total charge in the system.

Requiring an additional invariance with respect to linearly
varying phase rotations eiα·x, which we call a dipole U (1)
symmetry, places restrictions on the relative coordinates of the
operators that can enter the Hamiltonian. For example for an
operator

c†(x+
1 , y+

1 )...c†(x+
n , y+

n )c(x−
1 , y−

1 )...c(x−
n , y−

n ) (33)

to be invariant under both eiαx and eiβy phase rotations
we need to satisfy the following two constraints
on the coordinates of the creation and annihila-
tion operators: α(

∑n
i=1 x+

i − ∑n
i=1 x−

i ) = 2πk and
β(

∑n
i=1 y+

i − ∑n
i=1 y−

i ) = 2π l. Since this must be true
for any real values of α and β and some integers k and l this
requires the sum of x and y coordinates of all annihilated
electrons to equal to the sum of x or y coordinates of
all created electrons, respectively. Hence, any term in
the Hamiltonian allowed by both charge and dipole U (1)

symmetries must conserve both total charge and dipole
moment of the system. An elementary example of the type of
term that satisfies both of these constraints is a dipole hopping
term:

d†
y (x, y)dy(x + 1, y)

= c†(x, y + 1)c(x, y)c†(x + 1, y)c(x + 1, y + 1). (34)

We will use quartic terms like these as basic building blocks
to construct our lattice models.

A. 1D dipole metal, dipole insulator, and dipole superconductor

Let us consider a two-leg ladder of fermion orbitals with its
length along the x direction and a Hamiltonian with nearest-
neighbor dipole hopping interactions and onsite Hubbard
repulsion:

H = J

2

N∑
i=1

(d†
i di+1 + H.c.) + U

N∑
i=1

ni↑ni↓, (35)

where ↑ / ↓ label the two legs of the ladder, di ≡ dy
i ≡ c†

i↓ci↑
is a dipole annihilation operator for a dipole oriented perpen-
dicular to x, i.e., pointing along the rungs of the ladder, and
c†

i↓/↑ creates a fermion on the lower/upper row, respectively.
Thus, the di operator annihilates a particle at site i in the
upper row and creates a particle on the lower row. The dipole
operators commute on different sites:

[d†
i , d†

j ] = [di, d j] = [d†
i , d j] = 0, i �= j, (36)

while operators belonging to the same site obey

{d†
i , di} = ni↑ + ni↓ − 2ni↑ni↓. (37)

Now, let us restrict our model to be at a half filling; since
there is one fermion orbital per row, per site, half filling means
Nx fermions. Additionally we are going to take the potential
U � J to guarantee exactly one fermion per rung of the
ladder, meaning that on every rung i we have a well-defined
dipole state—either empty or occupied as determined by
nd

i ≡ d†
i di = ni↑(1 − ni↓). Without this constraint the dipole

occupation number would be ill defined, as the state c†
i↑c†

i↓ |0〉
is annihilated by both di and d†

i [47]. This constraint further
simplifies the onsite anticommutation relation (37) to be:

{d†
i , di} = 1, {d†

i , d†
i } = {di, di} = 0, (38)

which means that we can now interpret the dipoles di as
conventional hard-core bosons.

If the dipoles are effectively hard-core bosons, our model
can be equivalently rewritten as a spin-1/2 XY model via:

Sα
i = 1

2 �c †
i σα�ci, where �ci = (ci,↑, ci↓)T , (39)

so that

d†
i = 2S+

i , di = 2S−
i . (40)

The resulting spin Hamiltonian is

H = 2J
N∑

i=1

(S+
i S−

i+1 + S−
i S+

i+1). (41)
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This model is exactly solvable in 1D as we can map it to a
free-fermion model via a Jordan-Wigner transformation:

S+
i = eiπ

∑i−1
j=1 c†

j c j c†
i , S−

i = e−iπ
∑i−1

j=1 c†
j c j ci, (42)

and the resulting transformed Hamiltonian is:

H = 2J

(
N−1∑
i=1

c†
i ci+1 + eiπ

∑N
j=1 c†

j c j c†
N c1

)
+ H.c. (43)

Now we would like to understand the properties of the
ground state of this Hamiltonian. To show that the ground
state of this model is a dipole metal we first need to prove
that the model (35) describes a conventional charge insulator.
Following Kohn’s work [1] we demonstrate that this system
is insensitive to twisted boundary conditions. By placing our
dipole hopping Hamiltonian in a constant external (charge)
gauge field A(x) = (kx, ky), and coupling to the lattice hop-
ping terms with Peierls factors, we find every single term
in the Hamiltonian is left completely unchanged. Notably,
the dipole hopping terms would couple only to a gradient of
the charge gauge field. Therefore, the Hamiltonian does not
acquire any dependence on kx or ky, and hence the correspond-
ing values of the charge stiffnesses trivially vanish:

Dα
c ≡ −πe2

V

∂2E

∂k2
α

= 0. (44)

Hence, introducing constant charge gauge field in the
dipole case does not have any effect. On the other hand, by
introducing a constant gauge field gradient A(x) = (qx, qy)
we find that every term picks up a phase factor

d†
i di+1 → eiqd†

i di+1. (45)

By taking a derivative of H with respect to q we obtain a
dipole current operator:

Jd (q) = i
J

2

N∑
i

(eiqd†
i di+1 − e−iqd†

i+1di ). (46)

As we can see, the combination 1
2 (∂xAy + ∂yAx ) = q plays the

role of the gauge field for our dipole model and so it is natural
to treat it as a rank-2 gauge field (see Appendix A) [48]

Axy ≡ 1
2 (∂xAy + ∂yAx ). (47)

Now we can take this modification to the dipole Hamil-
tonian and push it through to the fermionic model after the
spin-mapping and subsequent Jordan-Wigner transform. By
doing so we arrive at a fermionic model of the form Eq. (43)
but where every term is multiplied by the same phase factor
eiq. Thus, a rank-2 twist of the dipole Hamiltonian results in
a conventional rank-1 twist of the fermion model. The twisted
fermion model can be solved at any given filling, and the
ground state energy is always dependent on q (as long as
the states are not completely filled or empty) so the dipole
stiffness (dipole Drude weight) (B16) is nonvanishing:

Dd = −π

V

∂2E

∂q2

∣∣∣∣
q=0

> 0. (48)

Hence this system represents a dipole metal.

