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We establish the universal torus low-energy spectra at the free Dirac fixed point and at the strongly coupled
chiral Ising fixed point and their subtle crossover behavior in the Gross-Neuveu-Yukawa field theory with nD = 4
component Dirac spinors in D = (2 + 1) dimensions. These fixed points and the field theories are directly
relevant for the long-wavelength physics of certain interacting Dirac systems, such as repulsive spinless fermions
on the honeycomb lattice or π -flux square lattice. The torus energy spectrum has been shown previously to serve
as a characteristic fingerprint of relativistic fixed points and is a powerful tool to discriminate quantum critical
behavior in numerical simulations. Here, we use a combination of exact diagonalization and quantum Monte
Carlo simulations of strongly interacting fermionic lattice models, to compute the critical torus energy spectrum
on finite-size clusters with periodic boundaries and extrapolate them to the thermodynamic limit. Additionally,
we compute the torus energy spectrum analytically using the perturbative expansion in ε = 4 − D, which is in
good agreement with the numerical results, thereby validating the presence of the chiral Ising fixed point in the
lattice models at hand. We show that the strong interaction between the spinor field and the scalar order-parameter
field strongly influences the critical torus energy spectrum and we observe prominent multiplicity features related
to an emergent symmetry predicted from the quantum field theory. Building on these results we are able to
address the subtle crossover physics of the low-energy spectrum flowing from the chiral Ising fixed point to
the Dirac fixed point, and analyze earlier flawed attempts to extract Fermi velocity renormalizations from the
low-energy spectrum.
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I. INTRODUCTION

Dirac fermions with a quasi-relativistic, i.e., gapless and
linear, dispersion relation arise as low-energy quasi-particles
in many condensed matter systems such as graphene and
d-wave superconductors [1–3]. Interactions between the
fermions can drive the system from the Dirac semimetal-
lic (SM) phase through a quantum critical point (QCP) into
various symmetry broken phases. Spinless fermions on the
honeycomb or π -flux square lattice with repulsive nearest-
neighbour interactions, for example, exhibit a SM to Mott
insulator transition, where the ground state is charge or-
dered and spontaneously breaks discrete sublattice exchange
symmetries [2,4]. The quantum critical point of such phase
transitions involves fermionic degrees of freedom and is be-
lieved to be described by the chiral Ising fixed point of the
D = (2 + 1) dimensional Gross-Neveu-Yukawa (GNY) field
theory which features strong coupling between fermionic
spinors and a scalar field [3,5–8]. Such universality classes
do not have classical Landau-Ginzburg-Wilson analogues and
are thus of particular interest. Recently, many attempts have
been made to precisely measure the scaling dimensions of the
operators of chiral QCPs in GNY field theories [4,7,9–15],

which are a unique identifier of the universality class and
directly related to the critical exponents of the phase transi-
tion. This task turned out to be particularly challenging and
different methods, which were successful for charting more
common critical points in the past, could not yet obtain com-
pletely consistent scaling dimensions or critical exponents.
This summarizes the current situation for both the chiral Ising,
and even more severely, the chiral Heisenberg universality
class [10,16].

Here, we strike a new path to tackle this problem. In fact,
another way to identify and chart universality classes is to
measure their critical torus energy spectrum as it was shown
in Refs. [17–20] for Wilson-Fisher and topological phase tran-
sitions. The low-energy gaps at a relativistic critical point on
the torus are given, up to a nonuniversal factor v describing
the effective speed of light, by universal numbers ξi times 1/L,
where L is the linear extent of the cluster [21]. The order and
degeneracy of the ξi together with quantum numbers of the
corresponding eigenstate (e.g. momentum, fermion number)
provide a unique fingerprint of the universality class and can
be obtained by many complementary numerical and analytical
techniques.
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Given the reported tension in the literature we want
to shed light on the nature of the universality class from
a different angle by confronting and comparing numerical
torus energy spectra with analytical results. In this work,
we use exact diagonalization (ED) and quantum Monte
Carlo (QMC) simulations of fermionic lattice models, as
well as ε expansion calculations of the effective low-energy
field theory, to compute the critical torus energy spec-
trum for the chiral Ising universality class with an (nD =
4)-component spinor field. Although the ε expansion is
only performed to low order, it provides important, ex-
act statements about nontrivial multiplicities and quantum
numbers of the low-energy spectrum in the scaling limit,
while we provide high-quality data of the ξi from numerical
simulations.

Also, we want to emphasize that, while the ξi are universal
numbers, it is not only their precise values but typically the
sequence of the low-energy levels with their degeneracies
and quantum numbers which make the critical torus spectrum
a universal fingerprint. In particular, changing the nature of
the QCP by using another nD �= 4 would lead to a different
multiplicity structure, i.e. a qualitative change. This is one of
the main advantages of the critical torus spectrum compared
to measuring critical exponents, where often very high pre-
cision data is necessary to distinguish different universality
classes.

Furthermore, the study of the GNY field theory and the
corresponding microscopic models allows us to clarify the
crossover flow of the torus energy spectrum between two
different infrared (IR) fixed points. This advance enables us
to reliably measure the Fermi velocity, which is the condensed
matter analogy of the speed of light of the GNY field theory, a
topic of recent controversy [22–24]. Our work also completes
an important intermediate step towards a quantitative under-
standing of massless Dirac fermions coupled to a U (1) gauge
field (QED3), which are of paramount importance for many
quantum spin liquid candidates and exotic quantum phase
transitions [25–29].

The paper is organized as follows. In Sec. II we introduce
the GNY field theory, as well as the related Gross-Neveu
(GN) field theory, which is formulated purely in terms of
interacting fermions and introduce the two distinct renormal-
ization group fixed points under consideration in this work.
We present the fermion lattice models used to compute the
chiral Ising critical torus spectrum, and establish the GNY
field theory as a low-energy effective description of the lat-
tice models. In Sec. III we provide a brief overview of
our results: We discuss the different structures of the torus
spectra of the free Dirac conformal field theory (CFT) and
chiral Ising CFT, the crossover behavior in finite volume and
their impact on the renormalization of the Fermi velocity.
In Sec. IV we give a more detailed analysis of the critical
torus energy spectrum obtained from numerics. We show
energy gaps from both ED and QMC simulations, and give
details on the extrapolation to the thermodynamic limit. In
Sec. V we present the ε expansion of the GNY field theory,
and compare the results to the numerical spectra. Finally, in
Sec. VI we conclude our results by comparing the different
torus geometries among each other and discuss possible future
perspectives.

II. FIELD THEORIES AND MODEL HAMILTONIANS

This section provides a concise introduction of the GNY
field theory, the important infrared fixed points along with
symmetry aspects that are relevant for the analysis of the torus
spectrum. We also introduce the microscopic quantum many-
body lattice models that exhibit fermionic quantum critical
points, and which we examine by our numerical methods.

A. Quantum field theories

The fermionic quantum field theories (QFTs) that we ex-
plore in this work can be described by the GNY theory of
fermionic fields coupled to a Z2 order parameter, i.e., a real,
one-component scalar field [2,8,30] in D = 3 (space-time)
dimensions. Depending on the value of a tuning parameter
s, the GNY theory describes a SM of noninteracting Dirac
fermions, a symmetry broken phase with finite order param-
eter, and, in between those, a critical point belonging to the
chiral Ising universality class [5,6]. The most general form of
the imaginary-time GNY Lagrangian is

LGNY = −�
j
(�∂ + gY φ)� j + 1

2
φ(s − ∂2)φ + λ

4!
φ4 , (1)

where � j is an nD-component Dirac spinor with j = 1, ..., Nf

flavors, so the total number of fermionic degrees of free-
dom is N = nDNf . The real scalar field is denoted by φ,
and gY is the Yukawa coupling strength between the spinor
and scalar fields. We use the standard notation �∂ = γ μ∂μ,
μ ∈ {0, . . . D − 1} and � = �γ 0, where the γ μ are nD × nD

matrices satisfying the Clifford algebra, {γ μ, γ ν} = 2δμν . In
these expressions, we have set the speed of light to unity. In
D = 3, a Dirac spinor has a minimum of nD = 2 components;
however, in applications to condensed matter systems, the
number of two-component Dirac fermions in a bulk lattice
system is always doubled due to fermion doubling argu-
ments [1,31], so the total number of fermionic degrees of
freedom N is always a multiple of four.

In D = 3, there is a critical value of the tuning parameter,
s = sc, such that for s < sc the scalar order parameter acquires
a finite expectation value, 〈φ〉 �= 0. Such a finite expectation
value spontaneously breaks the (Z2) parity symmetry of the
theory, which is given by taking (x0, x1, x2) → (x0,−x1, x2)
together with

� → γ 1� , � → −�γ 1 , φ → −φ . (2)

The finite expectation value of φ acts as a Dirac mass in
Eq. (1), resulting in a massive spectrum of fermions above
a two-fold degenerate ground state. In contrast, for s > sc, the
parameter s flows to positive infinity while gY and λ flow
to zero. In this limit, we may ignore the gapped bosonic
fields, and at long distances the theory describes a SM of
noninteracting, massless Dirac fermions with the Euclidean
Lagrangian

LD = −�
j
�∂� j . (3)

We call this fixed point the Dirac CFT, and its properties are
easily obtained since LD is exactly solvable.

Directly at the QCP, s = sc, the interaction couplings gY

and λ flow to nonzero values of an interacting fixed point,
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determined by the chiral Ising universality class. We hence de-
note the critical theory of this emerging interacting fixed point
the chiral Ising CFT. This QCP is nonperturbative directly in
D = 3, but there exists a perturbative expansion in ε = 4 − D,
where λ ∼ g2

Y ∼ O(ε), and the universal properties of the
QCP may be obtained after extrapolating to ε = 1. This will
be our primary analytic tool for studying the finite-size torus
spectrum as detailed in Sec. V.

One may alternatively describe the above QCP using
a purely fermionic field theory, the Gross-Neveu (GN)
model [32], whose imaginary-time Lagrangian is

LGN = −�
j
�∂� j − g

2
(�

j
� j )2, (4)

with a self-interaction of strength g > 0. For D = 3, the
coupling g is renormalization group (RG) irrelevant in per-
turbation theory, so a weak-coupling analysis always results
in a stable massless Dirac SM phase with 〈��〉 = 0. How-
ever, there is ample evidence for a nonperturbative UV fixed
point at some value g = gc, where for g > gc the system
flows to strong coupling. At strong coupling, the system
dynamically generates a mass by acquiring an expectation
value 〈��〉 �= 0, spontaneously breaking the (Z2) parity
transformation of Eq. (2), which will be examined in more
detail in Sec. II C. By the principle of universality, this fixed
point should also be in the chiral Ising universality class,
although it is only analytically accessible in an expansion
in ε′ = D − 2 [5].

We note that both the GNY and GN models may be
studied directly in D = 3 (and even in fractional dimensions
2 < D < 4) by a perturbative expansion in 1/N , where it may
be shown that the fixed points of the two models are exactly
equivalent in the scaling limit within this expansion [5]. We
discuss the 1/N and ε′ expansions of the torus spectrum
in Appendix D, where we additionally give checks that the
three expansions all give consistent torus spectra to leading
order.

In both the GNY and GN field theories, there is a global
U(Nf ) symmetry obtained by taking � j → U j j′� j′ , with
U ∈ U(Nf ). When nD = 2, it is sometimes conventional to
decompose each Dirac fermion into two Majorana fields, after
which the theory is invariant under the larger group O(2Nf ).
This Majorana formulation is conventionally used to define
the O(N )-invariant chiral Ising CFTs [7,11]. For nD > 2, these
field theories no longer have an explicit O(N ) symmetry;
however, due to the structure of the perturbative expansion
for the beta functions, the scaling dimensions of all operators
turn out to only depend on N rather than nD or Nf separately,
which leads to identical critical properties for all theories
with the same total number of components N = nDNf . We
will show that the torus spectrum also only depends on N .
Therefore, we conjecture that all of the chiral Ising CFTs
with the same number of total degrees of freedom N flow
to the same O(N )-invariant CFTs irrespective of the smaller
global symmetries present in the Lagrangians of Eqns. (1)
and (4), and will also obey an identical critical torus energy
spectrum. This emergent O(N ) symmetry also results in a
particular degeneracy structure of the low-energy eigenstates
of the critical torus energy spectrum, as shown in Secs. III B
and V A.

(c) (d)

(b)(a)

FIG. 1. Illustration of (a) the honeycomb lattice, (b) the π -flux
square lattice, and the two corresponding torus geometries with
(c) sixfold, and (d) fourfold rotational symmetry. The two sublattices
A and B are indicated by black and gray points respectively. The lat-
tice constant a is given by the distance between nearest neighbors, the
lattice vectors a1 and a2 are indicated by the blue arrows, and the unit
cell is traced by the grey dotted lines. Finite clusters with Ns = 2L2

sites span L unit cells in the direction of a1 and a2 respectively, i.e.,
|ω1| = |a1|L, |ω2| = |a2|L. In (b) we have chosen the specific gauge
θi j = π/4, θ ji = −θi j , where the tail (head) of the arrows indicates
site i ( j).

B. Model Hamiltonians

Our perturbative analysis of the GNY torus spectrum will
be complemented by the nonperturbative analysis of micro-
scopic fermionic quantum lattice models that exhibit a QCP
which is widely believed to belong to the chiral Ising univer-
sality class as described by the GNY field theory Eq. (1). In
particular, we consider two models of spinless fermions with
Dirac cones in the noninteracting limit at half filling.

The first model is defined on a honeycomb lattice [see
Fig. 1(a)] with the Hamiltonian

Hh = −t
∑
〈i, j〉

(c†
i c j + h.c.) + V

∑
〈i, j〉

(
ni − 1

2

)(
n j − 1

2

)
.

