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Half-integer quantized charge pumping induced by a Majorana fermion
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We investigate the adiabatic topological charge pumping in a topological superconductor utilizing a quantum
anomalous Hall insulator proximity coupled to an s-wave superconductor. We show that topological pumping
is characterized by the appearance of protected Majorana edge states during the course of a pumping cycle.
In a topological superconductor with a single Majorana edge state, the Majorana state will be pushed into the
electrode in a cycle. This leads to a half-integer quantized pumped charge, because a Majorana fermion can
be viewed as half of a fermion. The half-integer quantized charge pumping would serve as a fingerprint of a
Majorana fermion.
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I. INTRODUCTION

Majorana fermions [1,2] have attracted extensive studies
in recent years for they obey non-Abelian braiding statis-
tics and have potential application in fault-tolerant quantum
computations [1–9]. A Majorana fermion is an antiparticle of
itself. Due to this self-Hermitian property, Majorana fermions
lead to a number of interesting transport phenomena such
as fractional Josephson effects [1,10,11], resonant Andreev
reflections [12,13], and enhanced [14], and resonant [15]
crossed Andreev reflections, as well as selective equal-spin
Andreev reflections [15,16], which have potential application
in spintronics.

In 2010, Qi et al. proposed that a quantum anomalous Hall
insulator (QAHI) proximitized to an s-wave superconductor
could realize a chiral topological superconductor (TSC) [17].
The QAHI with Chern number C = 1 is topologically equiv-
alent to a chiral TSC with Chern number N = 2, when the
induced superconductoring paring is infinitesimal. When the
paring potential increases, one of the two chiral Majorana
edge modes in the N = 2 chiral TSC is annihilated, and a
new N = 1 chiral TSC phase with a single chiral Majorana
edge mode emerges. Later theoretical studies showed that the
N = 1 chiral TSC can give rise to a half-quantized longitudi-
nal conductance plateau e2/2h in a QAHI-chiral TSC-QAHI
junction [18,19], which was experimentally observed soon
after [20].

The half-quantized longitudinal conductance plateau, and
the zero bias conductance peak which comes from resonant
Andreev reflection [12,13] and has been observed experimen-
tally [21,22], are regarded as hallmarks of Majorana fermion.
However, there is still a strong debate over the existence
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of Majorana fermion, because both transport properties can
possibly be attributed to trivial reasons. For example, An-
dreev bounded states [23], the Kondo effect [24], and weak
antilocalization [25] may cause zero bias conductance peak,
while the half-quantized conductance plateau may come from
a metallic phase [26–29]. So other evidence to verify the
existence of a Majorana fermion is desirable.

On the other hand, topological charge pump is a dynamic
transport mechanism that dc current can flow in the absence of
any applied bias voltage via a quantum system, in which two
or more independent parameters are periodically modulated in
time. It was originally proposed by Thouless and co-workers
in the 1980s, who showed that the amount of charge pumped
per cycle is directly related to a topological invariant of the
system, namely, the Chern number [30], first introduced to
classify the integer quantum Hall effect [31]. A Thouless
pump may therefore be regarded as a dynamical version of
the integer quantum Hall effect and enabled the direct mea-
surement of the topological invariant of a bulk. The intriguing
relation stimulates recent progresses in cold atomic systems,
as exemplified by experimental realization of the quantized
charge pump in atomic gases [32,33] following the theoretical
proposal in the superlattice [34–36].

In this work, we investigate the quantum pumping in the
chiral TSC. It is found that when an ac Zeeman field along
the z direction, and an ac electric field along x direction, are
applied, there appears a dc current in the y direction. We use
the Chern number to describe the pump and find that there are
three topological pumping regions, N = 0, 1, 2. The pump
with N = 0 is trivial, and that with N = 2 is topologically
equivalent to a Chern pump which pumps an electron charge e
into the electrode per cycle. At the transition between the two
pumps, the new pump with N = 1 gives an exotic half-integer
quantized pumped charge e/2. We show that the half-integer
quantized charge pumps are characterized by the appearance
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of protected gapless Majorana edge states during the course
of a pumping cycle, similar to the integer topological pump
[37,38]. For a chiral TSC with N = 1, when time changes
a period, the Majorana edge state connecting the conduction
and valence bands is pushed into the electrode. This leads
to a half-integer quantized pumped charge e/2, because a
Majorana fermion can be view as half of a regular fermion.
The half-integer quantized charge pumping is directly related
to the Majorana edge state and so can serve as a signature of a
Majorana fermion. Our work is different from previous works
about Majorana-mediated charge pumps [39–41], in which the
pumped charge is not half-integer quantized, even not quan-
tized, because they are not directly related to a topological
invariant.