Remarkably we have found that placing a 1D dipole chain
into a constant gradient of the charge gauge field is mapped
to an ordinary fermionic chain in a constant gauge field.
The gapless fermionic theory that carries a charge current is
interpreted in the boson language as a theory having charge-
neutral quasiparticles that carry dipole moment and respond
to a rank-2 gauge field (or essentially equivalently, responds
to gradients of the rank-1 electric field).

1. Dipole insulator

Having a direct map of the dipole metal Hamiltonian (35)
to the fermionic chain (43), we can immediately provide an
example of a 1D dipole insulator. If we dimerize the dipole
hopping term strengths then our dipole model maps to an or-
dinary fermionic Su-Schrieffer-Heeger (SSH) chain [49] after
the Jordan-Wigner transformation. As we established, there is
a direct equivalence between the dipole stiffness Dd of the 1D
dipole model and the charge stiffness of the fermionic chain
to which the dipole model is mapped. Therefore, the dipole
stiffness of our 1D dipole chain with alternating couplings is
vanishing in the thermodynamic limit as the charge stiffness
in the SSH chain vanishes in that limit.

2. Twist operators

Now let us confirm these results using the twist operator
approach to localization. First, we note that every term in
the dipole Hamiltonian (35) commutes with both the UX and
UY operators, so the ground state of the dipole model can be
written as an exact eigenstate of these operators. Thus we have
|zX | = |zY | = 1. To analyze the expectation value of the UXY

operator, let us first assign the y coordinate to be +1/2 and
−1/2 for the top and bottom chains, respectively, in our two
leg ladder (35) (changing these values just changes UXY below
by an unimportant constant phase factor). This allows us to
rewrite UXY as:

UXY = exp

(
i

2π

LxLy

Lx,Ly∑
x,y=1

xyn̂x,y

)

= exp

(
i
2π

N

N∑
x=1

x
1

2
(n̂x↑ − n̂x↓)

)
. (49)

Note that we effectively have doubled the unit cell in the ŷ
direction which allowed us to put Ly = 1. We can rewrite this
operator in a spin basis via (39) to find:

UXY = exp

(
i
2π

N

N∑
j=1

jSz
j

)
, (50)

which is just a conventional UX twist operator for a 1D spin
chain. Under the Jordan-Wigner map (42) this operator simply
transforms into the UX operator for the resulting fermionic
chain (43). Thus, the expectation value zXY in the Nx → ∞
limit can be evaluated in the fermionic language to be zXY ≈ 0
in the dipole metal phase, and zXY = exp(iP)[cos(π/Nx )]Nx ≈
±1 in the insulating case where the couplings are dimer-
ized. The absolute value of zXY allows us to calculate dipole
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correlation area as a function of the length of the ladder:

λ2
d = − Nd

4π2ρ2
d

log

[
cos2Nx

(
π

Nx

)]
≈ a4

4
+ O

(
1

Nx

)
, (51)

which gives λd = a2/2 in the zero-correlation length limit.
The phase P takes values such that there is a relative phase
of π between the dipole insulator models having the intra-
or intercell dipole hopping terms dominate. P is quantized
because of the inversion symmetry of the model and would be
interpreted as a quantized charge polarization in the fermionic
model. Let us see how we can interpret this phase in the dipole
language.

3. Quadrupole from Berry phase

It is straightforward now to introduce the notion of Berry
phase with respect to the parameter q. As was already dis-
cussed, the dipole hopping Hamiltonian translates to a regular
fermionic chain with the parameter q entering as a parameter
for the Berry phase that is used to calculate the polarization of
the 1D fermionic chain. Therefore, when the dipole hoppings
are dimerized the Berry phase computed for the ground state
|�(q)〉 of the dipole Hamiltonian:

Im
∫ 2π

N

0
dq〈�(q)|∂q|�(q)〉 = P (52)

where P, once again, takes such values that there is a relative
π phase between the Berry phases computed for the ground
state of two Hamiltonians with opposite dimerization patterns.
We have already related this Berry phase to the quadrupole
moment Qxy, hence this system has a quantized quadrupole
moment.

4. Dipole superconductor

Finally, we can push this model further to consider a dipole
superconductor by adding an onsite chemical potential for
dipoles μd and a p-wave dipole pairing term with a strength
�:

H =
N∑

i=1

(
J

2
d†

i di+1 + �d†
i d†

i+1 + H.c.

)
− μd

∑
i

d†
i di.

(53)
The pairing terms break the U (1) global dipole conservation
down to Z2. Using our mapping, this model yields a 1D
Kitaev chain [50]. The model exhibits a weak pairing phase,
corresponding to a topological superconductor, occurring
when |μd | < J and a strong pairing—trivial superconducting
phase—appearing when |μd | > J . Hence, this model repre-
sents a gapped dipole superconductor when μd �= 0. Since the
fermion Kitaev chain has a nonvanishing charge stiffness Dc,

we find that the dipole superconductor (53) has a nonvanishing
dipole stiffness Dd . If we recall the result of Ref. [2], we can
conclude that, since the Kitaev chain is gapped, it also has a
nonvanishing (charge) superfluid density Dc,s. Thus we can
claim that there should be an analogous dipole superfluid den-
sity Dd,s. We leave a full discussion of the connection between
the dipole superfluid density and the dipole stiffness to future
work. We also note that a dipole superconductor/superfluid
has been proposed in bilayer systems, and it would be in-
teresting to compare with the discussion here in future work
[51,52].

B. Realization of a 1D dipole metal and dipole insulator
in a cold atom system

Let us now provide a method for constructing a dipole
metal and dipole insulator analogous to Eq. (35) in a 1D
cold-atom context. To model a system of ultracold bosonic
atoms, we will consider an extended two-leg Bose-Hubbard
ladder with two spin states of the form:

HBHM = −
∑

j,i,σ=↑,↓
t (a†

j,i,σ a j+1,i,σ + H.c.)

−
∑
j,σ

t ′(a†
j,1,σ a j,2,σ + H.c.)