(5)
Here, 〈i, j〉 stands for nearest neighbor bonds on the honey-
comb lattice, c(†)

i denotes fermionic annihilation (creation)
operators at site i, and ni = c†

i ci is the fermionic number
operator. The first term in Eq. (5) is the tight-binding model
description of the fermionic hopping between nearest neigh-
bor sites. The free dispersion relation for positive frequencies
is shown in Fig. 2(a) and has Dirac cones at the two nonequiv-
alent Dirac points in the Brillouin zone (BZ), denoted K and
K′, characteristic for a SM state. At half-filling the spectrum is
particle-hole symmetric. The second term describes a density-
density interaction between fermions on neighboring sites,
driving the system, for V 	 t , into a charge density wave
(CDW) state, in which the particle-hole symmetry, together
with a sublattice exchange parity symmetry, (a Z2 symmetry
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FIG. 2. Tight-binding dispersion relation (upper band ε0(k) � 0)
on the (a) honeycomb lattice, (b) π -flux square lattice. Dirac points
are found at two distinct points in the BZ labeled (a) K and K′ and
(b) X and X′, respectively. The grey line traces the BZ boundary.

group) is spontaneously broken and the local densities within
the two sublattices differ in the thermodynamic limit. The
position of the QCP was determined previously to be at Vc/t ≈
1.355 [4,33–35].

The second model that we consider describes interacting,
spinless fermions on the π -flux square lattice at half filling
[see Fig. 1(b)], with the Hamiltonian

Hs = −t
∑
〈i, j〉

(eiθi j c†
i c j + H.c.)+ V

∑
〈i, j〉

(
ni− 1

2

)(
n j − 1

2

)
.

(6)
While the phases θi j depend on the choice of gauge, the
total flux per plaquette, φ = ∑

〈i, j〉∈� θi j is fixed to be φ = π .
In the noninteracting case, V = 0, Eq. (6) is a tight-binding
model with, in general, complex hopping amplitudes. Its dis-
persion relation (for the specific choice of gauge θi j = π/4)
is plotted in Fig. 2(b) and again shows two distinct Dirac
cones (now at the X and X′ points) in the BZ. For large
values of V 	 t , this model also exhibits a CDW phase with
different densities on the two sublattices that are coupled by
the repulsion term. The position of the QCP was estimated to
be at Vc/t ≈ 1.279 [4,33,36]. In the remainder of this paper,
we will set the energy scale of the lattice models by fixing the
hopping amplitude t = 1.

The QPTs in both lattice models introduced above may
be described by either the GNY or GN quantum field the-
ories with a single (Nf = 1) flavor of nD = 4-component
spinors [2,3], corresponding to a value of N = 4, as reviewed
in Appendix C. If not specified otherwise, we mean for N to
take on this value in the following. An important aspect of the
correspondence between the microscopic lattice models and
the effective QFT description is the manifestation of several
global symmetries, which we will examine in the following
section.

C. Symmetries

The model Hamiltonians Hh and Hs possess several global
symmetries, some of which are spontaneously broken in the
ordered phase. Here we review these relevant symmetries and
discuss how they manifest in the GNY and GN field theories.

Since both model Hamiltonians are bipartite, we may label
the fermion annihilation (creation) operators as c(†)

α (xi, yi ),
where ri = (xi, yi ) is the coordinate of the Bravais lattice, and

α = A, B is the sublattice index. In this section, we take the
convention from Fig. 1 that the A and B sites are connected
along the x-axis, and that the unit cell is centered on the point
directly equidistant between these two sites. Furthermore,
with regards to Hs, we consider here, for simplicity, a gauge,
in which the phases eiθi j in Hs are all real (for example, by
choosing θi j = π on one link of each square plaquette and
zero on the others); then these symmetries take on an identical
form in both models. With these conventions, we can now
describe the symmetries of both models.

First, we have the usual global U(1) symmetry from
particle-number conservation, cα (xi, yi ) → eiϕcα (xi, yi ). In
addition, both models have an antiunitary time-reversal sym-
metry that is given by complex conjugation in real space,
leaving the fermionic operators unchanged,

T : cα (xi, yi ) → cα (xi, yi ). (7)

We may also define a parity flip across either the vertical
or horizontal axes, Ix : (xi, yi ) → (−xi, yi ) and Iy : (xi, yi ) →
(xi,−yi ). These parity symmetries are actually part of the
larger point group symmetries of these models, e.g., the di-
hedral symmetry group D6 on the honeycomb lattice. Besides
a change in coordinates, our convention of parity implies that
Ix also exchanges the two sublattices, so we have

Ix :

(
cA(xi, yi )
cB(xi, yi )

)
→

(
cB(−xi, yi )
cA(−xi, yi )

)
, (8)

Iy :

(
cA(xi, yi )
cB(xi, yi )

)
→

(
cA(xi,−yi )
cB(xi,−yi )

)
. (9)

Finally, we also define a particle-hole transformation,

C :

(
cA(xi, yi )
cB(xi, yi )

)
→

(
c†

A(xi, yi )
−c†

B(xi, yi )

)
, (10)

under which the density on each site transforms as
ni → (1 − ni ). In the CDW phase, the densities of fermions
on the sublattices A and B differ, such that both Ix and C are
spontaneously broken.

We now characterize the symmetries of the field theory. As
shown in Appendix C, the GNY and GN field theories may
be derived from our model Hamiltonians in the continuum
and scaling limits, and we find that the models possess a
single flavor of four-component Dirac fermions, i.e., nD = 4,
Nf = 1. In discussing this realization of the field theory, it is
useful to introduce the following explicit representation of the
gamma matrices, which arises naturally from the derivation:

γ 0 =
(

σ z 0
0 σ z

)
, γ 1 =

(
σ x 0
0 σ x

)
, γ 2 =

(
σ y 0
0 −σ y

)
.

(11)
In this representation, the first two indices of the four-spinors
represent fermions on the honeycomb (square) lattice with
momentum near K (X) at sublattice A and B respectively,
while the bottom two components represent fermions near
momentum K′ (X′) at sublattice A and B. It is useful to define
two additional gamma matrices, which anticommute with the
above,

γ 3 =
(

0 σ y

σ y 0

)
, γ 4 =

(
0 −iσ y

iσ y 0

)
. (12)
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We also define ten Hermitian matrices γ ab ≡ iγ aγ b, where
0 � a < b � 4. This parametrization is useful because an
arbitrary 4 × 4 Hermitian matrix may be written as a linear
combination of the sixteen matrices {I, γ a, γ ab} with real
coefficients.

Given this explicit representation, we may follow the
derivation of Appendix C to obtain how the microscopic
symmetry transformations act on the fields of the QFT. In
particular, we use the fact that the transformations T , Iy, and C
exchange the Dirac points, while Ix does not (see also Fig. 2).
The U(1) symmetry simply takes the form � → eiϕ�, while
the discrete symmetries are given by

T : � → γ 24�, φ → φ,

Ix : �(x, y) → γ 1�(−x, y), φ(x, y) → −φ(−x, y),

Iy : �(x, y) → γ 24�(x,−y), φ(x, y) → φ(x,−y),

C : � → (�†γ 13)T, φ → −φ, (13)

where T is antiunitary. It is straightforward to show that
Eqns. (1) and (4) are invariant under these transformations
(where we simply ignore the transformation rules on φ in
the GN case). We furthermore see that the order parameters
for the Z2 symmetry breaking may be given by either 〈φ〉 or
〈��〉, which are both odd under Ix and C but even under the
rest of the above symmetry transformations.

In addition to the symmetries inherited from the micro-
scopic model, the field theory has additional symmetries
which are not present in the lattice model. Importantly, it is
invariant under the three-dimensional Lorentz group, which
is generated by {γ 01, γ 02, γ 12} [37], and includes the discrete
rotational symmetries of the lattice as a subgroup. Finally, we
have an U(1) (“chiral”) symmetry given by � → exp(iγ 34)�,
which corresponds to performing independent U(1) rotations
at the two inequivalent Dirac points. We stress that these
emergent symmetries of the field theory only apply to the
lattice models in the strict scaling limit, and any degeneracies
found in the torus spectrum of the field theory due to these
particular symmetries are expected to be approximate in the
lattice models due to the presence of additional irrelevant
operators.

D. Torus compactifications

In numerical studies of two-dimensional quantum lattice
models, one typically considers finite-size clusters con-
structed from the underlying lattice, with periodic boundary
conditions taken in both lattice directions. This way, one effec-
tively studies a torus compactification of the original infinite
lattice model. Here, we choose finite-size clusters which pre-
serve the maximal six- (four-)fold rotational symmetry C6 (C4)
of the honeycomb (square) lattice model. As mentioned in the
introduction, our analysis serves the dual purpose of (i) exam-
ining the energy level structure of fermionic model systems on
such torus geometries, which serves as a universal fingerprint
for the corresponding QFT, as well as (ii) deriving appropriate
estimators for other physical quantities, such as the effective
Fermi velocity (the effective speed of light) of the interacting
fermion models, which depend on such spectroscopic data.

kx

k
y

L

BZ

H

H’

K

kx

k
y X

L

BZ

S

S’

S”

(a) (b)

FIG. 3. Illustration of the different finite-size cluster families for
the (a) honeycomb, (b) square lattice. Shown is a zoom into the
momentum space around one of the Dirac points K/X. The closest
momentum points are plotted for clusters of different linear size L,
and, as a guide to the eye, we have connected them by lines for the
largest L shown. The Dirac points are (not) part of the momentum
space for cluster families H/S (H’/S’/S”). See text for details.

The torus clusters for the two microscopic models that
we consider here exhibit different overall rhombic shapes
[see Fig. 1(c), 1(d)], which act as an infrared (IR) cutoff
(irrespectively of the lattice discretization, i.e., the ultravio-
let cutoff). The IR characteristics remain influential in the
thermodynamic limit [17], and we account for them also in
the analysis of the GNY field theory on finite tori. This is
done as follows: In the continuum limit, one can use com-
plex coordinates on the two-dimensional torus, x = x1 + i x2.
The torus is then defined by two complex periods, ω1 and
ω2, such that the points x + nω1 + mω2 are equivalent for
all n, m ∈ Z. The torus shape is then characterized by its
modular parameter, τ ≡ ω2/ω1 = τ1 + iτ2. In particular, the
considered triangular-lattice based tori (such as for the honey-
comb lattice model) have a value of τ = exp(iπ/3), while the
square-lattice based tori correspond to τ = i, respectively, cf.
Figs. 1(c) and 1(d). In the framework of the GNY field theory
the torus corresponds to periodic boundary conditions for both
the � and the φ fields.

The lattice models we consider all use periodic bound-
ary conditions for their simulation clusters. Since the Dirac
points in the considered models are not located at the � point
[k = (0, 0)], several families of clusters arise, which differ in
their momentum discretization grid around the Dirac points,
as illustrated in Fig. 3. For example, when considering finite
torus clusters with Ns = 2L2 lattice sites of the honeycomb
lattice (cf. Fig. 1), those with linear size L mod 3 = 0 feature
the Dirac points (K and K′) in their momentum space (family
H), in contrast to clusters with L mod 3 �= 0, which do not
feature the Dirac points (family H’), so that the spectrum is
gapped already in the tight-binding limit, V = 0. Hence, the
finite-size torus spectrum is qualitatively different for those
two families already in the noninteracting limit, and we ob-
serve characteristic differences also for the interacting case.
The case L mod 3 = 0 in the lattice models corresponds to
the standard periodic boundary condition case in the GNY
field theory discussed above. The second case L mod 3 �= 0
corresponds to the GNY field theory with twisted boundary
conditions, �(x + nω1 + mω2) = eiθ�(x). We will present
numerical results for those spectra later on, although we will
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FIG. 4. Critical torus low-energy spectrum for (a) the free, massless Dirac CFT and (b) the N = 4-component chiral Ising CFT, as a
function of the reduced momentum κ on honeycomb tori that contain the Dirac points (family H). Different symbols and colors indicate the
fermion number sectors nf relative to half filling. The numbers in the plots indicate the degeneracy of the levels, while the parenthesis in
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for τ = exp(iπ/3) and κ = 0 as a comparison. The black, dashed lines show a linear dispersion according to the Fermi velocity v0

F = 3/2 and
vc

F in the panels (a) and (b), respectively. Here, vc
F has been estimated as described in Sec. III D. The hatching in (b) indicates that we have not

computed energy levels within this higher energy regime.

only give a few comments about the structure of the ε ex-
pansion for twisted boundary conditions in Sec. V. Similar
considerations apply to the fermionic model Hs on the π -flux
square lattice, as detailed in Sec. IV E.

III. OVERVIEW OF THE CENTRAL RESULTS

This section provides an overview of our analytical and
numerical findings. Further details are provided in the sub-
sequent sections of this paper. For all the models and the field
theories that we consider, the phase diagram is divided by a
strongly coupled QCP (chiral Ising CFT) into an extended SM
regime of massless Dirac fermions (Dirac CFT) and a regime
with spontaneous symmetry breaking and gapped fermionic
excitations. While the spectroscopic properties of the strongly
coupled chiral Ising fixed point are of particular interest, the
excitation spectrum of the free Dirac CFT characterizes the
SM regime, which thus exhibits distinctly different spectral
characteristics. Additionally, there are important crossover
effects between these two regimes which need to be treated
with care. We therefore start by exploring the spectroscopic
properties of the Dirac CFT, before discussing our main find-
ings for the chiral Ising CFT. We then discuss the crossover
between these two CFTs as well as the subtleties in obtaining
the correct Fermi velocity renormalization. In this section, we
concentrate on the case of the honeycomb lattice model Hh

and torus clusters that contain the Dirac points (family H).

