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Electronic multipoles in second harmonic generation and neutron scattering
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Nonlinear optics, and particularly second harmonic generation (SHG), is increasingly used in many modern
disciplines from material characterization in physical sciences to bioimaging in medicine and optical signal
processing in information technology. We present a theoretical analysis yielding a strong estimate of the energy-
integrated SHG response. Compact spherical multipoles are provided for the corresponding natural and magnetic
circular dichroic signals. Like symmetry requirements in time and space are traced in the amplitude for magnetic
neutron scattering, which includes all axial and polar (Dirac) contributions. Our method of working in terms of,
now standard, electronic multipoles and Racah algebra, with full implementation of discrete symmetries, could
be of use in a variety of other probes of matter.
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I. INTRODUCTION

The study reported here contributes to the quest for a
deeper understanding of intriguing, and potentially useful,
electronic properties of substances. It focuses on what can be
learned from the response of chiral and magnetic materials
to their illumination by beams of photons or neutrons. To
this end, we appeal to a formulation of response functions in
terms of standard electronic multipoles. In the case of photon
scattering, this innovation is made possible by integrating out
intermediate degrees of freedom, which is accomplished by
extensive use of Racah algebra. Following introductions to the
two experimental techniques, suitable response functions are
derived within an atomic framework. We demand compliance
with fundamental physical properties of response functions
that also must apply to results inferred from other experimen-
tal techniques, and not just photon and neutron scattering that
are of immediate interest. Electronic degrees of freedom in
the ground state are encapsulated in multipoles created from
spherical tensor operators with discrete symmetries. Sym-
metries of space and time are embedded in a new identity
for required matrix elements. Application of the identity to
the second harmonic generation response has guided us to
compact and precise results for natural circular and magnetic
circular dichroism (NCD, MCD) that alluded us in a previ-
ous calculation. Specifically, we report closed expressions for
NCD and MCD multipoles. Likewise, the identity underpins
an amplitude for magnetic neutron scattering that includes
conventional, axial magnetic dipoles and anapoles, and all
allowed higher-order Dirac multipoles.

Nonlinear optical phenomena encompass physical pro-
cesses originating from the interaction of light with matter,
which modify the incoming electromagnetic field generating
radiation of different frequency [1–3]. Such processes occur
when a material interacts with intense light whereby its re-
sponse yields fundamentally different properties than the one

observed in the linear regime. Only after the introduction of
the laser in 1960 [4], evidence of nonlinear phenomena was
reported in 1961 by Franken et al. [5]. They detected the
frequency doubling of radiation passing through a nonlinear
crystal, the process of second harmonic generation in the
visible light region, a phenomenon previously known for radio
waves only. This observation is regarded as the beginning of
the field of nonlinear optics, although two-photon absorption
had already been predicted by Maria Göppert-Mayer in 1931
[6]. Armstrong et al. [7] and Loudon et al. [8] treated non-
linear optics within the general framework of response theory
in 1962. More recent studies gathered from 142 publications,
with an emphasis on molecular quantum electrodynamics, are
reviewed by Andrews [9].

In this paper, we are primarily concerned with second
harmonic generation (SHG), but results can be extended to
other nonlinear effects. A simple picture to describe the SHG
process is to consider a three-level system, depicted in Fig. 1.
An incident photon excites an electron of the system, which
is promoted to an empty state, and a second photon excites it
to the next level. The state then de-excites to the equilibrium
ground state under emission of a photon that, due to energy
conservation, has twice the energy and frequency of the orig-
inal photons. However, SHG is not just a three-step process,
but instead a single three-body interaction. The intermediate
states can be thought as virtual states described by many-body
wave functions, subjected to microscopic interactions such
as the Coulomb and exchange interactions and the spin-orbit
coupling.

An important application of SHG is as a probe for spec-
troscopy or microscopy. As SHG excited by electric-dipole
radiation is forbidden for a centrosymmetric medium, it is
consequently highly sensitive to symmetry breaking. This
makes it a selective probe for surfaces and interfaces of cen-
trosymmetric media, where the bulk does not contribute and
the frequency-doubled signal is therefore characteristic of the
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FIG. 1. Transitions that occur in second harmonic generation
(frequency doubling) using three electronic operators E1′-E p-E1,
where E p = E1 or E2, and the primed operator E1′ relates to the
secondary transition. Primary energy E = h̄ω and integer p labels
modes available in the primary beam. Labeling of initial and final
atomic states |J ′M ′〉, |JM〉 is used in Eqs. (1) and (3), together with
intermediate states | jm〉 and | j′m′〉.

first few atomic layers close to the surface or interface. It also
allows a time-resolved in situ monitoring of the surface recon-
struction, of its chemistry, when molecules or other adsorbates
are deposited [10]. This application ranges over a large
variety of materials: metal surfaces, metal-electrolyte inter-
faces, semiconductors, oxides, insulator surfaces/interfaces,
etc. [11,12]. SHG experiments have been frequently used
to determine the average orientation of molecules adsorbed
at surfaces, through measurements of the polarization de-
pendence and phase [11]. In the last decade it has been
affirmed as a selective nondestructive spectroscopy technique
for the study of surfaces [13], superlattices [14–16], interfaces
[17,18] and two-dimensional materials [19]. Furthermore,
second harmonic imaging microscopy has been employed to
the study and imaging of cells and biological membranes, and
especially collagen. It is a nondestructive probe that allows
us to study in vivo biological systems in their environment
[20–22].