+
∑

j,i

U [n j,i(n j,i − 1)] +
∑

j

V (n j,1n j,2)

+
∑

j

�i

2
(n j,i,↑ − n j,i,↓) + μ

∑
j, in j,i. (54)

Here a†
j,i,σ (a j,i,σ ) is the creation (annihilation) operator for a

boson of spin σ on rung j and leg i = 1, 2 of the ladder, and
nj,i = n j,i↑ + n j,i↓. U is the onsite interaction, V is the nearest
neighbor interaction between bosons on different legs of the
ladder, �i is a spatially varying magnetic field, and μ is the
chemical potential.

Here we consider the system at quarter filling, and where
U is significantly strong enough such that there is one boson
per site, and the bosons do not condense. Additionally, we
will set �i such that �1 < 0 and �2 > 0, and |�1|, |�2| �
t , i.e., there is an effective magnetic field gradient along the
ladder rungs. This will suppress the t ′ hopping along rungs
and at low energy will confine the spin-up bosons to leg 1 and
the spin-down bosons to leg 2. Using this, we can reduce the
Hamiltonian Eq. (54) to

H ′
BHM = −

∑
j

t (a†
j,1,↑a j+1,1,↑ + H.c.)

−
∑

j

t (a†
j,2,↓a j+1,1,↓ + H.c.)

+
∑

j

V n j,1,↑n j,2,↓

+
∑

j

[�1n j,i,↑ − �2n j,i,↓]. (55)

If we suppress the (now redundant) leg index, we find exactly
the Hamiltonian for a single Bose-Hubbard model with two
spin states, at half filling. One important feature of this con-
struction is that in Eq. (55), the bosons of different spins are
also located at different locations in space, i.e., on the different
legs of the ladder. In the limit of large V , Eq. (55) becomes the
XXZ model [53,54]

HXXZ = J
∑

j

(
1

2
[S+

j S−
j+1 + S−

j S+
j+1] − Sz

jS
z
j+1

)
+

∑
j

�̄Sz
j, (56)

125129-7



DUBINKIN, MAY-MANN, AND HUGHES PHYSICAL REVIEW B 103, 125129 (2021)

U

J
+

-

-

+

↓

↑
’empty’ dipole

’filled’ dipole

FIG. 1. A configuration of a 1D dipole model state. Electrons and
holes are depicted by blue and red circles, respectively. Strong value
of the interaction U ensures that there is exactly one positive and one
negative charge per rung of the ladder.

where �̄ = �1 + �2 is the average magnetic field of the sys-
tem. The spin creation operator S+

j = a†
j,1,↑a j,2,↓ can also be

interpreted as a dipole creation operator because of the spatial
separation between the up and down spin bosons on the ladder.
The operator Sz

j = (n j,1,↑ − n j,1,↓)/2 can be interpreted as the
‘dipole occupancy’ of site j.

Equation (56) resembles the dipole ladder Eq. (35), il-
lustrated in Fig. 1, with the addition of a field � and the
additional nearest neighbor dipole interaction term Sz

jS
z
j+1. By

use of an appropriate unitary transformation, the XXZ model
in Eq. (56) can be mapped onto a ferromagnetic Heisenberg
spin-1/2 chain. The spectrum of the ferromagnetic Heisen-
berg spin-1/2 chain consists of gapless spin waves, which
correspond to gapless dipolar excitations in Eq. (56). This
indicates that Eq. (56) describes a dipole metal. The dipole
Drude weight (48) maps in this model onto a spin stiffness,
which is related to the magnetic susceptibility [55,56] and
has been extensively studied in the literature, both analytically
[57] and numerically [58].

We can also consider a variation of this system where we
arrange the ladder rungs such that the boson hoppings between
j and j + 1 for odd values of j are suppressed. In this limit
the dipoles dimerize, and the resulting dipole Hamiltonian
becomes

HXXZ = −J
′∑
j

(
S+

j S−
j+1 + S−

j S+
j+1 − Sz

jS
z
j+1

) +
∑

j

�̄Sz
j,

(57)

in the spin language, where the ′ indicates a sum only over
even j. Due to the dimerization of Eq. (57), all excitations are
localized. Each dimer will be in a triplet configuration of the
two effective spin-1/2s and the spectrum will be gapped for
|�̄| > 0. Thus we expect this to represent a dipole insulator.

V. 2D DIPOLE INSULATOR AND DIPOLE METAL

Now we will move on to a discussion of a model for
a 2D dipole insulator. We start with a square lattice model
with four degrees of freedom per unit cell. These degrees
of freedom can be fermions or hardcore bosons, but to be
explicit let us choose fermions. The model we consider is a
model with plaquette “ring-exchange” couplings inside a unit
cell or between unit cells (see Fig. 2). A bosonic version of
this model was recently considered in Ref. [40] where it was
argued that it could represent a topological dipole insulator

2 4

113 33

2244

tt

λλ

FIG. 2. Model for a 2D dipole insulator having quartic ring-
exchange couplings on alternating plaquettes (solid and dotted lines)
with alternating couplings (λ and t).

having a quantized quadrupole moment. Explicitly the model
Hamiltonian consists of quartic interacting terms of the fol-
lowing form:

H.c. (58)

where • depicts a site in an occupied state and ◦ depicts
an empty site. The first sum here runs over the interstitial
plaquettes p marked with the solid lines in Fig. 2, and the
second sum runs over the onsite plaquettes s marked with the
dashed lines. We will consider this model at half filling. In
the limit where t = 0 (or λ = 0), we can actually solve this
model exactly—all we need to do is to find the spectrum of
the Hamiltonian at every plaquette. The ground state for any
given plaquette is:

(59)

and the overall ground state for the lattice with periodic
boundary conditions in both directions is then simply a tensor
product:

|GS〉 =
⊗

p

|ψ〉p . (60)

We now want to show that this ground state is a dipole insula-
tor.

Dipole stiffness. First let us calculate the dipole stiffness
by probing the energy of the ground state during the insertion
of a constant rank-2 gauge field. For our model we can intro-
duce minimal coupling to the rank-2 gauge field Axy through
Peierls-like phase factors for the ring-exchange couplings.
Inserting a constant rank-2 gauge field Axy = q simply mul-
tiplies every term in the Hamiltonian by a phase factor eiq.