A. Dirac CFT torus spectrum

In the SM phase with V < Vc the torus spectrum is char-
acterized by the free, massless Dirac CFT, defined by Eq. (3).
Its excitation energies can be readily calculated analytically,
and they are directly related to the Fermi velocity of the Dirac
fermions. For large finite clusters with Ns = 2L2 lattice sites
the energy levels scale as 1/L, and the torus spectrum in the

SM regime is then given by

�i = vF(V )

L
ξD

i , (14)

where �i, i = 1, 2, ... denotes the set of finite-size energy
gaps (relative to the ground state energy) which make up the
low-energy torus spectrum. Here, vF(V ) is the renormalized
Fermi velocity at interaction strength V , and the ξD

i is a set of
universal numbers that characterize the Dirac CFT [17–19].
The values ξD

i in the low-energy regime are shown in Fig. 4(a).
Additional quantum numbers are attached to the correspond-
ing eigenstate, in particular the fermion number n f relative to
half filling, and its momentum k. At half filling, many-body
states of vanishing finite-size gaps reside both at the Dirac
points K and K′, as well as at total momentum k = 0 [38].
For example, at n f = 0 we have to put two fermions into the
upper or lower band of the Dirac cones at K and K′ to find
in total six zero energy states. This can be done by either
putting both fermions into the two bands of a single Dirac
cone which results in a total momentum of k = 2K(′) ≡ −K(′)
of the many-body state or by putting each one in a different
Dirac cone with a total momentum of k = K + K′ ≡ 0. We
thus introduce a reduced momentum variable

κ = 3

4π
L |k mod K(′)|, (15)

taken modulo the momentum space lattice vectors spanned by
K and K′. States with small value of κ then map to the low-
energy sector described by the QFT. The normalization factor
3/(4π )L is chosen such that momenta closest to k = 0 and
to the Dirac points correspond to a value of κ = 1 (for lattice
constant a = 1). The levels �i together with their quantum
numbers and multiplicities provide a characteristic fingerprint
of the Dirac CFT. We show the low-energy part of the torus
spectrum of the Dirac CFT as a function of the reduced
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momentum in Fig. 4(a), which also displays the corresponding
multiplicities of each level.

In the following, we will refer to gaps in the torus spectrum
as denoting finite differences between the rescaled energy
gaps L�i ∝ ξi. For example, in Fig. 4(a), the lowest level at
κ = 1 has a finite gap with respect to the lowest level at κ = 0.
The raw many body spectrum in the thermodynamic limit,
however, shows no gaps for V � Vc. This notion of gaps in
the torus spectrum will turn out particularly useful to quantify
the differences between the torus spectrum of the Dirac CFT
and the one at the chiral Ising critical point, which we discuss
next.

B. Chiral Ising CFT torus spectrum

At the critical point s = sc, or V = Vc, our models are
described by the strongly interacting chiral Ising CFT, for
which no exact analytical solutions are known. An analytical
approach to the critical torus spectrum of the chiral Ising fixed
point of the N = 4 component GNY field theory is provided
by the ε expansion as detailed in Sec. V. From these calcu-
lations and numerical simulations of the microscopic models,
we find that the critical torus spectrum of the interacting chiral
Ising CFT [i.e., at finite gY > 0 in Eq. (1)] is characterized by
a (different) set of finite-size energy gaps �i that scale as

�i = vc
F

L
ξCI

i , (16)

with vc
F = vF(Vc) the renormalized Fermi velocity at the crit-

ical interaction strength. Such a scaling form of the critical
torus spectrum of an interacting fixed point has been ob-
tained also in studies of purely bosonic quantum critical
points [17–19]. It can be considered a mass spectrum of the
quantum critical theory with a mass scale set by the IR cutoff,
which is proportional to vc

F/L. Here, the ξCI
i are again a set

of universal numbers which are, however, distinct from those
of the Dirac CFT, and, together with the levels multiplicities
and quantum numbers, identify the chiral Ising CFT. The ε

expansion predicts a rich level multiplicity structure for the
low-energy levels because of the before mentioned emergent
O(N ) symmetry of the chiral Ising field theory.

In Fig. 4(b), we show the low-energy part of the chiral
Ising torus spectrum for the N = 4-component GNY theory,
normalized by the Fermi velocity vc

F as a function of the re-
duced momentum κ . In this figure, we compare our estimates
for the ξCI

i as obtained from the ε expansion at κ = 0 (left
panel) with finite-size extrapolated gap data from the micro-
scopic lattice model Hh (right panel). The structure of level
multiplicities and the quantum numbers of the corresponding
eigenstates as obtained from the perturbative ε expansion
compare remarkably well to the numerical analysis of the
microscopic lattice models (when comparing actual values,
one needs to keep in mind that in the ε expansion they result
from a simple extrapolation of only the leading term). It is
important to note that the degenerate levels obtained from the
perturbative analysis appear as quasidegenerate levels in the
numerical data, because of corrections to scaling present in
any particular lattice implementation of the GNY field theory.
A very prominent feature of the chiral Ising torus spectrum
is the opening of large gaps in the torus spectrum between

the two (quasi)degenerate ground state levels with n f = 0 and
the other 14 levels at κ = 0 (with n f = 0,±1,±2), which all
contribute to the ground state manifold in the Dirac CFT. For
the chiral Ising CFT, the n f = ±1 states form an eightfold
degenerate level, while we expect the twofold degenerate
n f = ±2 and the two twofold degenerate n f = 0 levels to
form a sixfold (quasi)degenerate level.

The other large degeneracies of the higher levels in the
Dirac CFT similarly split up in the chiral Ising CFT. Fur-
thermore, very characteristically, we observe a very low-lying
twofold, nearly degenerate set of levels with the same quan-
tum numbers as the ground state levels, similar to what was
also observed in Wilson-Fisher CFTs [17,19]. The quaside-
generate nature of the ground state levels also transfers to the
lowest n f = ±1 levels at κ = 1. Their energies are pushed to
values slightly above the linear dispersion relation with the
velocity vc

F, where our best estimate for vc
F was obtained as

described in Sec. III D. We expect that such a twofold quaside-
generacy appears for all the lowest n f = ±1 levels at all
κ > 0, however, these were inaccessible because of finite-size
restrictions in the numerical calculations. A comparison of the
critical torus spectrum for the chiral Ising universality class
in Fig. 4(b) with the critical torus spectrum for the (Wilson-
Fisher) Ising universality class [17,19] where, in particular,
only nondegenerate levels appear, shows the strong influence
of the fermionic degrees of freedom on the critical spectrum.
This, once more, demonstrates the potential of the critical
torus energy spectrum as a useful identifier for universality
classes.

C. Crossover effects near the QCP

For all values V < Vc, the microscopic models, in the ther-
modynamic limit, flow towards the Dirac CFT fixed point with
massless fermionic excitations featuring a linear light cone,
and the spectrum is defined by the universal numbers ξD

i . The
energy spectrum on finite clusters, however, is affected by a
pronounced crossover effect: This derives from the fact that in
the vicinity of the QCP at Vc, the RG flow is first attracted to-
wards the chiral Ising CFT fixed point on intermediate length
scales and later crosses over to the asymptotic Dirac CFT
fixed point only beyond an increasingly larger length scale
Lc, which diverges upon approaching the QCP. For V near
Vc, sufficiently large system sizes L 	 Lc are thus required
in order to probe the asymptotic Dirac CFT fixed point. As a
result, the values of the scaled excitation gaps �i × L exhibit a
continuous crossover between the asymptotic values and those
at the QCP, in particular for those levels for which ξD

i and ξCI
i

differ notably (in particular levels at κ = 0). This crossover
behavior is illustrated in Fig. 5.

This may be made precise by using the theory of finite-size
scaling. Assume we have a D-dimensional CFT perturbed by a
single relevant operator, with an associated correlation length
exponent ν > 0. We also perturb our CFT with any number
of irrelevant operators and call the usual critical exponent
governing the leading corrections to scaling ω > 0. The above
conditions should describe a typical critical point with a single
relevant direction being probed by an experiment or numerical
simulation. With these definitions, the finite-size spectrum of
the perturbed CFT on the torus with “speed of light” v and
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linear extent L is given by [39]

�i = v

L
{ξi[L(V − Vc)ν]+ (L/δ)−ωζi[L(V − Vc)ν]

+ O(1/L)}. (17)

In this expression, the dimensionless scaling functions ξi[x]
and ζi[x] are universal up to overall multiplicative factors
and a normalization of their arguments. We have included the
nonuniversal length scale δ associated with the addition of the
leading irrelevant operator to the CFT, and we only show
the leading nonanalytic dependence on L.

In any lattice model, the spectrum calculated numerically
will contain all of these terms, but in this paper we focus on
extracting the constants ξi = ξi[0], which completely charac-
terize the torus spectrum of the unperturbed CFT. Therefore,
we are really interested in taking the limit

δ � L � |V − Vc|−ν . (18)

By comparing this limit to Eq. (17), we see that the first
inequality ensures that only ξi[x] contributes, while the sec-
ond ensures that the limit ξi[x → 0] is taken. In analyzing
numerical or experimental results, where the nonuniversal
scale δ may be anomalously large or V − Vc cannot be tuned
with arbitrary precision, one should always check that these
conditions hold [40].

Applying this reasoning to the chiral Ising CFT, we find
that, even if we tune into the semimetal phase, V < Vc, our
finite-size spectrum will continue to be that of the chiral Ising
CFT provided the linear extent of the torus satisfies L �
Lc = |V − Vc|−νCI . Alternatively, we may apply this analysis
to the Dirac CFT, which does not have any relevant operators.
Instead, the coupling V is actually an irrelevant perturbation
to the Dirac CFT, so the length scale Lc should actually be
associated with δ in Eq. (18), and the Dirac CFT spectrum is
obtained when L 	 Lc. At intermediate length scales, L ∼ Lc,
the torus spectrum is described by the full function ξi[x].

D. Quantifying the Fermi velocity renormalization

In the SM phase, the considered model systems fea-
ture massless fermionic excitations in the thermodynamic
limit, with a linear single particle dispersion and a renormal-

ized Fermi velocity vF(V ) which depends on the interaction
strength in a nonuniversal manner. This is due to a RG flow
towards the Dirac CFT fixed point for all values V < Vc. Only
exactly at the QCP will the system finally flow to the chiral
Ising CFT fixed point. While the shape of the fermion disper-
sion relation does not change within the SM phase, the Fermi
velocity vF(V ) can differ greatly from the noninteracting value
v0

F and is model dependent [see Fig. 5(b)].
Since the torus energy spectrum is a universal property

for the underlying Dirac CFT, the energy levels are given by
�iL = vF(V )ξD

i within the SM phase, where the ξD
i denote

universal numbers describing the SM phase and do not de-
pend on the interaction strength V < Vc. Hence, it is possible
to determine the renormalization of the Fermi velocity from
single energy levels (with ξD

i > 0) of the spectrum,

vF(V ) = lim
L→∞

�iL

ξD
i

, (V < Vc). (19)

Here, we obtain vF(V ) by measuring the energy gap
�n f =±1(kmin) of the single-fermion excitation n f = 1 at the
momentum kmin closest to the Dirac point (family H), which
shows particularly small finite-size and crossover effects.
This momentum corresponds to κ = 1, and the correspond-
ing value of ξD

i is exactly known [see Fig. 4(a)]. Note that
Eq. (19) cannot be readily applied at V = Vc to extract the
critical Fermi velocity vc

F, since the values of ξCI
i are not a

priori known and cannot be measured independently of vc
F in

numerical simulations.
The results obtained by the above analysis for the renor-

malized Fermi velocity vF(V ) in the SM regime of the
honeycomb lattice model Hh are shown in Fig. 6, along with
a linear regression, which describes the numerical results re-
markably well. Assuming a nonsingular behavior of the Fermi
velocity across the critical point [3], we extrapolate the linear
functions to Vc to obtain an estimate for the critical Fermi
velocity vc

F which is approximately 35% larger than v0
F. Note

that in the GNY field theory the speed of light is the analog
of the Fermi velocity and stays constant due to strict Lorentz
invariance throughout all the phases. Furthermore, we perform
the same analysis for a gapped level with n f = ±1 on clusters
in family H’, which yields a velocity renormalization in very
good agreement with the previous estimate (see Fig. 6).
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after finite-size extrapolation are shown in Fig. 11.

Alternatively, one may be tempted to consider the slope of
the dispersion in the vicinity of the Dirac point,

v
slope
F (V ) = lim

L→∞
�(kmin) − �(K)

|kmin − K| , (20)

to extract the Fermi velocity renormalization: In fact, based
on Eq. (14), we obtain v

slope
F in terms of the universal numbers

ξD
i for the n f = 1 excitations at κ = 0 and κ = 1, respectively.

These can be readily extracted from Fig. 4(a), and we obtain
v

slope
F (V ) = vF(V ) for V < Vc. This estimator is, however,

strongly influenced by the crossover effects, mentioned in
Sec. III C, close to the QCP: As seen from Fig. 4, the single-
particle excitation at the Dirac point (with n f = 1, κ = 0),
which enters the estimator for the Fermi velocity renormal-
ization in Eq. (20), shows particularly different values of ξD

i
and ξCI

i . Hence, performing numerical simulations on insuffi-
ciently large tori (due to limitations in the accessible system
sizes), will lead to a false estimate for the Fermi velocity
renormalization by Eq. (20).

An extrapolation of the Fermi velocity based on slopes
between the Dirac point and the closest momentum nearby,
as in Eq. (20), is thus particularly dangerous in the vicinity of
interacting quantum critical points and a very careful analysis
including proper finite-size scaling is necessary [17,41]. As
pointed out recently [24], such a crossover due to enhanced
finite-size shifts in the excitation gap at the Dirac point led
the authors in Ref. [23] to drastically underestimate the Fermi
velocity in the Hubbard model on the honeycomb lattice near
its QCP. While the nature of the quantum critical point is dif-
ferent in Ref. [23] (chiral Heisenberg fixed point), the problem
of the crossover length scale also applies there.

IV. NUMERICAL RESULTS FOR THE LATTICE MODELS

In this section, we present our numerical results for the
microscopic lattice models in more detail. We begin by

providing an overview of the two methods that we used for
our numerical calculations, exact diagonalization (ED) and
quantum Monte Carlo (QMC), and explain how we corrected
for warping effects from the lattice discretization, before pro-
viding details of the extrapolation to the thermodynamic limit.