II. MODEL HAMILTONIAN

To start, we consider the superconductor proximity effect
of the QAHI in a magnetic topological insulator thin film with
ferromagnetic order. For definiteness, we adopt the simplest
QAHI model Hamiltonian realized with low-energy states
near the � point [17]:

HQAHI =
[

m0 + Bk2 A(kx − iky)
A(kx + iky) −m0 − Bk2

]
, (1)

where A is the spin-orbit coupling strength, and m0 is the
ferromagnetic exchange field. The basis vector is (ck↑, ck↓)T

with ckσ annihilating an electron of momentum k and
σ = ↑,↓. The sign of m0/B determines the topological prop-
erties of the system, and the QAHI with C = 1 is obtained
when m0/B < 0.

In proximity to an s-wave superconductor, a finite pair-
ing potential � can be induced in QAHI. This gives us the
Bogoliubov–de Gennes (BdG) Hamiltonian

HBdG = 1

2

[
HQAHI(k) + μ i�σy

−i�∗σy −H∗
QAHI(−k) − μ

]
, (2)

where μ is chemical potential and the basis vector is

(ck↑, ck↓, c†
−k↑, c†

−k↓)
T

. When the pairing potential � in-
creases from 0, the system could experience a series of
topological phase transitions from N = 2 to N = 1 and then
to N = 0 with N being the Chern number. The N = 2 and
N = 0 phases are respectively topological equivalent to a
QAHI with C = 1 and trivial insulator with C = 0, and the
N = 1 phase is a new TSC which hosts a chiral Majorana
fermion mode at its edge.

To derive the quantum pumping, at least two time-
dependent fields need to be imposed on the system. Here we
applied a time-dependent Zeeman field along the z direction of
the form Bz(t ) = m1 cos (ωt ), and an ac electric field along the
x direction, Ex(t ) = Ex cos (ωt ). The Zeeman field can enter
into the Hamiltonian through replacing m0 with m(t ) = m0 +
m1 cos (ωt ), and the electric field enters into the Hamiltonian
through Peierls substitution kx → k̃x = kx − eAx(t ), with e the
electron charge and Ax(t ) the vector potential satisfying Ex =
−∂Ax(t )/∂t . Now the diagonal components in Hamiltonian
(2) is rewritten as

HP =
[

m(t ) A(k̃x − iky)
A(k̃x + iky) −m(t )

]
. (3)

FIG. 1. Illustration of a pump/normal-metal junction and its en-
ergy band. The transport is along the y direction, and the transverse
width of the pump is Lx .

Here we have set μ = 0 and neglected the quadratic term for
simplicity. Within the adiabatic approximation, it is easy to
obtain for the eigenenergies of the pump at any given time t

E (k̃) = ±
√

[m(t ) ± �]2 + A2
(
k̃2

x + k2
y

)
. (4)

One can see that if |m1| � |m0 ± �|, at cos ωt = m0±�
m1

, the
conduction and valence bands touch at ky = 0, and kx = kc

x±
or −kc

x±, with kc
x± = |eAx

√
m2

1−(m0±�)2

m1
|.

III. CHARGE PUMPING FROM THE SCATTERING
MATRIX FORMULA

The amount of charge pumped per cycle can be con-
veniently calculated by using the scattering matrix formula
[42,43]. We consider the pump placed in y < 0 is linked to
an electrode for y > 0, and they are in good contact with
each other, as illustrated in Fig. 1. The Hamiltonian of pump
is given by Eq. (2) with diagonal component replaced by
Eq. (3). The electrode is taken to be a normal metal with a
2D parabolic Hamiltonian HE = −E0 + p2/2m. When E0 is
sufficiently large, for a given px, we can linearize the effective
1D Hamiltonian HE at the right and left Fermi points py =
±mv′

F(kx ) with v′
F(kx ) = √

2m(EF + E0) − k2
x /m. A Pauli

matrix σ̂y is introduced to describe the two branches. To be
consistent with the form of the Hamiltonian (3) in the pump,
we use σy = 1 and −1, respectively, to represent the right-
moving and left-moving branch. As a result, the Hamiltonian
of the electrode becomes HE = v′

F(kx )kyτ̂zσ̂y at EF = 0, where
kx = px, ky = py ∓ mv′

F(kx ), and τ̂z is a Pauli matrix acting
on the Numbu space. When E0 is sufficiently large, we can
further approximate v′

F(kx ) ≈ v′
F(kx = 0) = v′

F, with the pur-
pose of minimizing the number of adjustable parameters in
the model.