Now we can compute the dipole stiffness for our model in
the t = 0 limit, and we immediately find a vanishing current
Jd = 0 and dipole stiffness Dd = 0 as the energy does not
depend on the value of q at all. Indeed, the situation is not
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changed after we turn on t �= 0 as the onsite potential terms
do not couple to the rank-2 gauge field, and so the perturbative
corrections to the energy do not depend on q [59].

Twist operators and localization. Our 2D Hamiltonian
commutes with both UX and UY operators and therefore, its
eigenstates are also exact eigenstates of those twist operators.
Thus we find |zX | = |zY | = 1, for the 2D dipole insulator
model, and hence, from the localization criterion, we confirm
that the system is a charge insulator. On the other hand, UXY

acts nontrivially on the terms in the Hamiltonian (58), and in
the case when t = 0, λ = 1 we can compute the expectation
value of the dipole twist operator to be:

zXY = 〈UXY 〉

= |zXY | exp

(
iπ

NxNy
(NxNy + 1)(Nx + 1)(Ny + 1)

)
,

(61)

where the absolute value |zXY | → 1 in the thermodynamic
limit. In the opposite case, when t = 1, λ = 0 we simply have:

zXY = exp (iπ (Nx + 1)(Ny + 1)). (62)

The relative phase between the values of zXY computed for
these two cases in the thermodynamic limit is exactly π .
Furthermore, after we take into account the background ionic
charge, we always find: zXY = −1 when t = 0, λ = 1 and
zXY = +1 when t = 1, λ = 0. As for the dipole correlation
areas, in the limit with t = 1, λ = 0 we trivially obtain λd = 0
as |zXY | = 1 exactly. In the opposite case we find (see Ap-
pendix D) the expectation value (D1) simplifies to |zXY |2 =
[cos ( π

NxNy
)]2NxNy and we have

λ2
d = − Nd

4π2ρ2
d

2NxNy log cos

(
π

NxNy

)
≈ a4

4
+ O

(
1

NxNy

)
,

(63)
from which we find λd = a2/2. This value of λd coincides
with the value we already computed for the two-leg ladder
(51). This could have been anticipated as in both cases the
system is built of a collection of local plaquette ring-exchange
terms, so we would naturally expect to find the same answer
for the dipole correlation areas in these two models.

Another way to reach the same result for the dipole correla-
tion area is by introducing the quantum metric with respect to
the rank-2 phase twist. In Refs. [3,5,60], it was shown that
the quantum metric defined over the parameter space con-
trolling the twisted boundary conditions can be related to the
many-body localization tensor 〈rαrβ〉c. Explicitly, boundary
conditions along xα can be twisted by threading a magnetic
flux around the system which, in turn, can manifest as a
uniform gauge field Aα = 	α on the α links of the lattice. For
any particular twist of the boundary conditions we can find
the ground state of the corresponding Hamiltonian and denote
it as |�(	1, ...	d )〉 = |�(�)〉. The quantum metric on this
parameter space is then defined as:

gαβ (�) = 〈∂α�(�)|∂β�(�)〉
− 〈∂α�(�)|�(�)〉〈�(�)|∂β�(�)〉. (64)

In Ref. [61] this metric tensor was related to the localization
tensor in the system of N electrons:

〈rαrβ〉c = gαβ (0)

N
. (65)

Similarly, when working with systems of dipoles, the uni-
form rank-2 gauge field Ai j can serve as a twisted parameter
space for dipoles across the i − j plane. Introducing a set of
rank-2 twists along all of the planes of the lattice we define
the quantum metric exactly as in Eq. (64) where the vector �

now parametrizes the rank-2 twists along planes of the lattice
instead of coordinate directions: Ai j = 	i j . We propose the
following formula for the dipole localization tensor computed
in the system of Nd dipoles:

〈r̂αrβ r̂δrγ 〉c = g(αβ )(δγ )(0)

Nd
, (66)

where the g(αβ )(δγ ) is still a rank-2 metric tensor with two
indices (αβ ) and (δγ ) which denote the corresponding planes.
To test this formula, let us apply it to the ground state of
our 2D dipole insulator model (58) in the limit where λ = 1,
t = 0. The rank-2 twist Axy = 	 will modify the ground state
of each plaquette in the following way:

(67)

The full ground state |�(	)〉 in this simple limit is given by a
tensor product of |ψ (	)〉p over all Nx × Ny plaquettes in the
system. We can check that for any single plaquette we have
〈∂ψ (	)|ψ (	)〉p = 0 and calculating the only component of
the quantum metric is then simply:

g(XY )(XY ) =
∑

p

〈∂ψ (	)|∂ψ (	)〉p = NxNy
a4

4
. (68)

After taking into account that the number of dipoles is Nd =
Nx × Ny, we find the following result for the dipole localiza-
tion tensor:

〈X̂Y X̂Y 〉c = a4

4
. (69)

From here we recover the already familiar value of the dipole
localization area for this particular system: λd = a2/2.

Berry phase. As in the previous section, we can introduce
the Berry connection with respect to the parameter q and com-
pute it in two limiting cases: (i) t = 0, λ = 1 and (ii) t = 1,
λ = 0. In both limits, the ground state is simply the tensor
product of two-particle states living on disjoint plaquettes, and
the Berry phase for the overall system is hence equal to the
Berry phase computed for a single cluster. For the case where
the onsite couplings t dominate, the Hamiltonian does not
couple to the rank-2 gauge field at all and the corresponding
Berry connection and Berry phase trivially vanish. In the op-
posite limit we find that the ground state of a single plaquette
p depends on q:

(70)
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and the Berry phase computed for a single plaquette is:

Im
∫ 2π

0
dq〈ψ (q)|∂q|ψ (q)〉p = π. (71)

When we consider the Berry phase associated with a periodic
Lx × Ly lattice with the ground state |�(q)〉 = ⊗

p |ψ (q)〉p,
we find the same result when varying q from 0 to 2π/LxLy:

Im
∫ 2π/LxLy

0
dq〈�(q)|∂q|�(q)〉

= Im
LxLy∑
p=1

∫ 2π/LxLy

0
dq〈ψ (q)|∂q|ψ (q)〉p = π. (72)

Hence we expect this model to have a quantized quadrupole
moment qxy = e

2 in the limit when the intercell interactions
dominate. This exactly matches the conclusions of Ref. [40]
for a similar model of hardcore bosons. We also note that in
these simple limits, the rank-2 Berry phase boils down to an
evaluation of Berry phases in each plaquette, which seems
to have at least a superficial connection to the proposal in
Ref. [62] for Berry phase characterizations of higher order
topological insulators.