A. Exact diagonalization

Exact diagonalization (ED) [42,43] can be used to calculate
all low-energy gaps directly and exactly for all parameters
V on finite size clusters. In addition, their quantum num-
bers according to fermion-number conservation and lattice
symmetries can be directly identified using a symmetry-
adapted basis. In particular, the ED spectrum is divided into
n f sectors combined with a Z2 charge according to the
particle-hole symmetry C at half filling n f = 0, as well as
the momentum quantum number k and an irreducible rep-
resentation of the lattice point group. This also allows for
the identification of appropriate quantum many-body opera-
tors with nonvanishing matrix elements between the ground
state and the various low-lying excitations. These opera-
tors can then be used to extract the corresponding energy
gaps within the QMC simulations from the decay of the
imaginary-time correlation function, as described in the next
section.

B. Quantum Monte Carlo

We employ the projector lattice continuous-time quantum
Monte Carlo algorithm (LCT-INT) detailed in Ref. [44]. The
ground state expectation value of an observable Ô is accessed
upon projecting a trial wave function |�T 〉,

〈�0|Ô|�0〉
〈�0|�0〉 = lim

�→∞
〈�T |e− �

2 H Ô e− �
2 H |�T 〉

〈�T |e−�H |�T 〉 , (21)

where |�0〉 denotes the ground state of the Hamiltonian H .
For this work, the simulations were performed with a pro-
jection length of up to � = 160/t to ensure convergence
within the statistical uncertainty. Importantly, the LCT-INT
formulation does not rely on a Trotter decomposition but in-
stead decomposes the projection operator using an interaction
expansion directly in continuous time, thus eliminating the
Trotter error completely.

The trial wave function is chosen as a zero momentum,
particle-hole (anti)symmetric ground state of the free Hamil-
tonian, and is represented by a Slater determinant |�T 〉.
Furthermore, the invariance of the Hamiltonian under the
reflection symmetry Ix can be used to separate the two
quasidegenerate ground states of the interacting system. We
therefore consider trial wave functions |�T 〉± with Ix eigen-
value ±1 in order to project onto the ground state of the
corresponding symmetry sectors.

The lowest energy gaps �Ô are extracted from the
asymptotic decay of imaginary-time correlation functions,
dominated by

〈Ô(τ )Ô†〉 ∼ |〈�0|Ô|��Ô
〉|2 exp(−�Ôτ ) , (22)

where for sufficiently large τ , with 1 � τ � �/2, this lead-
ing exponential decay is dominated by the smallest gap
�Ô accessible by the operator Ô. The relevant energy gaps

125128-9



MICHAEL SCHULER et al. PHYSICAL REVIEW B 103, 125128 (2021)

0.0 0.2 0.4 0.6 0.8 1.0

q

0.0

0.5

1.0

1.5

kmin

Unwarping

ε0(K − q)

v0
F|q|

FIG. 7. Unwarping of the energy spectrum for clusters that do
not contain the Dirac points in order to reduce finite-size effects.
The finite-size spectrum for all interaction strengths V is multiplied
by a (Ns-dependent) constant such that the noninteracting fermion
dispersion aligns with the (effective) linear Dirac cone with velocity
v0
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correspond to excited states in different symmetry sectors,
which are determined by their fermion-number, momentum,
particle-hole symmetry, and an irreducible representation of
the lattice point group. The operators Ô have to connect the
ground state |�0〉 to the desired excited state |��Ô

〉 such
that the overlap |〈�0|Ô|��Ô

〉| is finite. Feasible operators Ô
can be categorized by their action under the various sym-
metry operations. For example, states with opposite parity
under Ix are connected by operators for which the anticom-
mutator with the reflection operator Ix vanishes, {Ô, Ix} =
0. A detailed list of the symmetry properties of the op-
erators connecting the ground state to the various relevant
excited states can be found in Table IV. The explicit expres-
sions of possible operator implementations can be found in
Appendix A.

C. Warping corrections

It is well known that the Dirac cones for the noninteracting
lattice models, V = 0, are strongly modified by warping ef-
fects from the asymptotic dispersion relations, see Fig. 2. As
a result, rather large systems are required to directly probe the
linear dispersion regime, especially for those clusters that do
not contain the Dirac points. In order to reduce the finite-size
effects for the energy levels measured on clusters without
Dirac points, we appropriately rescale the finite-energy spec-
tra at any momentum k in the vicinity of the Dirac points for
all interaction strengths V as

�i → �̂i = v0
F|D − kmin|
ε0(kmin)

�i , (23)

where v0
F denotes the Fermi velocity for V = 0, ε0(k) the

dispersion relation of the noninteracting system, and D is
equal to K or X, for Hh and Hs, respectively. This unwarping
of the energy spectrum is illustrated in Fig. 7. In the following,
�̂i will always indicate that an unwarping according to the
above equation has been performed.

D. Results: Evolution of the torus spectrum of Hh with V

In this section, we provide a detailed analysis of the spin-
less fermion t − V model on the honeycomb lattice, described
by Eq. (5) at half filling. The underlying structure of the en-
ergy level spectrum is uncovered upon appropriately rescaling
the finite-size energy gaps by a factor of the linear system
scale, as quantified by L = √

Ns/2. We, therefore, consider in
the following the low-energy gaps rescaled as �i × L, which
we call the spectrum. We first consider the evolution of the full
low-energy spectrum with the interaction strength V , includ-
ing the free system V = 0 and the QCP at Vc ≈ 1.355 [4,33],
based on ED calculations on clusters of a few ten sites. This
is very instructive in order to identify the qualitative features
of a QCP that remain valid in the thermodynamic limit, even
though the quantitative values of the energy gaps may be
subject to substantial finite-size effects.

Figure 8(a) shows the evolution of the spectrum on the
Ns = 24 sites cluster, which is characteristic of tori that con-
tain the Dirac points (family H). In the noninteracting case,
V = 0, we identify a sixfold degenerate ground state in the
half-filled sector, n f = 0. The lowest single-fermion level
n f = ±1 [45] (eightfold degenerate) and the two-fermion sec-
tor n f = ±2 (twofold degenerate, not shown) are also gapless,
as fermions can be created at the gapless Dirac points. The
finite-size spectrum immediately gaps out for finite V > 0,
and the system undergoes a transition into the CDW phase for
V > Vc, where a twofold (quasi)degenerate ground state of a
Z2 even and a Z2 odd level is observed, while all fermionic
excitations n f �= 0 are gapped.

According to their quantum numbers we can label the
energy levels and relate them to the known instabilities of
the Dirac phase: Mass gaps for spinless Dirac fermions can
be generated by breaking the sublattice symmetry (σT ), by
breaking the time-reversal symmetry with zero net magnetic
flux through the honeycomb unit cell (Chern) or by a Kekulé
dimerization which creates two distinct real masses [46–49].

Another prominent level near the quantum critical point
is the state corresponding to a detuning from the quantum
critical point (εT ). This level lies in the same symmetry sector
as the ground state (1T ) and typically shows a characteristic
shape with a minimum around the QCP. This level is also
the leading contribution to the fidelity susceptibility at the
quantum critical point [50,51].

The critical torus spectrum in the past showed qualitatively
similar structures as the operator content of the correspond-
ing field theory, i.e., the scaling dimensions of the fields
of the GNY CFT [17,19]. We have, therefore, chosen the
labels σT (εT ) as the torus analogues of the lowest particle-
hole odd (even) scalar fields and ψT as the torus analog
of the lowest vector field (the lowest single-fermion excita-
tion n f = ±1). Furthermore, we label the lowest two-fermion
excitation n f = ±2 as (2ψ )T and the torus analog of the
fermionic descendent field, i.e., the lowest fermionic excita-
tion at kmin, as (ψ + d )T . A prime on a level symbol is used to
indicate the second-lowest level in the same symmetry sectors
as the corresponding unprimed level. In Table I we list the
most important quantum numbers for these levels.

The finite-size spectrum for the family of clusters that do
not include the Dirac points is structurally different in the SM
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FIG. 8. Low-energy spectra of the model Eq. (5) as a function of V for clusters of size (a) Ns = 24, (b) Ns = 32. The left panels show the
half-filled sector nf = 0; the right panels show the sectors with one additional fermion/hole nf = ±1. The black vertical line indicates the
critical point Vc ≈ 1.355 [4,33]. The cluster in (a) has the Dirac point in its momentum space (family H) and the fermionic excitation (right
panel) is gapless for V = 0. The cluster in (b) does not feature the Dirac point (family H’) and the fermionic excitation is always gapped. This
influences the spectrum at criticality such that different families of clusters have to be distinguished in the extrapolation to the TDL. We have
also, in the corresponding colors, indicated the labels for the most important low-energy spectral levels: 1, σT , εT , ψT , Chern, Kekulé (see
text). Empty (filled) symbols for nf = 0 represent even (odd) levels under particle-hole inversion.

phase [see Fig. 8(b)]. The ground state is unique even for
V = 0 and the fermion excitations n f = ±1 and n f = ±2 are
gapped. The σT field strongly decreases in energy with a finite
value at the critical point and constitutes the second state in the
twofold degenerate ground state manifold for V 	 Vc, but in
contrast to the clusters with Dirac points has a large gap at Vc.
Again, the εT field shows a very characteristic shape with a
strongly reduced gap only around the critical point.

E. Results: Torus spectrum at criticality

We next examine in more detail the spectrum at criticality
for the two microscopic lattice models, Hh and Hs. In Fig. 9
we show the critical torus energy spectra, as obtained from the

TABLE I. Quantum numbers of the most relevant energy levels
in the torus spectrum of the chiral Ising CFT. The table denotes
the particle-hole quantum number PH, the fermion sector relative
to half filling nf , the momentum k, and the reduced momentum κ .
For simplicity, we here omit showing the irreducible representations
under the lattice point-group symmetry.

Levels PH Ix n f k κ

1T , εT 1 1 0 0 0
σT , σ ′

T −1 −1 0 0 0
Kekule 1 1 0 K 0
Chern −1 −1 0 0 0
ψT – – ±1 K 0
(ψ + d )T , (ψ + d )′T – – ±1 kmin 1
(2ψ )T – – ±2 0 0

different cluster geometries. In this figure, the critical torus en-
ergy spectra are rescaled by the critical Fermi velocity, which,
up to a global factor, identifies the universal numbers ξGNY

i for
the N = 4 chiral Ising GNY universality class in D = (2 + 1)
dimensions. As mentioned in Sec. II D, one furthermore has
to distinguish for each model different families of finite size
clusters. For the honeycomb lattice, the families H (H’) are
distinguished by the presence (absence) of the Dirac points in

H S H’ S’ S”

0

1

2

3

4

5

Δ
i
×

L
/v

c F

(ψ + d)′T
(ψ + d)T

σ′
T

εT

(2ψ)T

Chern

Kekule
ψT

σT

1T

Δ̂
i
×

L
/v

c F

FIG. 9. Critical torus spectrum of the N = 4 chiral Ising theory
for the honeycomb and square models. Shown are the most promi-
nent low-energy levels after finite-size extrapolation [cf. Fig. 10,
Fig. 13]. The left panel shows the extrapolated levels from tori that
contain the Dirac points, while the right panel shows those that do not
contain the Dirac points. The spectrum has been normalized by the
critical Fermi velocities vc

F for the different geometries [cf. Fig. 11,
Fig. 14]. Full symbols show levels extrapolated from QMC data;
empty symbols denote levels extrapolated from ED data alone.
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FIG. 10. Extrapolation of the critical energy spectrum on the honeycomb lattice. We use second or first order polynomial functions
(depending on the number of available data points) in 1/

√
Ns to extrapolate the gaps to Ns → ∞. Open symbols denote ED data, while

full symbols show QMC data, and we use the same labeling for the levels as in Fig. 8. Dashed (dotted) lines show extrapolations of QMC (ED)
data. (a) shows clusters that contain the Dirac points, (b) shows clusters that do not. In (b) we extrapolate L mod 3 = 1 and L mod 3 = 2
clusters separately, where possible. We use clusters of linear size up to (a) L = 15, (b) L = 14 for the extrapolation. Note that not all gaps
could be obtained on the largest clusters with QMC due to small overlap of some excitations with the ground state for the chosen operators,
which resulted in noisy estimators and prevented us to reliably extract gaps for the largest systems.

their momentum space [cf. Fig. 3(a)]. For the square lattice,
we distinguish three families: Clusters in family S contain the
two Dirac points among the lattice momenta, while for those
belonging to family S’ (S”), the Dirac points are (not) located
at the center between four lattice momenta, respectively [cf.
Fig. 3(b)].

To obtain the critical torus spectrum in the thermodynamic
limit we extrapolated the finite-size results �i × L for the
different levels [cf. also Fig. 8] obtained from ED and QMC to
Ns → ∞, as shown in Fig. 10 for the model Hh, on which we
focus in the remainder of this section. The details of the corre-
sponding finite-size analysis of the torus spectrum at the QCP
of the square lattice model Hs are provided in Appendix B.
While the quality of the extrapolations is not equally good for
all levels since not all energy gaps could be measured with
QMC, it is important to note that the qualitative structure of
the low-energy levels, their quantum numbers, and (approxi-
mate) multiplicities are already present on the smaller clusters
with a few tens of sites, and it is this qualitative structure that
serves as a fingerprint for the chiral Ising universality class.
For the same reason we also omit giving error bars on the
extrapolated levels.

The critical torus energy spectrum for tori that contain
the Dirac points (family H) show very characteristic features
[cf. Figs. 9 and 10]: The gap for the σT field is remark-
ably small and appears to form a twofold degenerate state
together with the ground state, i.e., the vacuum level 1T in
the thermodynamic limit. The εT level and the σ ′

T level are
also close to each other and build a second copy of such a
twofold (nearly) degenerate level in the thermodynamic limit.
The fermion mode ψT is the next lowest level above σT . The
subsequent Kekule, Chern, and (2ψ )T levels are very close
to each other and build a sixfold (nearly) degenerate level.
Two single-fermion levels (ψ + d )(′)

T with momentum kmin

are also found to build a nearly degenerate set of levels with
energy comparable to the εT and σ ′

T states. The characteristic

twofold nearly degenerate levels are a result of the twofold
nearly degenerate ground state.