Calculation of the charge pumped into the electrode per
cycle amounts to solving the scattering problem of an incident
at the Fermi level from the electrode. The Fermi energy is
taken to be EF = 0, which is in the band gap of the pump.
In this case, the incident electron will be fully reflected back
into the electrode as an electron or as a hole, which is called
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FIG. 2. Plot of charge pumped per cycle as a function of the
pairing potential �. We have taken the units m1 = 1 and A = 1, and
set m0 = 0.5, eAx = 0.1, kx = 0. The red solid line represents the
total charge pumped; the black dashed line and blue dot-dashed line
are the contributions of the normal reflection and Andreev reflection,
respectively. Panel (a) is the result in the absence of quadratic term,
and (b) contains the correction of the quadratic term.

Andreev reflection. The wave function in the lead is given by

�E(y) = 1√
2

⎛
⎜⎝

1
−i
0
0

⎞
⎟⎠ + ree√

2

⎛
⎜⎝

1
i
0
0

⎞
⎟⎠ + rhe√

2

⎛
⎜⎝

0
0
1
−i

⎞
⎟⎠ , (5)

and that in the pump is

�P(y) = c1

⎛
⎜⎜⎜⎜⎝

sin θ1
2

cos θ1
2

cos θ1
2

sin θ1
2

⎞
⎟⎟⎟⎟⎠eγ1y + c2

⎛
⎜⎜⎜⎜⎝

sin θ2
2

cos θ2
2

− cos θ2
2

− sin θ2
2

⎞
⎟⎟⎟⎟⎠eγ2y , (6)

where γ1,2 =
√

k̃2
x + [m(t )±�]2

A2 and sin θ1,2 = m(t )±�

Aγ1,2
. We omit

the plane wave factors eikyy in Eq. (5), because when the
incident energy is EF = 0, ky = 0 and eikyy = 1. Matching the
wave functions (5) and (6) at y = 0 by using the boundary
condition �E(0+) = �P(0−), we can obtain the normal reflec-
tion ree and the Andreev reflection rhe as

ree = −eiθ1 + eiθ2

2
,

rhe = −i
eiθ1 − eiθ2

2
. (7)

The charge pumped per cycle is given by [42,43]

q = e

2π i

∮
T

(
r∗

ee

dree

dt
+ r∗

he

drhe

dt

)
, (8)

with T = 2π/ω as a period of the pump. The first and second
terms are the contributions of normal reflection and Andreev
reflection, respectively. In Fig. 2(a) we show the pumped
charge as a function of the pairing potential. One can see that
when � = 0, the system returns to the QAHI and the con-
tribution from Andreev reflection is vanishing [see Eq. (11)],
so the pumped charge fully comes from the contribution of
normal reflection, which gives the same result as the Chern
pump q = e. When � increases from 0, the contribution from
Andreev reflection increases and that of normal reflection de-
creases, while the total pumped charge keeps q = e as long as

� < 0.5. When the pairing potential exceeds 0.5, the charge
pumped per cycle drops to half electron charge q = e/2.
The half-integer quantized charge pumping will hold until
the pairing potential exceeds 1.5. Last, when � > 1.5, the
contributions from normal refection and Andreev reflection
always cancel each other, giving rise to q = 0.