Before we move on, let us make comments regarding a
realization of a 2D dipole metal in this model. So far our
discussions in 2D have been limited to dipole insulator phases.
One might imagine that, just as in the 1D ring-exchange model
we studied, if we tune λ = t so that the intercell ring exchange
equals the intracell ring exchange that the system might be
critical and realize a dipole metal point. However, the story
here is not clear as when λ and t are both nonzero the model
is no longer exactly solvable. Indeed there have been works
trying to isolate an exciton Bose liquid phase in similar ring
exchange models that may have related features [63–66]. We
leave a model realization for the 2D dipole metal in this model
to future work and move on to discuss an alternative 2D model
in which a dipole metal can be realized.

A. 2D dipole metal from stacking 1D dipole ladders

A direct map between the dipole chain Hamiltonian (35)
and the one-dimensional XY model allows us to construct a
2D model that can be driven through a dipole metal to dipole
insulator transition. Consider a system built by stacking dipole
chains parallel to x̂ into the y direction. Now we introduce a
coupling in the y direction that transfers a dipole in its lon-
gitudinal direction between rungs of the neighboring dipole
ladders (i.e., y-pointing dipole moves in the y direction as
shown in Fig. 3): d†

x,ydx,y+1. The overall Hamiltonian now
reads:

H =
Nx,Ny∑

x,y

(Jx
r d†

x,ydx+1,y + Jy
r d†

x,ydx,y+1 + H.c.)

+U
Nx,Ny∑

x,y

nx,y↑nx,y↓, (73)

where we take U � Jx
r , Jy

r to guarantee a well-defined dipole
state on every rung of every ladder—either empty or occupied.
Again, this allows us to map dipole creation-annihilation op-

FIG. 3. Model for a 2D dipole metal with quartic fermionic
couplings that induce both longitudinal and transverse hoppings of ŷ-
oriented elementary dipoles with amplitudes Jy and Jx , respectively.

erators to spin-1/2 ladder operators as in Eq. (40). In this spin
language Eq. (73) takes the familiar form of the 2D XY model
on the square lattice:

H = 2
∑
〈i j〉

J〈i j〉(S+
i S−

j + S−
i S+

j ), (74)

where the sum runs over every 〈i j〉 link of the lattice. Now
if we double the unit cell in both the x̂ and ŷ directions by
dimerizing the couplings such that J〈i j〉 is equal to t for in-
teractions within the expanded unit cell and λ for the intercell
interactions, we arrive at the XY higher order bosonic topolog-
ical insulator model first considered in Ref. [67]. This model
can be further mapped [67,68] to a free-fermion tight-binding
quadrupole model [21] which is in an insulating phase when
the inter- and intracell couplings λ and t are offset and turns
into a metal when λ = t .

Consider now the coupling of the 2D dipole model Eq. (73)
to gauge fields. In an external rank-2 gauge field, dipole
hopping terms running along the chains pick up a phase eiAyx

as before, while the newly introduced d†
x,ydx,y+1 + H.c. terms

that tunnel dipoles between the chains will pick up a phase
factor of eiAyy . Upon mapping this model to the free fermion
quadrupole tight-binding model these phase factors become
just the ordinary rank-1 phases eiAx and eiAy , respectively.
Importantly, this establishes a direct correspondence between
the dipole stiffness Eq. (32) of the dipole model Eq. (73)
and the usual charge stiffness when calculated for the tight-
binding quadrupole model. Whenever the charge stiffness in
the tight-binding model is nonvanishing, which is the case
exactly when the couplings are nondimerized, i.e., λ = t , then
we expect a dipole stiffness to take a finite value as well and,
therefore, for λ = t the model Eq. (73) should be a dipole
metal. On the other hand, when the couplings are offset, the
dipole charge stiffness of the quadrupole model vanishes and
the dipole stiffness must vanish as well signifying that the
ground state of the dipole Hamiltonian is a dipole-insulating
state.
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VI. DIPOLE INCOMPRESSIBILITY

We have provided some formal definitions for dipole
metals and insulators (and even one example of a dipole
superconductor), but we have not provided as much physical
intuition behind these definitions, except in analogy to charge
metals and insulators. Another way to describe dipole insula-
tors that may provide additional physical context is in terms
of dipole incompressibility. We can make the following simple
observation: Since dipole moments couple to the gradient of
the electromagnetic field, we expect that ∂iA0 can shift the
chemical potential for dipoles similar to how A0 shifts the
chemical potential for electrons. So, for the x̂ dipoles, we
have μdx ≡ ∂xA0 ∝ Ex. Therefore, a dipole incompressibility
condition reads (for x̂ dipoles having polarization Px):

dPx

dμdx
∝ dPx

dEx
= χe, (75)

where χe is the electric polarizability. Therefore, a dipole
incompressibility condition simply translates to a simple
equation: χe = 0. Thus, intuitively, a dipole insulator is a
charge insulator (dielectric) that does not polarize when a
small electric field is applied.

We can put this condition to the test in our 2D dipole
insulator model. As we can easily check, the ground state
given by (59) and (60) has zero polarization in either the x̂ or
ŷ directions. We can apply a constant external electric field Ex

by introducing a constant gradient of A0: A0(r) = E0x. What
we immediately find is that the ground state on each individual
plaquette is also an eigenstate of the electric field operator.
Thus, we expect the ground state wave function will not get
any corrections and therefore, the polarization will not change
at all. As such, we find the electric susceptibility is indeed
exactly zero in this 2D model.