For tori that do not contain the Dirac points (family H’),
the critical torus energy spectrum is strongly altered, with a
much larger σT gap followed by the ψT field. The opening of
the σT gap also leads to a strong splitting of the other twofold
nearly degenerate levels observed on the clusters with Dirac
points. The (2ψ )T and Chern fields are, again, very close to
each other, while the Kekule field is not clearly defined. The
εT level seems to be only slightly influenced by the choice of
the torus shape.

F. Results: Estimation of the Fermi velocity renormalization

We already discussed our approach to estimate the Fermi
velocity renormalization and the subtle crossover effects near
the QCP in Secs. III D and III C. Here, we provide further de-
tails on this procedure for Hh, while the case of Hs is treated in
Appendix B. In particular, we consider using different levels
to access vF(V ) based on the general formula Eq. (19) within
the SM phase. Here, we focus on the Hamiltonian Hh, for
which larger-system QMC data is available.

In Fig. 11(a) we show various renormalized energy levels
�i × L within the SM phase of the honeycomb lattice model
Hh from finite clusters that do not contain the Dirac points
and also extrapolate these values to the thermodynamic limit
Ns → ∞. Because of the very small finite-size effects of the
n f = ±1 level (ψT ), the Fermi velocity renormalization is
best read off from this level and its V dependence can be
well approximated by a linear function [see center panel in
Fig. 11(a)]. Furthermore, the renormalization of other levels
with stronger finite-size effects [see left and right panels in
Fig. 11(a)] is well approximated by the same function in
the SM phase. It is important to note that the strong drop
of the σT level close to the critical point is not due to a
sudden, strong decrease of the Fermi velocity but mainly
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FIG. 11. Renormalization of the Fermi velocity in the SM phase for the honeycomb lattice model. (a) Energy gaps �̂i × L of low-lying
levels for clusters without Dirac points (family H’) as a function of the interaction strength V . The gaps are normalized to one at V = 0
for easier comparison. Blue square (circle) symbols show finite-size data from QMC (ED), while the black diamonds are the finite-size
extrapolated values (L → ∞) for each V . The extrapolated data for the fermion excitation nf = 1 (center panel) is fitted by a linear function
(full red line), showing the Fermi velocity renormalization. This fit is included in the other panels by a dashed line as a comparison. The shaded
region indicates the fitting window. (b) Energy gap of the single fermion excitation at kmin for clusters that contain the Dirac points (family H)
together with a fit describing the vF renormalization. Note that the gaps for levels shown in (a) would vanish in the SM phase for these clusters.
See text for further discussion.

because of the strong difference of the universal numbers
ξD
σT

in the SM phase and ξGNY
σT

at the chiral Ising critical
point. This level, thus, provides us with another dramatic
example of the crossover effects that have been discussed in
Sec. III C.

For clusters that contain the Dirac points, many gaps,
such as the single particle gap at the Dirac point (ψT ),
vanish faster than 1/L in the SM phase, i.e., these levels
have a vanishing value of ξD

i = 0, and they, thus, cannot be
used to extract vF(V ) based on Eq. (19). On these clusters,
we, therefore, measure the gap of a single fermion excita-
tion n f = 1 with κ = 1, labeled (ψ + d )T , which is gapped,
and obtain the vF(V ) renormalization from this value [see
Fig. 11(b)]. The extrapolated values and the linear regression
function is also shown in Fig. 6 and was further discussed
in Sec. III D. Again, we obtain an approximately linear be-
havior and, importantly, the regression functions agree very
well among the two families of finite-size clusters. The agree-
ment of vF(V ) as extracted using different levels and cluster
families demonstrates that this approach of computing the
Fermi velocity renormalization within the SM phase is quite
reliable.

V. TORUS SPECTRUM IN THE ε EXPANSION

In this section, we provide the details of the analytical ε

expansion to extract the torus spectrum for the GNY field
theory.

A. General structure of the expansion

We want to examine the finite-size spectrum of the GNY
field theory given in Eq. (1). For this purpose, we will use a
real-time Hamiltonian formulation, with

HGNY =
∫

dd x

[
�

j
(�∇ + gY φ j )� + 1

2
�2

+ 1

2
(∇φ)2 + λ

4!
φ4

]
. (24)

These operators satisfy the equal-time commutation relations

[φ(x),�(x′)] = iδd (x − x′),{
� j

a (x), � j′ †
b (x′)

} = δ j j′δabδ
d (x − x′), (25)

where the Dirac field �
j
a has spinor index a = 1, ..., nD and

flavor index j = 1, ..., Nf , and we define N = nDNf to be
the total number of degrees of freedom. In Eq. (24) we have
assumed that the tuning parameter s has already been set to its
critical value sc and used the fact that sc = 0 in dimensional
regularization. At leading order in ε = 3 − d , the interaction
couplings flow to the fixed point values [5]

g∗2
Y,ren. = 16 π2ε

N + 6
,

λ∗
ren = 384 Nπ2ε

(N + 6)[(N − 6) + √
N2 + 132N + 36]

. (26)

As a reminder of our notation, we use complex coordinates
for the two-dimensional torus, x = x1 + ix2, and then define
the torus by two complex periods, ω1 and ω2, such that the
points x + nω1 + mω2 are equivalent for all n, m ∈ Z. The
torus is characterized by its modular parameter, τ ≡ ω2/ω1 =
τ1 + iτ2, and its area is given by A = Im(ω∗

2ω1). In Eq. (24),
we take the spatial integral to be over d/2 copies of the two-
dimensional torus with modular parameter τ , which preserves
point group symmetries at all steps of the calculation, and does
not introduce any extra unphysical parameters. In addition to
the other symmetries mentioned in this paper, we note that
the full torus spectrum is also invariant under the modular
transformations, τ → τ + 1 and τ → −1/τ , under which the
torus area A is also invariant. The length scale L introduced in
earlier sections to define the universal numbers ξCI

i is related
to the area of the torus by A = |a1|τ2L2 (see Fig. 1).

As mentioned in Section II D, the structure of the ε ex-
pansion on the torus turns out to be very different if we
allow twisted boundary conditions. In particular, if we con-
sider torus clusters without Dirac points, this corresponds to
a boundary condition �(x + nω1 + mω2) = eiθ�(x) on the
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fermions, while the bosonic field remains fully periodic. The
twisted boundary condition results in a finite-size mass gap
for the fermions proportional to θ , so one does not need to
separate out the fermionic zero modes. Then following the
arguments in Sec. III A. of Ref. [19], whenever θ2 � ε1/3, the
torus spectrum is given by an effective Hamiltonian which
only involves the bosonic zero modes, implying that the
torus clusters which do not have Dirac points will have a
dramatically different spectrum from the L mod 3 = 0 case
corresponding to the field theory with periodic boundary con-
ditions. In the remainder of this section, we will only focus on
the fully periodic setup.

As emphasized in previous work [17,19], the presence of
massless bosonic fields invalidates naive perturbation theory
in a finite volume. To obtain the finite-size spectrum, one must
separate out the zero-momentum part of the fields and subse-
quently treat the interactions of these zero modes exactly. The
nonperturbative treatment of the zero modes results in a torus
spectrum which is dramatically different from the particlelike
Fock spectrum of the Dirac case. To this end, we write the
mode expansions for our fields as

φ(x) = A 1−d
4 ϕ + 1

Ad/4

∑
k �=0

eik·x
√

2|k| [a(k) + a†(−k)],

�(x) = A− d+1
4 π − i

Ad/4

∑
k �=0

√
|k|
2

eik·x[a(k) − a†(−k)],

� j
a (x) = A− d

4 ψ j
a + 1

Ad/4

∑
k �=0

nD/2∑
s=1

eik·x
√

2|k|
[
ua(k, s)b j

s (k)

+ va(−k, s)c j†
s (−k)

]
. (27)

Here, a†, b j†
s , and c j†

s create Fock states for bosons, fermions,
and antifermions, respectively (and the fermions have pseu-
dospin and flavor indices s and j). Dot products for complex
coordinates are defined as k · x ≡ Re(kx∗). The momentum
sums are performed over the reciprocal lattice, which is given
by

k = nk1 + mk2, n, m ∈ Z, (28)

where k1 = −iω2/A, k1 = iω1/A. The commutation relations
for the zero-mode parts are

[ϕ, π ] = i,
{
ψ j

a , ψ
j′†

b

} = δ j j′δab. (29)

We now place the mode expansion into Eq. (24) and sepa-
rate the Hamiltonian into an unperturbed and interacting part,
HGNY = H0 + V , where we insist that all zero-mode operators
are included in V . Then H0 is a free Fock Hamiltonian,

H0 = E0 +
∑
k �=0

|k| a†(k)a(k)

+
∑
k �=0

nD/2∑
s=1

|k|[b j†
s (k)bj

s (k) + c j†
s (k)c j

s (k)
]
, (30)

where E0 = −(3/2)
∑

k �=0 |k| is the leading contribution to the
ground state energy, and repeated flavor indices are always
summed from j = 1, ..., Nf . It is possible to compute the
universal part of the ground state energy (the calculation for

the Wilson-Fisher CFT is given in Ref. [19]), but in this paper
we will only compute the energy splittings from the ground
state, and hereafter we subtract the ground state energy from
HGNY. The rest of the Hamiltonian is

V = 1√
A

[
1

2
π2 + λAε/2

4!
ϕ4 + gYAε/4ϕ ψ j†γ 0ψ j

]

+ λAε/2

8A ϕ2
∑
k �=0

[a(−k) + a†(k)][a(k) + a†(−k)]

|k|

+ gY Aε/4

√
A

ϕ
∑
k �=0

nD/2∑
s=1

[
c j

s (−k)b j
s (k) + bj †

s (k)c j†
s (−k)

]
+ · · · , (31)

where we only show the terms needed to obtain the leading
loop corrections to the spectrum.

We now treat V as a perturbation to H0. The spectrum of
H0 is just the Fock spectrum, but crucially, every state in the
unperturbed spectrum is infinitely degenerate. This is because
the zero mode ϕ does not appear, so we may multiply each
eigenstate by an arbitrary normalizable function of ϕ without
changing the energy. Each state additionally has a 2N -fold
degeneracy due to the fermionic zero modes, since we may
arbitrarily choose ψ

j†
a ψ

j
a = 0, 1 for each value of a and j.

We use an effective Hamiltonian method to treat V , which
will describe the splitting of each Fock state due to inter-
actions between the zero modes. We consider a degenerate
subspace of H0 with energy ε0, i.e., the set of states satisfying
H0|α0〉 = ε0|α0〉. Then we construct an effective Hamiltonian
which acts on this subspace but whose eigenvalues are the
exact eigenvalues, Heff|α〉 = Eα|α〉, where Eα = ε0 + O(V )
are the exact eigenvalues of H . This effective Hamiltonian
may be obtained perturbatively in V and at leading order it
is given by [52]

Heff = ε0P0 + P0V P0 + P0V
1 − P0

ε0 − H0
V P0 + · · · , (32)

where P0 is the projection operator onto the degenerate sub-
space of interest. In this paper, we will only compute the
effective Hamiltonian for the Fock vacuum |0〉. In principle
it is possible to obtain the effective Hamiltonian for any
Fock state, but their structure becomes increasingly intricate
at higher energies [19].

Taking P0 = |0〉〈0|, and combining Eqs. (30), (31),
and (32), we obtain Heff = |0〉〈0|hk=0, with

hk=0 = 1√
A

[
1

2
π2 + λAε/2

4!
ϕ4 + gYAε/4ϕ ψ j†γ 0ψ j

]

+ Aε/2

8A ϕ2
(
λ − 2Ng2

Y

)∑
k �=0

1

|k| + · · · . (33)

The sum in the second line of this expression is ultraviolet
divergent. The evaluation of sums of this form using dimen-
sional regularization is treated at length in Appendix C of
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Ref. [19], so we simply quote the result:

hk=0 = 1√
A

[
1

2
π2 + λAε/2

4!
ϕ4 + gYAε/4ϕ ψ j†γ 0ψ j

]

+ Aε/2

16π
√
A

ϕ2
(
λ − 2Ng2

Y

)√
τ2 f (3)

1/2(τ ) + · · · . (34)

Here, we define the function

f (3)
1/2(τ ) =

∫ ∞

1

dλ√
λ

[�(λ,�(τ ))3/2 − 1] − τ−3/2 − 2

+ τ
−3/2
2

∫ ∞

1
dλ[�(λ,�(τ )−1)3/2 − 1], (35)

where the special function �(λ,�), known as the two-
dimensional Riemann theta function, is defined as

�(λ,�) =
∑
n∈Z2

exp(−πλ nT · � · n), (36)

for a 2 × 2 matrix �. The matrices appearing in Eq. (35) are

�(τ ) =
(|τ |2 τ1

τ1 1

)
, �(τ )−1 = 1

τ 2
2

(
1 −τ1

−τ1 |τ |2
)

. (37)

We now discuss the spectrum of hk=0, which acts on the
space of zero modes. The eigenfunctions are a product of
a bosonic and fermionic part, F [ϕ] ⊗ |n j

a〉, where the zero-
mode operators act as (temporarily using hats to distinguish
operators from their eigenvalues)

ϕ̂F [ϕ] = ϕF [ϕ], π̂F [ϕ] = −i
∂

∂ϕ
F [ϕ],

ψ j†
a ψ j

a

∣∣n j
a

〉 = n j
a

∣∣n j
a

〉
, n j

a = 0, 1. (38)

Focusing on the fermionic part of the Hilbert space, we can
show that the effective Hamiltonian is symmetric under a full
U(N ) symmetry group. This can be seen by choosing a basis
such that γ 0 = diag(I,−I), after which the fermionic part of
the Hamiltonian may be written

ψ j†γ 0ψ j =
nD/2∑
a=1

(
ψ j †

a ψ j
a − ψ

j †
a+nD/2ψ

j
a+nD/2

)
. (39)

Then by performing the transformation ψ̃
j

a+nD/2 = ψ
j †

a+nD/2,

ψ̃
j †

a+nD/2 = ψ
j

a+nD/2, on the second term in the parenthesis, we
have

ψ j†γ 0ψ j → ψ̃ j †
a ψ̃ j

a − N/2, (40)

which is manifestly invariant under transformations of the (ψ̃)
ψ̃† fields as (anti)fundamental vectors of U(N ). The emergent
O(N ) symmetry of the chiral Ising CFTs noted at the end
of Sec. II A is the subgroup of this U(N ) obtained by taking
purely real elements of the Lie group. The enlarged symmetry
of the effective Hamiltonian compared to that in Eq. (24)
occurs because the zero mode does not appear in the kinetic
term, �

j
�∇�, so the finite-momentum parts of � have less

symmetry than the zero momentum part. Thus, we expect
this extra symmetry of the zero-mode Hamiltonian to hold at
all orders in perturbation theory. The results of Appendix D
show that this emergent symmetry occurs in the 1/N and
ε′ = D − 2 expansions as well.