IV. THE TOPOLOGICAL ORIGIN OF HALF-INTEGER
QUANTIZED PUMPED CHARGE

The above results that the charge pumped per cy-
cle is always half-integer or integer quantized strongly
suggest that the pumping effect in the chiral TSC
has a topological origin. Now we will show that the
half-integer quantized charge pumping is induced by a
Majorana fermion. We first rewrite the BdG Hamilto-
nian into a block diagonal form using a new basis

1√
2
(ck↑ + c†

−k↓, ck↓ + c†
−k↑,−ck↑ + c†

−k↓,−ck↓ + c†
−k↑),

HBdG =
[

h+(k) 0
0 −h∗

−(−k)

]
,

with

h±(k) =
[

m(t ) ± |�| A(k̃x − iky)

A(k̃x + iky) −m(t ) ∓ |�|
]
. (9)

In this basis, one can conveniently obtain the Chern number,
which is divided into two parts, namely, the Chern num-
bers N+ of h+(k) and N− of −h∗

−(−k). N± are given by

N± = 1
π

∫ T
0 dt

∫ ∞
−∞ dkyIm〈∂tψ±|∂kyψ±〉, with |ψ±〉 the occu-

pied bands of h+(k) and −h∗
−(−k). Through straightforward

calculations, one can get the Chern numbers of the ground
bands as

N± = sgn(m1Ax )θ (|m1| − |m0 ± �|)θ(
kc

x± − |kx|
)
. (10)

Not surprisingly, the critical points are the band touching
points.

The total Chern number of the system is N = N+ + N−,
which gives the number of edge states. Due to the self-
Hermitian property of the new basis, for example, assuming
that γk↑ = ck↑ + c†

−k↓, it is easy to see that γ
†
k↑ = γ−k↓, the

edge states are Majorana fermions. To see the Majorana edge
states, we consider the spectrum of the instantaneous energies
on an open chain of 40 sites. The equivalent tight-binding
Hamiltonian of the open chain is given by

H ′ =
∑
〈i j〉

c†
i

(
t0σ̂z + it i, j

1 σ̂y
)
c j +

∑
i

m(t )c†
i σ̂zci

+
∑

i

Ak̃xc†
i σ̂yci +

(∑
i

�c†
i↑c†

i↓ + H.c.

)
, (11)

where c†
i = (c†

i↑, c†
i↓) is the electron creation operator on site

i, the angular bracket in 〈i, j〉 stands for nearest-neighboring
sites, t0 = B/2, and t i,i+1

1 = −t i,i−1
1 = A/2. In Fig. 3(a) we

show the case of � = 0.3, corresponding to the q = e region
in Fig. 2, for which N = 2 with both N± = 1. One can easily
distinguish the edge states from the bulk states. At a given
Fermi energy, labeled by horizontal dashed line, there exist
four edge states in the band gap. Through the analysis of
the spatial distribution of the wave functions, as shown in
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FIG. 3. Instantaneous spectrum of HBdG versus time t in a ribbon
for (a) � = 0.3 and (c) � = 1. The other parameters are the as same
as in Fig. 2. Panels (b) and (d) show the real-space probability dis-
tribution of the edge states corresponding to (a) and (c), respectively.
The green lines in (d) represent the probability distribution of A and
B in (c), which was magnified 10 times.

Fig. 3(b), one can see that the two edge states represented by
solid lines localize near one boundary, while the other two
represented by dashed lines localize near the other boundary.
When the pairing potential � = 1, lying in the region of
q = e/2, we have N+ = 0, N− = 1, and so there is only one
chiral Majorana state localizing at each edge [see Fig. 3(c)],
and corresponding density distribution is shown by the red
lines in Fig. 3(d).

Different from the QAHI case, the Chern number N in chi-
ral TSC does not correspond to a quantized Hall conductance
because charge is not conserved, while it also gives a physical
observable, charge pumped, which is directly related to the
edge states. We first consider the case of N = 1. At t = 0, all
the occupied valence bands are predominantly in the bulk; see
the green point A in Figs. 3(c) and 3(d). As time increases, one
state is pushed into the right edge region, with energy raised
deep in the bulk band gap; see the red solid line in Figs. 3(c)
and 3(d). Eigenstates cannot pile up in the right state region,
so the state pumped to the right edge has to go somewhere.
If the pump body is isolated, the only direction the Majorana
edge state can go is back towards the bulk, acquiring enough
energy to be in the upper band, as the green cycle B shown in
Figs. 3(c) and 3(d). While when the pump is linked to an elec-
trode, the case is different, the Majorana mode could continue
to propagate to the right and enter into the electrode. Because
the Majorana fermion can be viewed as half an electron, there
is half electron charge e/2 pumped into the electrode. When
N = 2, there are two Majorana edge states pushed into the
electrode per cycle, giving pumped charge q = e.