It is worth examining the structure of the ground state of
this model a bit more closely to find a better understanding
why χe = 0. The reason turns out to be simple. From the
point of view of the lattice, turning on the electric field Ex

is just changing the potential energy at each site such that the
potential on a site with coordinates (x, y) is equal to E0x. So,
for a two-fermion state of electrons with coordinates (x1, y1)
and (x2, y2) the operator V̂ = Ex simply changes the poten-
tial energy of such state by �ε = E0x1 + E0x2. However, as
we discussed above, the ground state on each plaquette is a
linear combination of two states that have electrons sitting at
the opposite corners of a plaquette, therefore, for a plaquette
attached to a unit cell with coordinates (x0, y0) we have:

V̂ |ψ〉p = E0(x0 + (x0 + 1)) |ψ〉p , (76)

and we find the same result for Ey. By this measure, we
conclude that any state represented by a linear combination of
states with the same average coordinate is an eigenstate of the
electric field operator. So, if we perturb our ground state by an
operator that conserves this average coordinate, for example
by turning on a small amount of nonzero intracell coupling t ,
we will find that the perturbed state is also an eigenstate of
Ex and, therefore, it also has vanishing electric susceptibility.
Thus, by this measure, our model is a dipole insulator, even
away from a zero correlation length limit.

VII. DISCUSSION AND CONCLUSION

Our results represent a refinement of the notion of an in-
sulating system: A well-defined nth order multipole insulator
can be further identified as either an (n + 1)th order multi-
pole metal or insulator. In this work we focused on dipole
metals and insulators, but these concepts can be extended,
essentially mutatis mutandis, to higher order multipoles. In
each case we can imagine a hierarchy of possible localization-
delocalization transitions where, say, the mth order multipole
becomes delocalized, hence destroying any well-defined no-
tion of nth order multipole moments for n > m. However,
while concepts like the nth order multipole stiffness and the
Berry phase associated with the nth multipole twist operator
UX1X2...Xn can be introduced, there are no readily available
models to test them (other than perhaps a 3D octupole model
with subsystem symmetry in Ref. [40]). Thus, this leaves
many open questions, especially when trying to identify mod-
els that represent nth order multipole metals.

To find our results we have repurposed several key con-
cepts used to distinguish between regular charge metals and
insulators to study the analogous dipole conserving systems.
Specifically, we defined a dipole stiffness Dd and dipole
localization area λd —natural extensions of charge stiffness
(or Drude weight) and charge localization length. We also
discussed a dipole incompressibility condition (the electric
polarizability vanishes) that parallels the incompressibility
condition in ordinary charge insulators. We also proposed that
the expectation value of the twist operator zXY = 〈UXY 〉 acts as
a universal criterion for the distinction between dipole metals
where |zXY | → 0 and dipole insulators where |zXY | → 1 in the
thermodynamic limit. Additionally, we showed that the Berry
phase, related to the twist introduced by UXY (or alternatively
a shift of the rank-2 gauge field), can be used to distinguish
between the gapped phases with different quadrupolar polar-
izations.

In addition to the conceptual developments, we provided
several models to test the concepts. Using ring-exchange
terms as natural building blocks for charge-insulating systems
having dipole conservation, we constructed a handful of toy
models exhibiting dipole metallic or dipole insulating phases.
For our one-dimensional model we discussed its realization
in a cold-atom context where it could be possible to exper-
imentally probe simple dipole metal and insulator phases.
Having noticed that ring-exchange terms naturally couple to
a rank-2 gauge field we also applied a continuum description
of dipole phases and provided an example of a system that,
while having a vanishing charge Drude weight, has a nonzero
dipole stiffness Dd .

These results open a considerable amount of questions
for further study. One important avenue for exploration is
finding potentially exotic phases of matter associated with
multipolar insulators. Specifically, is there a rich landscape
of phases similar to those discovered in charge insulators over
the past few decades? Additionally, there is no exact answer
to the question of the role of fractonic phases. That is, must
fracton theories inevitably emerge when one studies multipole
insulators, or are they just a subclass of multipole insulating
phases? Next, there are many open questions regarding the
connection to higher order multipole topological insulators.
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Recent work has shown a connection between some classes of
subsystem protected (fracton) topological phases and higher
order topological insulators when the subsystem symmetry
is broken down to a global symmetry [40]. Thus, the higher
order topological insulators do not have exact dipole con-
servation at the Hamiltonian level, but there may be some
notion of an emergent dipole conservation. Finally, there are
questions regarding connections between the dipole insulator
and Bose metal phases such as the exciton Bose liquid. Im-
portantly, the set of models that we have explored in the text
does not exhaust all interesting dipole-conserving phases in
1D and 2D. There are vast opportunities for numerical studies
of the models proposed in the paper, as well as their various
generalizations. In particular, we expect that by employing
the density matrix renormalization group (DMRG) technique,
it should be possible to thoroughly map out various phases
of low dimensional dipole conserving models away from the
exactly solvable points and should enable a study of the sta-
bility of the dipole conserving phases and phase transitions
to various perturbations. Indeed, very recent work [69] uses
DMRG to calculate our proposed dipole Drude weight for a
2D ring-exchange model and finds a critical dipole metal at
the phase transition between a trivial insulator and a higher
order topological insulator. We leave further exploration of
these questions and explorations of other applicable numerical
techniques for future work.
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APPENDIX A: RANK-1 VS RANK-2 BACKGROUND
FIELD COUPLINGS

In this Appendix we will discuss the similarities and
differences between coupling dipoles to the derivative of a
background rank-1 field ∂iA j and coupling dipoles to a back-
ground rank-2 field Ai j . First, we will show how a two particle
system can naturally couple to ∂iA j . We will do this by consid-
ering a many body Schrodinger equation for an electron and
hole wave function �(xe, xh)

H = 1

2m
|pe − eA(xe)|2 + 1

2m
|ph + eA(x)|2 + V (xe, xh),

(A1)

where V is an interaction term between the electron and hole,
and we have set the electron and hole masses equal to each
other.