Proceeding, we denote the above operator by Q̂ ≡
ψ j†γ 0ψ j , and its eigenvalues Q take integer values in the
range Q ∈ [−N/2, N/2]. The degeneracy of the eigenvalue Q
is

deg(Q) = N!

(N/2 + Q)!(N/2 − Q)!
. (41)

We now use Eq. (26) to write the critical couplings as g∗2
Y,ren =

Y ε and λ∗
ren = Uε, where Y and U only depend on N . After

the canonical transformation ϕ → ε−1/6 and π → ε1/6, our
final form for the effective Hamiltonian is

h(Q)
k=0 = ε1/3

√
A

[
−1

2

∂2

∂ϕ2
+ U

4!
ϕ4 +

√
Y Q ϕ

]

+ ε2/3

16π
√
A

ϕ2(U − 2NY )
√

τ2 f (3)
1/2(τ ). (42)

This is the final version of the effective Hamiltonian that we
will work with. The purpose of the canonical transformation
was to make the ε dependence of the spectrum clear: The
first line of Eq. (42) gives the leading O(ε1/3) contribution
to the energy spectrum, and the second line (which required
the computation of a one-loop diagram) gives the O(ε2/3)
correction. The omitted terms in Eqs. (31) and (32) can be
shown to contribute only at higher orders in ε (we direct the
interested reader to Ref. [19] for details on this point).

The lowest energies of the critical GNY torus spectrum are
given by numerically solving the Hamiltonians in Eq. (42) for
each Q, and for a given Q the set of states obtained have a de-
generacy given by Eq. (41). Additionally, the spectrum of h(Q)

k=0

is identical to the spectrum of h(−Q)
k=0 , where the bosonic part

of the eigenfunctions are related by F (Q)[ϕ] = F (−Q)[−ϕ].
Thus, for a given N , we need to numerically solve the effec-
tive Hamiltonians for Q = 0, 1, ..., N/2. Since larger values
of |Q| lower the minimum of the potential, we expect the
ground states of the system to be given by the ground states of
the Q = ±N/2 sectors. From Eq. (41), these two sectors are
individually nondegenerate, and the resulting ground state is
always exactly twofold degenerate. We write the ground states
as

|GS,±〉 = F [ϕ] |N/2〉 ± F [−ϕ] |−N/2〉, (43)

where the ± index indicates the eigenvalue of this state under
the Z2 symmetry ϕ → −ϕ. The states |GS,+〉 and |GS,−〉
correspond, respectively, to the levels denoted 1T and σT in
earlier sections. The two ground states are exactly degenerate
in the scaling limit, although we expect the state |GS,−〉 to
acquire a gap in any lattice realization of the transition due to
nonuniversal corrections to scaling.

The first excited state then corresponds to the effective
Hamiltonians with Q = N/2 − 1 and Q = −N/2 + 1. From
Eq. (41), this state has a total degeneracy of 2N . The fermionic
part of this state is obtained by acting on the ground state
either with ψ†

a for 1 � a � nD/2 or with ψa for nD/2 + 1 �
a � nD. These can be considered the particles (n f = 1) or
holes (n f = −1) in the language of previous sections, and
these states clearly correspond to those labeled ψT earlier.

We note that the lowest-lying finite momentum states are
obtained by constructing an effective Hamiltonian around the
zeroth order finite momentum Fock states [17,19]. In the
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TABLE II. Low-lying spectrum of the N = 4 GNY model on the
torus, from numerically computing the strong-coupling expansion in
the text. We measure energies with respect to the ground state. The
states are labeled by the eigenvalue Q defined in the text, and their
degeneracy (deg.) is given. The labeling of the levels is used to agree
with that used in previous sections, where C and K refer to Chern
and Kekule, respectively.

Level Q deg.
√
AE

1T , σT ±2 2 0

ψT ±1 8 2.6033ε1/3 + 0.3287
√

τ2 f (3)
1/2(τ )ε2/3

C, K, (2ψT ) 0 6 3.7443ε1/3 + 0.5698
√

τ2 f (3)
1/2(τ )ε2/3

εT , σ ′
T ±2 2 4.4713ε1/3 + 0.1183

√
τ2 f (3)

1/2(τ )ε2/3

present model, the energy of these states are not shifted from
the zeroth-order value |k| (vF = 1 here) until order ε, so at
the order we are working they are unchanged compared to the
Dirac CFT. This is in agreement with the small shift of this
level seen in numerics, see Fig. 4.

We now detail the low-energy zero momentum spectrum
for the N = 4 case relevant to the model Hamiltonians Hh

and Hs, where we may relate each individual state to those
obtained in numerics. A similar analysis of the spectrum may
be done for any value of N .

B. The case of N = 4

Specializing to the case with four degrees of freedom,
we need to solve for the lowest eigenvalues of Eq. (42) for
Q = 0, 1, 2. We obtain the spectrum by first computing the
eigenfunctions and eigenvalues of the O(ε1/3) part of the
spectrum numerically, giving us the leading-order contribu-
tion to the energy and eigenfunctions. We then compute the
O(ε2/3) contribution from these eigenfunctions using ordinary
first-order perturbation theory. The results of this computation
are shown in Table II. In Table III we list the explicit numbers
for the torus shapes considered in this paper.

By looking at the transformation of the eigenfunctions
under the symmetries in Sec. II C, we can explicitly relate
these states to the κ = 0 states enumerated in the numerical
simulations of previous sections. In Fig. 4(b), we compare
the resulting spectrum from ε expansion to the one obtained
from numerics. We observe a favorable agreement between

TABLE III. Low-lying spectrum of the N = 4 GNY model for
particular torus shapes considered in numerics, written in terms of
the ξCI defined in Sec. III B. We measure energies with respect to the
ground state, extrapolated to ε = 1. Here we give the energy spec-
trum for modular parameters τ = exp(iπ/3) and τ = i appropriate
to the honeycomb and square lattices, respectively.

Level Q deg. 3
4π

ξCI
h

3
4π

ξCI
s

1T , σT ±2 2 0 0
ψT ±1 8 0.246 0.247
C, K, (2ψT ) 0 6 0.312 0.315
εT , σ ′

T ±2 2 0.612 0.613

TABLE IV. Symmetry properties of the operators connecting the
ground state to the relevant excited states for the honeycomb lattice.
The tables denotes the action under particle-hole transformation PH,
the fermion sector nf , and the momentum k, as well as the action
under rotations about 60◦ (C6) and 120◦ (C3), lattice inversion (C2),
and vertical (Ix) and horizontal (Iy) mirror reflection. 1 (−1) indicates
a vanishing commutator (anticommutator), and – corresponds to an
otherwise broken symmetry. In the case of degenerate excited states
operators with different symmetries can be allowed, which connect
to superimposed states of the degenerate subspace.

Level PH nf k C6 C3 C2 Ix Iy

1T , εT 1 0 0 1 1 1 1 1
σT , σ ′

T −1 0 0 1 −1 −1 −1 1
Kekule 1 0 K 1 – – 1 –
Chern −1 0 0 – – −1 −1 1
ψT – 1 K – – – – –
(2ψ )T – 2 0 – – – – –

the two methods. In particular, the sequence of the eigenstates’
quantum numbers and degeneracies (quasidegeneracies in nu-
merics, see below) are identical. Also, the relative energy gaps
in the κ = 0 sector are similar, i.e., we observe large gaps be-
tween the Q = ±2 levels to the other states, while the Q = 0
and Q = ±1 levels are very close in energy. Quantitatively, the
ε expansion underestimates the gaps observed in numerics,
which we relate to be mainly an artifact of the low-order
expansion.

The degeneracies of the torus spectrum levels because
of the emergent O(N ) symmetry of the chiral Ising CFT
(see Secs. V A and II A) is a highly nontrivial prediction
of the field theory, suggesting that the further splitting seen
between these levels in numerics is nonuniversal and an arti-
fact of corrections to scaling in explicit lattice realizations.
We also note that the energy depends on the shape of the
torus rather weakly (Table III) but that the levels for the
square torus are slightly higher than those for the triangular
torus.

As discussed earlier, the chiral Ising CFT with N de-
grees of freedom appears to always flow to a fixed point
with full O(N ) symmetry in perturbation theory, even when
the original field theory does not possess this symmetry. We
have already noted how this symmetry appears in the torus
spectrum below Eq. (39), where it is a subgroup of a larger
SU(N ) symmetry. Therefore, we may classify the states in
Table II by their representations under these symmetry groups.
From this perspective, the large degeneracies of the torus
spectrum may be related to the large emergent symmetry of
the CFT. Obtaining the relevant irreducible representations
for a given state is easiest when Q̂ is written in the form
of Eq. (40), where the states are given by acting on the
lowest-Q state by antisymmetrized products of the SU(N )
vectors ψ̃

j †
a . In this way, we see that the Q = ±2 states are

SU(4) singlets, the eight Q = ±1 states are two inequiva-
lent SU(4) vectors, and the sixfold degenerate Q = 0 states
transform into each other as an antisymmetric SU(4) ten-
sor. The enumerations of multiplets and their degeneracies
is not altered if we instead consider the O(4) subgroup of
SU(4).
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VI. CONCLUSIONS AND OUTLOOK

In this paper we have shown how to calculate the critical
torus energy spectrum for the chiral Ising universality class
of the GNY theory with nD = 4 spinor components in D =
(2 + 1) dimensions from the investigation of strongly inter-
acting fermionic tight-binding models. We have computed the
low-energy spectrum on finite-size clusters on different spatial
torus geometries (honeycomb vs square models) using exact
diagonalization and quantum Monte Carlo approaches, which
complement each other particularly well for this task. We have
extrapolated the finite-size results to the thermodynamic limit
to obtain the critical torus energy spectrum which serves as a
unique fingerprint of the QCP’s universality class.

Furthermore, we have calculated the critical torus energy
spectrum for the chiral Ising universality class using the per-
turbative expansion in ε = 4 − D. This analytical approach
shows a good qualitative agreement with our numerical re-
sults. In particular it predicts nontrivial degeneracies of levels
which we also observe in numerics after extrapolation to the
thermodynamic limit. This validates the description of the
QCPs in the lattice models as chiral Ising critical points of
the GNY theory. The ε-expansion results also suggest that
the critical torus spectrum of GNY theories only depends on
the total number of fermionic degrees of freedom N = nDNf ,
instead of depending on nD and Nf individually.

We also observe that the finite-size clusters used to ap-
proach the thermodynamic limit split into families with
distinct critical torus spectra. These families can be distin-
guished by the properties of the clusters momentum space;
one family of clusters has the Dirac points in their momen-
tum space and, in the field theory, correspond to periodic
boundary conditions of the fermionic and bosonic fields. The
other family does not have the Dirac points and describes
twisted boundary conditions for the fermionic fields, while the
bosonic field remains unaltered. The critical torus spectrum is
very different for the different families.

Furthermore, we have computed the renormalization of the
Fermi velocity due to the interactions between the fermions
in the SM phase, which we derive from the renormaliza-
tion of the torus energy level of a single fermion mode. We
have shown that the so-obtained approximately linear velocity
renormalization also describes the behavior of other energy
levels in the SM phase. Assuming that the Fermi velocity
behaves continuously also at the critical point, we extrapolate
the linear renormalization to the critical point and obtain an
approximately 35% increase at criticality compared to the
noninteracting case. Additionally, we have investigated the
crossover behavior between the chiral Ising and the Dirac
critical points for finite-size systems. We point out that this
crossover behavior can lead to bad estimators for the Fermi
velocity renormalization.

We hope that this work further strengthens the interpre-
tation of the critical torus energy spectrum as a universal
fingerprint of quantum critical points that is, as we have seen
here, capable of detecting the coupling of bosonic fields to
fermionic spinors. We anticipate that this work inspires future
research on the critical torus spectrum for chiral Ising models
using different methods, a different number of spinor compo-
nents N , or on chiral XY and chiral Heisenberg models where

the spinors are coupled to a continuous O(2)/O(3)-order pa-
rameter. Recently, it was shown how to create fermionic
tight-binding models with a single Dirac cone that is exactly
linear in the entire Brillouin zone of the finite-size sys-
tem [22]. Such systems could also be very beneficial to study
chiral universality classes, because the portion of the Brillouin
zone showing Dirac physics is much larger than in the models
considered within this chapter, and finite-size extrapolation
might become easier. Finally we believe our results complete
an important step towards a quantitative understanding of the
torus energy spectrum of QED3-like theories, believed to de-
scribe quantum spin liquids on the Kagome and the triangular
lattice [25–28].

ACKNOWLEDGMENTS

M.S., T.C.L., and A.M.L. acknowledge support by the
Austrian Science Fund for project SFB FoQus (F-4018) and
DFG-FOR1807 (I-2868). M.S. acknowledges support by the
Austrian Science Fund (FWF) through Grant No. P 31701-
N27. S.H. and St.W. acknowledge support by the Deutsche
Forschungsgemeinschaft (DFG) under project number RGT
1995. Se.W. acknowledges support from the NIST NRC
Postdoctoral Associateship award. The computational results
presented have been achieved in part using the Vienna Scien-
tific Cluster (VSC). This work was supported by the Austrian
Ministry of Science BMWF as part of the UniInfrastruktur-
programm of the Focal Point Scientific Computing at the
University of Innsbruck. We thank the IT Center at RWTH
Aachen University and the JSC Jülich for access to computing
time through JARA-HPC.