In the above discussion, we have shown that the half-
integer quantized pumped charge in chiral TSC is induced
by a Majorana fermion and described by the Chern number.
Now we check the consistence of the scattering matrix for-
mula and the topological description. In Fig. 4 we plot the
charge pumped as a function of � and kx. One can see that

FIG. 4. Charge pumped versus � and kx . The other parameters
are the same as in Fig. 2.

the charge pumped per cycle is always half-integer or integer
quantized, and consistent with the Chern number. The bound-
aries distinguishing different charge pumped are determined
by |kx| = kc

x±, namely, the second θ function in Eq. (10).
By summing over kx between −kc

x± and kc
x±, we obtain for

total charge pumped per cycle

qt = eLx

2π

∑
±

θ (|m1| − |m0 ± �|)kc
x±, (12)

with Lx the size of the pump along the x direction. When
� = 0, the pump returns to the general Chern pump, which
is nontrivial when |m0| < |m1|, and trivial for |m0| > |m1|. So
when m1 is tuned to in the region |m0 + �| < |m1| < |m0| or
|m0 − �| < |m1| < |m0|, one can easily distinguish the pump
induced by the Majorana fermion, which gives charge pumped
e/2 for each |kx| < kc

x± and total charge eLxkc
x±

2π
, from the Chern

pump giving charge pumped qt = 0.

V. DISCUSSION AND SUMMARY

In the calculation, we neglect the quadratic term for
simplicity. Now we emphasize that the quadratic term have
no effect on the pumping. First, from the view of topology,
when the quadratic term is included, one can easily see
that the Chern number is Eq. (10) as well. It is noted that
for the topological pumping effect, the Chern number is
calculated on the torus of variables ky and t . This is different
from the case of QAHI, in which the Chern number is
defined on the torus of kx and ky. Next, we further check our
results from the scattering matrix formula. The electrode is
also taken to be a QAHI, and the Hamiltonian is given by
HE = −E0 + HQAHI. When the incident energy is EF = 0,
one can obtain that the wave functions in the electrode
and pump are �E(y) = (χ+(−k1

y ), r1
heχ−(−k1

y ))T e−ik1
y y +

(r1
eeχ+(k1

y ), 0)T eik1
y y + (r2

eeχ+(k2
y ), r2

heχ−(k2
y ))T eik2

y y, and

�P(y) = ∑4
i=1 si(1, b(ki ), c(ki ), d (ki ))T eikiy, where χ±(ky) =

1
N (ky ) (A(kx ∓ iky),∓(m0 + Bk2 − E0)) with N (ky) the

normalization factor, b(ki ) = 2A(k̃x+iki )[m(t )+Bk̃2]
[m(t )+Bk̃2]2−A2 k̃2−�2 , c(ki ) =

A(k̃x+iki )−[m(t )+Bk̃2]b(ki )
�

, d (ki ) = − [m(t )+Bk̃2]+A(k̃x−iki )b(ki )
�

, wave
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vectors k1
y =

√
[−δ +

√
δ2 + 4B2(E2

0 − m2
0 )]/2B2 − k2

x ,

k2
y = i

√
[δ +

√
δ2 + 4B2(E2

0 − m2
0 )]/2B2 + k2

x with δ =
2m0B + A2, and ki are the four roots of the eigenequation
|HBdG| = 0 with negative imaginary parts. One can obtain
the reflection coefficients by the boundary conditions and
then charge pumped per cycle via Eq. (8). It is noted that the
transport is fully determined by reflection amplitudes r1

ee and
r1

he, while r2
ee and r2

he have no contributions because they are
evanescent modes. The result is shown in Fig. 2(b), in which
the total charge pumped per cycle is consistent with Fig. 2(a).

In summary, we have investigated the topological pumping
effect in chiral TSC, modulated by a time-dependent Zeeman
field and an ac electric field. We find that one, half one, or zero
electron charge could be pumped from the pump body into the

electrode, depending on the strength of pairing potential �,
ferromagnetic exchange field m0, and ac Zeeman field m1. We
also show that the pumping is induced by Majorana fermion.
When time-dependent fields change a period, if one Majorana
state is pushed into the electrode, there will be half one electric
charge pumped into the electrode because a Majorana fermion
can be viewed as half of a fermion. The half-integer quantized
charge pumping could serve as a fingerprint of a Majorana
fermion.
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