It will be useful to rewrite the Hamiltonian in terms of
the center of mass (xcm = (xe + xh)/2) and relative coordinate

(xr = xe − xh) as

H = 1

m

∣∣∣∣pcm − eA
(

xcm + xr

2

)
+ eA

(
xcm − xr

2

)∣∣∣∣2

+ 1

2m

∣∣∣∣pr − eA
(

xcm + xr

2

)
− eA

(
xcm − xr

2

)∣∣∣∣2

+V (xe, xh). (A2)

We will now assume that the interaction V results in the
electron and hole forming a bound state with a definite dipole
moment d. This is accomplished by V = V0|xr − d|2. In the
limit where V0 → ∞, � will satisfy

|�(xe, xh)|2 ∝ δ(xe − xh − d ), (A3)

and we can subsequently set xr = d and ignore the fluctua-
tions in the relative coordinate. After Taylor expanding the
vector potential A, the center of mass part of the Hamiltonian
becomes

H = 1

m
|pcm − edi∂iA(xcm)|2. (A4)

This expansion is valid provided that the derivatives of the
background field A do not strongly fluctuate on length scales
of the order of the dipole length |d|. From this we can con-
clude that free dipoles can couple to the derivative of the
rank-1 gauge field: ∂iA j .

In the study of fractonic phases of matter, it has also been
shown that dipole excitations naturally couple to symmetric
rank 2 gauge fields Ai j . The rank 2 gauge fields transform
as Ai j → Ai j + ∂i∂ jγ (note that this is the same gauge trans-
formation as ∂iA j). When considering dipole dynamics, we
thereby have the choice of either considering a system where
the dipoles couple to the derivative of a background rank-1
gauge field ∂iA j or a background rank-2 gauge field Ai j . We
will consider this choice in two different contexts: first on
systems with open boundaries and second on systems with
periodic boundaries.

For systems with open boundaries, there is no distinction
between coupling a dipole to the derivative of a background
rank-1 gauge field and a background rank-2 gauge field. This
is because we can always equate the rank-2 gauge field with
the symmetric derivative of the rank-1 gauge field, i.e., Ai j =
(∂iA j + ∂ jAi )/2. In reverse, we can also equate the integral
of the rank-2 gauge field with the rank-1 gauge field Aj =∫

dxiAi j .
On periodic geometries, however, these descriptions are

seemingly not equivalent. When considering the derivative
of a background rank-1 gauge field on a periodic system,
we require that the background rank-1 gauge field Aj is pe-
riodic, while for the rank-2 description, we require that the
rank-2 gauge field Ai j is periodic. In particular, for a given
background periodic rank-2 gauge field Ai j , there might not
be a periodic rank-1 gauge field Ai such that Ai j = (∂iA j +
∂ jAi )/2. In other words,

∫
dxiAi j may not satisfy periodic

boundary conditions.
As a specific example of this, let us consider the rank-2

gauge field Axy(x, y) = α(const.). On open boundaries, one
can define the rank-1 gauge field Ax(x, y) = αy, Ay(x, y) =
αx, and clearly Axy = (∂xAy + ∂yAx )/2. On periodic boundary
conditions, Axy(x, y) = α is still a viable background field
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configuration. However, in general, Ax(x, y) = αy, Ay(x, y) =
αx is not a viable background field configuration for periodic
boundary conditions, since it is not invariant under x → x +
Lx and y → y + Ly.

The difference between rank 1 and rank 2 couplings is
thereby meaningful if we consider periodic boundaries. For
open boundaries, on the other hand, it is possible to equate
the two. We note that this is only true when considering back-
ground fields. If we instead consider the rank-1 and rank-2
fields to be dynamic, the situation is entirely different, since
the two types of fields have different path integrals and quan-
tum theories.

APPENDIX B: DIPOLE STIFFNESS

Let us derive the relationship between the dipole stiffness
and dipole conductivity density. First, we couple our system
to a rank-2 gauge field Ai j via

H = H0 + �H, �H = −Ai jJ
d
i j, (B1)

where Jd is the dipole current. Note that Jd may depend on
Ai j . In general, we expect Jd

i j = J0
i j − Ai jJA

i j/2, where both
J0

i j and JA
i j are independent of Ai j . Using the Kubo formula,

the response of the dipole current density jd
i j ≡ Jd

i j/V to this
perturbation is

〈
jd
i j (t )

〉 ≡
〈
Jd

i j (t )
〉

V
= (ρd (t ) + χd (t ))Ai j (t ), (B2)

where χd is the retarded Green function of the dipole current-
dipole current correlation function:

χd (t ) = − i

h̄V

∫ t

−∞
dt ′〈0|[Jd

xy(t ), Jd
xy(t ′)

]|0〉0, (B3)

where the subscript 0 indicates that the correlation function is
calculated with Ai j = 0. The quantity ρd (t ) = 〈JA

i j (t )〉0/V can
be interpreted dipole analog of the current density.

Let us now restrict ourselves to the case (i, j) = (x, y).
Other values of i and j are determined in an analogous way.
To derive a dipole conductivity, we will introduce the rank 2
electric field Exy that is the canonical conjugate of Axy:

Exy = − ∂

∂t
Axy. (B4)

In terms of frequency, Exy(x, ω) = iωAxy(x, ω), and:

〈
jd
xy(ω)

〉 =
(

ρd (ω)

iω
+ χd (ω)

iω

)
Exy

= σd (ω)Exy, (B5)

where σd is the dipole conductivity. In general this quantity
will be a tensor, but since we are only considering (i, j) =
(x, y), the tensor structure is irrelevant to our present deriva-
tion.

The Fourier transform of the position-averaged correlator
χd (ω) can be evaluated by inserting a basis of energy states
between dipole current operators:

χd (ω) = − i

V h̄

∫ ∞

0
dτeiωτ

∑
n

∣∣〈0|Jd
xy|n〉0

∣∣2

× (
ei(En−E0 ) t

h̄ − e−i(En−E0 ) t
h̄
)
, (B6)

where
∑

n |〈0|Jd
xy|n〉0|2 is again evaluated with Axy = 0. This

gives:

σd (ω) = ρd

iω
− 1

iV ω

∑
n �=0

∣∣〈0|Jd
xy|n〉0

∣∣2

×
(

1

h̄ω + iε + En − E0
− 1

h̄ω + iε + E0 − En

)
.