APPENDIX A: OPERATORS FOR GAP ESTIMATION
WITH QMC SIMULATIONS

The LCT-INT algorithm [44] used in this work makes
explicit use of a weak coupling expansion of the partition
function in terms of the interacting part of the Hamiltonian.
As a result imaginary time displaced expectations values of
the form in Eq. (22) can be expressed as expectation values
of the free Hamiltonian. One can therefore employ the Wick
theorem to calculate a Monte Carlo estimator of Eq. (22) using
Green functions of the form

Gi j (τ ) = 〈ci(τ ) c†
j (0)〉 , (A1)

which are calculated during the LCT-INT sampling process.
In the following, we list the explicit form of the operators

for the gap estimation for the different levels. The symmetry
properties of these operators are given in Table IV.

1. The σT level

The staggered density operator

ÔσT =
∑

i

(−1)i

(
ni − 1

2

)
(A2)

corresponds to the order parameter of the commensurate
charge-density wave of the bipartite lattice [see Fig. 12(b)].
The operator is antisymmetric under particle-hole transfor-
mation and connects the Z2-even and -odd quasidegenerate
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(a) (b)

(c) (d)

Ix

Iy

FIG. 12. Real space illustration of the point group symmetry of
the honeycomb lattice (a), as well as the operator representations
used for the σT (b), Kekule (c), and Chern level (d). In panel (a) the
blue (orange) dotted lines denote the axes of vertical (horizontal)
mirror reflection, while the fixed point of lattice rotations is the
center of the hexagon. Panel (b) shows the antisymmetric sublattice
modulation of Eq. (A2) with the standard two-site unit cell of the
honeycomb lattice. Panel (c) depicts the three distinct Kekule pat-
terns K1, K2, and K3 of the honeycomb lattice, and panel (d) depicts
the current pattern of the bonds N1, N2, and N3 used in Eq. (A11).

lowest energy states with each other. Furthermore, this op-
erator provides an overlap of the ground state with the
energetically higher σ ′

T level.

2. The ψT and (� + d )T levels

The n f = 0 sector can be connected to the n f = 1 (n f =
−1) sector by operators that create (annihilate) a fermion
with a certain momentum. For lattice clusters that contain the
Dirac point, the lowest excited state of the n f = 1 sector is
connected to the n f = 0 ground state by the operator

ÔψT = c†
K =

∑
i

eiK·ri c†
i , (A3)

which creates a fermion at the Dirac point K. Note that the
eightfold degeneracy of the σT level follows from the valley,
orbital, and particle-hole degeneracy, 2valley × 2orbital × 2PH =
8.

Overlap to higher excited states can then be achieved by
creating a fermion with the nth closest momentum to the Dirac
point,

Ô(ψ+nd )T = c†
K+q =

∑
i

ei(K+q)·ri c†
i , (A4)

where the momentum q is chosen accordingly on the lattice
cluster.

3. The 2ψT level

The (2ψ )T level corresponds to the lowest excited state in
the n f = ±2 sectors. The ground state can be connected to
them by operators that create two fermions, one with momen-

tum K and one with −K,

Ô2ψT = c†
Kc†

−K =
∑

i j

eiK·(ri−r j )c†
i c†

j . (A5)

Note that the total momentum is zero. In this case, the valley
and orbital degeneracies become redundant, and the twofold
degeneracy of the 2ψT level follows directly from particle-
hole symmetry.

4. The εT level

The εT level corresponds to the first excited state with iden-
tical symmetries as the ground state. In order to connect states
within the same symmetry sector, possible operators must
commute with all symmetry operations. A suitable choice is
therefore given by either part of the Hamiltonian,

Ô(t )
εT

= −t
∑
〈i j〉

(c†
i c j + c†

j ci ), (A6)

Ô(V )
εT

= V
∑
〈i j〉

(
n̂i − 1

2

)(
n̂ j − 1

2

)
. (A7)

Since both operators have a finite ground state expectation
value, one has to extract the gap �εT using the formula

〈ÔεT (τ )Ô†
εT

〉 ∼ |〈�0|ÔεT |�εT 〉|2e−�εT τ + |〈�0|ÔεT |�0〉|2 .

(A8)

Note that the operator Ô(V )
εT

is related to the weak coupling
expansion used in LCT-INT. One can therefore calculate its
correlation function, as well as the fidelity susceptibility, from
the distribution of interaction vertices during the Monte Carlo
sampling [44].

5. The Kekule level

The Kekule level corresponds to the lowest excited states
in the n f = 0 sector with momentum K and identical
particle-hole parity as the ground state. This level is twofold
degenerate due to the valley degeneracy. Possible operators
can be constructed from the Kekule bond pattern, which it-
self is threefold degenerate on the honeycomb lattice (K1,
K2, and K3) [see Fig. 12(c)]. The Kekule pattern features an
enlarged unit cell, which in reciprocal space corresponds to
the momentum at the Dirac point. Because of the reduced
lattice symmetry at finite momenta, states with momentum
K do not have a well defined inversion parity. Nevertheless,
one can choose to construct the Kekule operators such that
they are (anti)symmetric under lattice inversion. In this case
the operators do not have well defined momenta and provide
overlap of the ground state with states of momentum K as well
as −K,

Ô(+)
Kekule =

∑
〈i j〉∈K1

(c†
i c j + c†

j ci ) +
∑

〈i j〉∈K2

(c†
i c j + c†

j ci )

− 2
∑

〈i j〉∈K3

(c†
i c j + c†

j ci ), (A9)

Ô(−)
Kekule =

∑
〈i j〉∈K1

(c†
i c j + c†

j ci ) +
∑

〈i j〉∈K2

(c†
i c j + c†

j ci ).

(A10)
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FIG. 13. Extrapolation of the critical torus spectrum on the π -flux square lattice for clusters that contain the Dirac points (a), or not (b). In
(b) there are two classes of lattices, denoted S’ (empty symbols) and S” (half-filled symbols). The label for the states (see legend on the left) is
indicated by the color and shape of the symbols in the right panel. See Fig. 10 for a comparison.

Note that both Ô(+)
Kekule and Ô(−)

Kekule transform symmetric under
the Z2 particle-hole transformation.

6. The Chern level

The Chern level denotes the lowest excited states in the
n f = 0 sector with zero momentum and opposite particle-hole
parity as the ground state. These states are twofold degenerate
and transform according to a two-dimensional irreducible rep-
resentation of the point group. They can be connected to the
ground state by current operators that are antisymmetric under
particle-hole transformation and break rotational symmetry
[see Fig. 12(d)], such as

ÔChern = i
∑

〈i j〉∈N1

(c†
i c j − c†

j ci ) + i

2

∑
〈i j〉∈N2

(c†
i c j − c†

j ci )

+ i

2

∑
〈i j〉∈N3

(c†
i c j − c†

j ci ). (A11)

APPENDIX B: CRITICAL TORUS SPECTRUM FOR Hs

In this Appendix we analyze the chiral Ising QCP of the
model Eq. (6) on the π -flux square lattice. For this case,
we accessed finite-size data only from ED and we show the
finite-size extrapolations of the most important low-energy
levels in Fig. 13. For the ED calculations for Hs, we used
the uniform gauge choice θi j = π/4, θ ji = −θi j in order to
assure a fourfold rotational symmetry of the Hamiltonian.
The extrapolations of model Eq. (5) on the honeycomb lattice
(see Fig. 10) show that the extrapolations of ED data alone
typically give rather good agreement with the extrapolations
of much larger clusters from QMC data. We, thus, assume that
the extrapolations of the square-lattice model also give satis-
factory qualitative estimates for the critical torus spectrum on
the π -flux square lattice.

The critical torus spectrum for the clusters that contain the
Dirac points (see left panel in Fig. 13) shows a very similar
structure to the one of the honeycomb lattice, as it is also

illustrated in Fig. 9 in the main text. Again, the σT level
shows a very low energy gap, and the Kekule, Chern, and
(2ψ )T levels are very close to each other, forming a sixfold
(nearly) degenerate level in the thermodynamic limit. Further-
more, both the εT and σ ′

T levels, as well as the (ψ + d )T and
(ψ + d )′T levels, become nearly degenerate, as was observed
on the honeycomb lattice and suggested from the ε expansion.

In contrast to the honeycomb case, the sequence of square
lattices without Dirac points (and full fourfold rotational C4

symmetry) separates into two families, which we denote as
S’ and S”, respectively (see right panel in Fig. 13). These
two families are distinguished by the distance ||X − kmin||L
of the closest momentum point kmin to the Dirac point X
(see Fig. 3). The scaled energy gap �i × L of, for exam-
ple, the single particle mode n f = ±1 is, thus, different
for both families in the noninteracting case, V = 0, which
develops into a distinct critical spectrum for clusters of fam-
ily S’ and S”. While the finite-size extrapolated εT levels
are very similar for both of those families, the other levels
are rescaled, but the sequence remains almost unchanged
and is comparable with the results from the honeycomb
lattice.

We can also attempt to compute the renormalization of
the Fermi velocity with the interaction strength V in the SM
phase V < Vc for the π -flux square lattice model in an anal-
ogous way to the honeycomb case (see Sec. IV F). We again
choose the single-fermion level at kmin to derive the veloc-
ity renormalization, because it shows the smallest finite-size
effects. We here use the largest finite size cluster to estimate
the Fermi-velocity renormalization, since an extrapolation of
the energy gaps to the thermodynamic limit for each V < Vc

could not be reliably obtained for this model. Like in the
case of the honeycomb lattice, the renormalization can be
well approximated by a linear function, and the behavior of
other characteristic levels, like the two-fermion level n f =
±2, is consistent [see right panel in Fig. 14(a)]. The lowest
n f = 0 excitation (σT ) shows strong finite-size effects since
it is strongly influenced by the crossover effects described in
Sec. III C, and, without QMC data, the available system sizes
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FIG. 14. Renormalization of the Fermi velocity for the π -flux square lattice model. Here we use the not-extrapolated Ns = 34 site data for
the extrapolations in (a) [Ns = 32 in (b)]. The shaded region indicates the fitting window. See Fig. 11 for a comparison.

are too small to read off the Fermi velocity renormalization
from this level [see left panel in Fig. 14(a)]. The family of
clusters that contain the Dirac points also yields a compatible
renormalization of the Fermi velocity [see Fig. 14(b)]. At
criticality, the Fermi velocity is increased by approximately
30% compared to the noninteracting value v0

F.

APPENDIX C: DERIVATION OF QUANTUM FIELD
THEORIES FROM MODEL HAMILTONIANS

In this Appendix, we explicitly derive the GNY and GN
field theories directly from the microscopic model Hamilto-
nians of Sec. II B. We will mostly focus on the honeycomb
lattice Hamiltonian Hh; the corresponding derivation for Hs

follows identical steps, and the only differences are unim-
portant numerical factors. This explicit computation is done
to aid mapping the microscopic symmetries of our model
Hamiltonians to those in the GNY and GN models, outlined
in Sec. II C.

We first recall the exact solution of the V = 0 limit of
the honeycomb model Hh [46] in order to fix notation before
adding interactions. The honeycomb model has two sites per
unit cell, and one may write the quadratic part of the Hamilto-
nian Eq. (5) as

Hh,0 = −
∑

ri

3∑
j=1

(
c†

ri,A
cri+s j ,B

+ H.c.
)
. (C1)

Here, the sum
∑

ri
is over all unit cells in the lattice, and

s1 = (1, 0), s2 = (−1/2,
√

3/2), and s3 = (−1/2,−√
3/2)

are the unit vectors connecting nearest neighbors on the hon-
eycomb lattice (we take the lattice spacing and the coupling
t to unity). We define the Fourier transform on the infinite
honeycomb lattice by(

cri,A

cri,B

)
=

∫
BZ

d2k

ABZ
eik·ri

(
ck,A e−ik·s1/2

ck,B eik·s1/2

)
, (C2)

where the integral is over the Brillouin zone, and ABZ =
8π2/3

√
3 is its area. This transforms the Hamiltonian to

Hh,0 =
∫

BZ

d2k

ABZ
(h(k)c†

k,Ack,B + H.c.), (C3)

with h(k) = −∑3
i=1 exp(ik · (si + s1)). The resulting tight-

binding spectrum is E (k) = ±|h(k)|, and it is pictured in

Fig. 2. It vanishes at two inequivalent points in the Brillouin
zone, K and K′. Defining an appropriate four-spinor,⎛

⎜⎝
�1(k)
�2(k)
�3(k)
�4(k)

⎞
⎟⎠ =

⎛
⎜⎝

κ cK+k,A

κ∗cK+k,B

κ cK′+k,A

κ∗cK′+k,B

⎞
⎟⎠, (C4)

with κ = (2π )e−iπ/6/
√
ABZ, the low energy effective Hamil-

tonian for V = 0 becomes

Hh,0 = vF

∫
d2k

(2π )2
�(k) i[γ 1kx + γ 2ky]�(k)

= vF

∫
d2x �(x)�∇�(x) , (C5)

where vF = 3/2, and the explicit representation of the gamma
matrices being used is given in Eq. (11).