(B7)

Due to the singularities at ±h̄ω = En − E0, we can express
the real part of the conductivity as:

Reσd (ω) = π

V ω

∑
n �=0

∣∣〈0|Jd
xy|n〉0

∣∣2
[δ(h̄ω − En + E0)

− δ(h̄ω + En − E0)]. (B8)

On the other hand, for the imaginary part we have:

lim
ω→0

Imσd (ω) = −ρd

ω
+ 2

V ω

∑
n �=0

∣∣〈0|Jd
xy|n〉0

∣∣2

En − E0
. (B9)

This allows us to define the corresponding dipole stiffness as:

Dd = π lim
ω→0

Imωσd (ω). (B10)

Which gives us:

Dd = −πρd + 2π

V

∑
n �=0

∣∣〈0|Jd
xy|n〉0

∣∣2

En − E0
. (B11)

On the other hand, we can couple our system to a constant
rank-2 background field Axy ≡ q via

�H = −qJd
xy = −qJ0

xy + 1
2q

2JA
xy, (B12)

and then calculate the second order correction to the energy.
Using

E (1) = −〈0|Jd
xy|0〉, (B13)

and

E (2) = 1

2
q2〈0|JA

xy|0〉0 − q2
∑
n �=0

∣∣〈0|J0
xy|n〉0

∣∣2

En − E0
, (B14)
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where V is the volume of the sample, we can show that:

∂2E

∂q2

∣∣∣∣
q=0

= 〈0|JA
xy|0〉0 − 2

∑
n �=0

∣∣〈0|JD
xy|n〉0

∣∣2

En − E0
. (B15)

Combining this expression with (B11) we finally get:

Dd = −π

V

∂2E

∂q2

∣∣∣∣
q=0

. (B16)

APPENDIX C: DIPOLE EQUATIONS OF MOTION

Let us start with a simplified version of Pretko’s La-
grangian

L = |∂t	|2 − m2|	|2 − λ|	∂x∂y	 − ∂x	∂y	|2, (C1)

where we kept only the off-diagonal xy kinetic terms that
govern transversal movement of dipoles. The Euler-Lagrange
equations when L includes higher-order derivatives read:

δL
δ	

− ∂μ

δL
δ(∂μ	)

+ ∂μ∂ν

δL
δ(∂μ∂ν	)

= 0. (C2)

For the Lagrangian (C1) this equation obtained via variation
with respect to 	† read:

−2∂2
t 	 − 2m2	 − 4λ(∂x∂y	

†)Dxy[	] − 2λ(∂y	
†)∂xDxy[	]

−2λ(∂x	
†)∂yDxy[	] − λ	†∂x∂yDxy[	] = 0, (C3)

where we used a shorthand notation for the rank-2 covariant
derivative Dxy[	] = 	∂x∂y	 − ∂x	∂y	. Although we are not
going to task ourselves with solving this equation, we can
easily check that a set of nontrivial solutions is given by:

	q(t, x, y) = εei(qxy−ωt ), (C4)

where ε is the dimensionful amplitude of the field. This leads
us to write the following dispersion relation for these ‘dipole-
wave’ solutions:

ω2 − m2 − λ|ε|2q2 = 0. (C5)

Note that with the addition to regular global phase rotations,
phase rotations that depend only on one coordinate leave the
Lagrangian invariant as well as do not move the solution to
the equation of motion off-shell. In other words, we have a
U (1) × U (1) subsystem symmetry given by:

	 → eiα(x)	, 	 → eiβ(y)	, (C6)

where α(x) and β(y) are arbitrary functions of x and y, respec-
tively.

APPENDIX D: DIPOLE CORRELATION AREA FOR 2D
DIPOLE INSULATOR WITH PERIODIC BOUNDARY

CONDITIONS

Let us compute the value of |zXY | = |〈UXY 〉| for the ground
state of the 2d dipole insulator on a lattice with periodic
boundary conditions. We find that the terms coming from the
boundary contribute quite differently from the bulk. The full

expression for the |zXY | reads:

|zXY | =
∣∣∣∣cos

(
π

NxNy

)∣∣∣∣(Nx−1)(Ny−1)

×
∣∣∣∣cos

(
π (Nx − 1)

NxNy

)∣∣∣∣Ny−1

×
∣∣∣∣cos

(
π (Ny − 1)

NxNy

)∣∣∣∣Nx−1

×
∣∣∣∣cos

(
π (Nx − 1)(Ny − 1)

NxNy

)∣∣∣∣. (D1)

If we compute the dipole correlation area from this expression
we find that it is not as well behaved, i.e., we find

λ2
d = − Nd

4π2ρ2
d

log |zXY |2

≈ a4

4
NxNy

[
− 1

NxNy
+ N2

x + N2
y

N2
x N2

y

+ 1

Nx
+ 1

Ny

]

≈ a4

4
(Nx + Ny) + O(1), (D2)

which leads to λd = a2

2

√
Nx + Ny. This quantity diverges with

the lattice size and is not the correct physical result. Viewing
this as an artifact of the nonperiodic behavior of UXY at the
boundary, we could evaluate Eq. (D1) using open boundary
conditions. This is the result already presented in the main
text.

Alternatively, we propose the following way to resolve
this issue. Consider the 2D dipole insulating Hamiltonian on
an L × L = Na × Na square lattice with periodic boundary
conditions. Now imagine we treat every vertical column of the
lattice as a large supercell. This formal redefinition changes
the dipole filling number ρd = N/a2 and requires us to use
the following operator instead of UXY to calculate zXY :

ŨXY = exp

[
2π i

aL

∑
i,α

xi,αyi,α n̂i,α

]
, (D3)

where the index i runs over all the unit cells, and α runs over
the sites within a unit supercell. Note that this new operator
is completely periodic and, additionally, it can be expressed
as ŨXY = (UXY )N . Now, computing |zXY | for the ground state
of the 2D dipole insulator in the limit when λ = 1, t = 0 we
find:

|z̃XY | =
∣∣∣∣ cos

(
π

N

)∣∣∣∣N×N

, (D4)

and the dipole correlation area is given by:

λ2
d = − Nd

4π2ρ2
d

log |zXY |2 ≈ a4N2

4π2N2
π2 = a4

4
, (D5)

which gives: λd = a2/2. This is the same value of the dipole
correlation area that we obtained when we evaluated the mag-
nitude using open boundary conditions and the original UXY

operator.
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