We now consider interactions, V > 0. We first define the
scalar order parameter:

�(ri ) ≡ nri,A − nri,B. (C6)

This measures the difference in density on the two sublattices,
so its expectation value should vanish in the SM phase, while
it saturates to ±1 deep in the ordered phase. We note the
following identity,

∑
ri

�(ri )
2 = −2

∫
BZ

d2k1 d2k2 d2q

(ABZ)3
c†

k1+q,Ac†
k2−q,Bck2,B

ck1,A

+
∫

BZ

d2k

ABZ
(c†

k,Ack,A + c†
k,Bck,B) . (C7)

We compare this to the interaction term in Hh:

Hh,int = V
∑
〈i, j〉

(
ni − 1

2

)(
n j − 1

2

)

= V
∫

BZ

d2k1 d2k2 d2q

(ABZ)3
h(q)c†

k1+q,Ac†
k2−q,Bck2,B

ck1,A

− 3V

2

∫
BZ

d2k

ABZ
(c†

k,Ack,A + c†
k,Bck,B), (C8)

where h(q) is the same function appearing in Eq. (C3), and
we have dropped a constant. In the low-energy limit, we
are only interested in the regions of these integrals where
the fermions may be expanded in terms of the � fields of
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Eq. (C4). Analyzing the first line of Eq. (C8), we find that
the only nonzero values of q which allow this expansion
are q = K, K′, but these are precisely where h(q) = 0, so
these regions do not contribute. Thus, it suffices to expand the
integrand near q = 0, where h(q) ≈ 3. Then using Eq. (C7),
we find that

Hh,int ≈ −3V

2

∑
ri

�(ri )
2. (C9)

We proceed by decoupling this term with a scalar field by
a Hubbard-Stratonovich transformation, using the identity

exp

(
3V

2
�2

)
∝

∫
Dφ exp

(
−1

6
φ2 −

√
V φ�

)
(C10)

for every ri after expressing our theory as a path integral. This
implies that we may replace the interaction Hamiltonian by

Hint =
∑

ri

(
1

6
φ(ri )

2 +
√

V �(ri )φ(ri )

)
. (C11)

We note that φ transforms in the same way as the order param-
eter �, and it will act as the order parameter in what follows.
We also expect that φ has a uniform condensate in the ordered
phase, so in the scaling limit we only need to consider its
Fourier components close to zero momentum. Concentrating
on the interaction term,∑

ri

�(ri )φ(ri ) =
∫

d2k d2k′

(ABZ)2 φ(k)[c†
k′+k,Ack′,Aeik·s1/2

− c†
k′+k,Bck′,Be−ik·s1/2], (C12)

the only regions of interest at low energy are k ∼ 0 and k′ ∼
K, K′. Using Eqs. (C4)–(11) and going back to real space, we
find

Hint =
√

V ′
∫

d2x φ(x)�(x)�(x)+ 1

6

∫
d2xφ(x)2, (C13)

where positive numerical constants have been absorbed into
the definition of V ′ ∝ V .

To summarize, our full Hamiltonian is

Hh =
∫

d2x �(x)(vFγ
x∂x + vFγ

y∂y +
√

V ′φ(x))�(x)

+ 1

6

∫
d2x φ(x)2 . (C14)

A renormalization group transformation will generate dy-
namical terms for the scalar field as well as all interactions
allowed by symmetry, resulting in the GNY QFT of Eq. (1)
modulo irrelevant terms. Alternatively, one may integrate
out the φ field entirely at this stage and obtain the purely
fermionic GN model of Eq. (4). This establishes that the phase
transition of Hh lies in the chiral Ising universality class and
gives an explicit method for relating its symmetries to those
in field theory.

APPENDIX D: SPECTRUM IN 1/N AND D − 2 EXPANSIONS

In this Appendix, we detail the spectrum of the chiral Ising
universality class using the 1/N and ε′ = d − 1 expansions.
A major benefit of the 1/N expansion is that one may easily

obtain every state in the spectrum for both g = gc and for
relevant deviations g �= gc exactly in the N = ∞ limit. This
allows us to compute crossovers from the critical point to the
proximate phases. We will also show that the N → ∞ limit
of the torus spectrum commutes with the ε → 0 and ε′ → 0
limits to leading order.

1. 1/N expansion

We will find it convenient to work with the GN model,
Eq. (4). After decoupling the interaction by a Hubbard-
Stratonovich transformation, the imaginary-time Lagrangian
is given by

LGN = −�
j
(�∂ + φ)� j + N

2g̃
φ2, (D1)

where we have defined g = g̃/N , expecting that g̃ remains
finite for N → ∞. As in the main text, we have Nf flavors
of nD-component Dirac fermions and define N = nDNf to be
the total number of degrees of freedom. We will take nD to be
finite, taking Nf (and therefore N) to infinity.

We may now integrate out the fermions exactly, obtaining
the Euclidean action

Sφ = −Nf Tr ln(�∂ + φ) + N

2g̃

∫
dd+1x φ2. (D2)

For N → ∞, the path integral may be evaluated at its saddle
point. Defining � = 〈φ〉 in this limit, the saddle-point config-
uration is given by the gap equation

1

A
∑

k

∫
dω

2π

1

ω2 + k2 + �2
= 1

g̃
, (D3)

which is to be solved for �. Both sides of this equation are
divergent and regularization dependent, but if we consider
deviations from the critical coupling, we obtain∫

d p

2(2π )d
pd−2 − 1

2A
∑

k

1√
k2 + �2

= 1

g̃c
− 1

g̃
. (D4)

The left-hand side of Eq. (D4) is finite for 1 < d < 3. From
this equation, we may solve for the energy gap � by writing

√
τ2 g(d )

1/2(�, τ ) = −2π
√
A

(
g̃−1

c − g̃−1
)
, (D5)

where we define the special function

g(d )
s = π s

�(s)

{ ∫ ∞

1
dλ λs−1 exp

(
−λτ2A�2

4π

)
�(λ,�(τ ))d/2

+ τ
−d/2
2

∫ ∞

1
dλ λd/2−s−1

[
�(λ,�(τ )−1)d/2 − 1

− τ2A�2

4πλ

]
+ τ

−d/2
2

s − d/2
− A�2

4π

τ
1−d/2
2

1 + s − d/2

}
,

(D6)

and the Riemann theta function �(λ,�(τ )) was defined in
Eqs. (36) and (37). We note that � is a monotonically in-
creasing function of g, and that at g = gc, it only depends on
the shape of the torus. This gap equation is identical to that
obtained in the large-N limit of the Wilson-Fisher CFT [18].
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We may now write the saddle-point Lagrangian as

L± = −�
j
(�∂ ± �)� j + N

2g̃
�2. (D7)

Because the gap equation only depends on �2, we have a sign
ambiguity in choosing � = 〈φ〉. Unlike the Wilson-Fisher
case [18], this sign difference is physical, and it has an effect
on the torus spectrum. In particular, the full set of states is
those obtained with positive � and those obtained for negative
�. But this sign has no effect on the spectrum of the theory,
so we simply have two copies of a free massive Dirac spec-
trum with gap |�|. Both sectors of the theory have the same
ground-state energy, which may be calculated by temporarily
taking a finite length 0 < τ < T in the Euclidean-time parti-
tion function Z±(T ) = ∫

DψDψ exp(− ∫ T
0 dτ

∫
dd xL±) and

then calculating E0 = − limT →∞ T −1 lnZ±(T ). This results
in

E0 = −N

2

∑
k

√
k2 + �2 + NA

(
g̃−1

c − g̃−1
)

2
�2

= 2π√
τ2A

g(d )
−1/2(�, τ ) + NA

2g̃
�2, (D8)

where in the second line we have used g−1
c = 0 in dimensional

regularization, and the special function is defined in Eq. (D6).
We note that the ground state energy is actually ambiguous up

to an overall constant, but our choice is such that the energy
density vanishes at g = gc and A = ∞.

To summarize, most of the states in the spectrum are de-
scribed by the Hamiltonian

HN = E0 +
∑
k,s, j

√
k2 + �2

(
b j†

s (k)bj
s (k) + c j†

s (k)c j
s (k)

)
,

(D9)
where s = 1, ..., nD/2 and j = 1, ..., Nf . In addition to the
degeneracies for different values of k, s, and j, every state
is doubled due to the different values of ±〈φ〉. The ground
state has energy E0 and is twofold degenerate, while the
first excited state has energy E0 + � and degeneracy 2N . We
note that this Hamiltonian has an emergent SU(N ) symmetry,
where the N operators bj

s (k) and c j
s (k) together transform in

the fundamental representation.
However, the Hamiltonian HN does not describe every state

in the spectrum. The excited states which are singlets under
the SU(N ) symmetry are instead described by fluctuations of
the scalar mode φ. We may obtain their energy by writing
φ = � + φ̃/

√
N and expanding Eq. (D2). To leading order in

1/N , we obtain (ignoring a constant)

Sφ = 1

2

∫
dω dd k

(2π )d
�(ω, k)|φ̃(ω, k)|2, (D10)

where

�(ω, k) =
∫

d�

2π

∑
q

2�2 + ω2 + k2 + ω� + k · q

(�2 + q2+)[(ω + �)2 + (q + k)2 + �2]
. (D11)

The function �(ω, k) is the inverse Euclidean propagator of
the φ̃ field, so solving �(iω = Eφ (k), k) = 0 for Eφ (k) gives
the energy splitting of the states created by the scalar field
from the ground state. The integrals and sums are convergent,
and one can solve this equation numerically [19,20]. Each
solution obtained this way has a twofold degeneracy corre-
sponding to the sign choice ±〈φ〉. Together with Eq. (D9),
this describes the complete spectrum at N = ∞.

2. ε′ expansion

We now consider the expansion in d = 1 + ε′ spatial di-
mensions, which we only study at leading order. The critical
Hamiltonian associated with Eq. (4) is

HGN =
∫

dd x

[
�

j
�∇� j − g∗

2
(��)2

]
, (D12)

where g∗ = 2πε′/(N − 2) to leading order in ε′ [5]. The com-
putation proceeds as in Sec. V but is simpler due to the lack of
bosonic modes. We find the zero-mode effective Hamiltonian

heff,k=0 = − πε′
√
A(N − 2)

Q2, (D13)

where Q has the same definition as in Sec. V, leading to the
same integer eigenvalues Q ∈ [−N/2, N/2] and degeneracy
Eq. (41). The Hamiltonian also has a Q → −Q symmetry, so
the degeneracy analysis of the lowest two states is identical

to that of the ε expansion. Extrapolating to ε′ = 1 for the
N = 4 case results in the predictions

√
AE1 = 3π/2 ≈ 4.7

and
√
AE2 = 2π ≈ 6.3 for the energies of the first and second

excited states, respectively. States with higher energy have a
spectrum given by effective Hamiltonians around higher Fock
states.

The above expressions explicitly fail for the N = 2 case.
For D = N = 2, our model is commonly referred to as the
massless Thirring (Luttinger) model in the high energy (con-
densed matter) literature. This case is special as it does not
have a phase transition; there is instead a single gapless Lut-
tinger liquid phase [53]. It is also known that the N = 4,
D = 2 model exhibits a Kosterlitz-Thouless transition at g =
0 [54], which is not captured by the ε′ expansion. Therefore,
as in the case for the O(N ) model, the expansion close to
D = 2 and small values of N likely requires the consideration
of nonperturbative effects to obtain the correct critical behav-
ior, which would affect the accuracy of the ε′ expansion for
smaller values of N [55].

3. Correspondence between expansions

The large-N expansion for the torus spectrum is much
simpler than the ε or ε′ expansions in that the zero-momentum
modes do not play a special role, so perturbation theory for the
spectrum takes a similar form as perturbation theory for the
critical exponents. Here, we show that all three expansions are
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compatible with each other, at least at leading order for low-
lying states. We note that the large-N gap equation, Eq. (D5),
may be solved in any dimension d , and in particular it may
be solved analytically at leading order in either ε or ε′. An
explicit computation finds the energy gap at criticality to be

√
A� = (4π2ε)1/3, (N → ∞, ε → 0),√
A� = πε′, (N → ∞, ε′ → 0). (D14)

The rest of the spectrum is then given by Eq. (D9) (with
the exception of the singlet states, which we do not obtain
analytically).

We now consider the large N limit of the ε expansion
derived in Sec. V. As argued there, the energy spectrum on the
torus is given by solving the Hamiltonians h(Q)

k=0 in Eq. (42) for
Q = 0, 1, ..., N/2, with the lowest energies given by values of
Q close to N/2. Therefore, to take the large-N limit, it makes
sense to take

Q = N

2
− q, q � N (D15)

to concentrate on the low-energy spectrum.
At order ε1/3, the Hamiltonians h(Q)

k=0 are shifted harmonic
oscillators with a minimum at ϕ = −(6

√
Y Q/U )1/3, which

grows as
√

N at large N . If we expand the Hamiltonians
around this minimum with the assumption in Eq. (D15), we
find that they reduce to simple harmonic oscillators:

h(q)
k=0 = ε1/3

√
A

[
−3Nπ2/3

27/3
− 3(4π2)1/3 + q(4π2)1/3

− 1

2

d2

dϕ2
+ 6(2π4)1/3ϕ2 + · · ·

]
. (D16)

Here, we have used the large-N expansions of the couplings
U and Y . The anharmonic terms in the effective Hamiltonians
vanish at N = ∞, so we may simply read off the low-energy
spectrum from the well-known oscillator spectrum. The q-
independent terms in the first line contribute to the universal
part of the ground state energy, which is negative as expected
for bosonic fields. With respect to the ground state, we see
that we have two towers of free “particlelike” excitations, with
energies given by

√
A�1 = (4π2ε)1/3,

√
A�2 = (3

√
6π2ε)1/3. (D17)

The first excitation agrees with the large-N gap given by solv-
ing the gap equation, Eq. (D14). For the spectrum to match
the large-N results, this value of �2 must therefore be equal to
the smallest solution of the equation �(iω = �2, k = 0) = 0,
with � defined in Eq. (D11).

The large-N limit of the ε′ expansion is especially simple:
We just take the limit Eq. (D15) in Eq. (D13). For N → ∞,
this gives a set of effective Hamiltonians

heff,k=0 = − π

4
√
A

(N + 2)ε′ + πq√
A

ε′. (D18)

This results in a tower of Fock states with mass
√
A� = πε′,

in agreement with Eq. (D14). Since the ε′ expansion uses a
purely fermionic theory, the bosonic singlet states will nec-
essarily come from an effective Hamiltonian about a higher
Fock state with an even number of fermions.
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