At the x-ray region optical wave mixing was proposed
nearly half a century ago as an atomic-scale probe of light-
matter interactions [23,24]. The recent advent of free-electron
lasers (FELs) in the energy ranges from extreme ultravio-
let to x rays allows us to explore these effects involving
core-level resonances [25]. Yamamoto et al. [26] measured
SHG at the Fe 3p edge of gallium ferrate (GaFeO3) using
soft x-ray FEL radiation. Other nonlinear optical techniques
observed in the extreme-ultraviolet and x-ray region include
sum-frequency generation [27], four-wave mixing [28], and
x-ray two-photon absorption [29]. The ultrafast x-ray pulses
from a high brightness x-ray FEL provide the capability for
time-resolved probing of atomic scale structure and electronic
states in a material.

Similar to breaking of space-inversion symmetry, breaking
of time-inversion symmetry by long-range magnetic ordering

FIG. 2. Nonmagnetic Hg1201 is tetragonal and Cu ions occupy
sites that are centers of spatial inversion symmetry. However, emer-
gence of time-reversal violation in the pseudogap phase drives a
reduction in Cu site symmetry that includes the loss of inversion
symmetry. The magnetic state is epitomized by the condensation of
Dirac quadrupoles 〈H2

0 〉 and 〈H2
+2〉′ defined in Eq. (14) [36].

or an applied magnetic field leads to additional contributions
to SHG, which can be used to probe the magnetic structure
[30,31]. Magnetic SHG is especially powerful in the case of
antiferromagnets where, with a few specific exceptions, the
usual magneto-optical methods fail because of the absence of
bulk magnetization [32]. Rotation of the plane of polarization
of reflected light (magneto-optic Kerr effect, often referred to
by the acronym MOKE) is one direct manifestation of broken
time-reversal symmetry. Despite the absence of bulk mag-
netization, magnetic crystal classes m′m′m′, 2/m′ and 2m′m′
generate polarization rotation according Orenstein [33]. For
these magnetic symmetries, the Kerr effect is mediated by
magnetoelectric coupling, which can arise when antiferro-
magnetic order breaks inversion symmetry.

A direct observation of neutron diffraction by anapoles
(Dirac dipoles) [34,35] and compelling evidence from neu-
tron Bragg diffraction patterns that ceramic superconductors
support Dirac (magnetoelectric) quadrupoles [36] are reasons
enough to revisit theories of neutron scattering. The onset of
magnetic Bragg diffraction in ceramic superconductors occurs
at temperatures associated with the appearance of the pseu-
dogap state as determined by probes such as angle-resolved
photoemission spectroscopy, NMR, and optical conductiv-
ity [37]. By and large, theories of neutron scattering in
widespread use simply rely on conventional, axial dipoles and,
even then, ignore orbital magnetism.

Bragg diffraction experiments have demonstrated that un-
derdoped HgBa2CuO4+δ (Hg1201) samples possess magnetic
order indexed on the chemical structure, and the same is
found in identical experiments on a structurally more com-
plicated cuprate YBa2Cu3O6+x (YBCO), with two CuO2

plaquettes in a unit cell [38,39]. A ferro-type motif of Dirac
quadrupoles, depicted in Fig. 2, is consistent with all avail-
able neutron diffraction data [36]. The story for Hg1201 is
similar to YBCO, where neutron magnetic Bragg diffraction
and the Kerr effect have been observed and successfully re-
lated to Dirac quadrupoles [33]. While Hg1201 and YBCO

125124-2



ELECTRONIC MULTIPOLES IN SECOND HARMONIC … PHYSICAL REVIEW B 103, 125124 (2021)

possess the same magnetic space group (Cm′m′m′, magnetic
crystal-class m′m′m′), not surprisingly, there are significant
differences in the symmetries at sites used by Cu ions. No-
tably, Cu ions in nonmagnetic Hg1201 occupy sites that are
centers of spatial inversion symmetry. However, condensation
of Dirac quadrupoles in the pseudogap phase breaks the inver-
sion symmetry.

Use of electronic multipoles to discuss Bragg diffraction of
x rays and neutrons is absolutely standard. Our use of them
here to formulate response functions for SHG and neutron
scattering has previously proved useful in several other photon
scattering processes. Examples include x-ray magneto-optical
sum rules [40–42], a unified formulation of dichroic signals
using the Borrmann effect and twisted photon beams [43],
resonant x-ray diffraction from chiral electric-polarization
structures [44], and a demonstration that superchiral photons
reveal magnetic circular dichroism [45]. But, our innovation
for SHG starts by finding a representation for the response in
terms of a spherical tensor operator. We have already accom-
plished this task with extensive use of Racah algebra, and we
refer the reader to a previous publication for additional details
[46]. Beyond are superior results for NCD and MCD, reported
in Sec. II, in terms of simple operator equivalents for multi-
poles. These reveal the nature of the electronic entities that are
probed, and form a basis for future specific calculations. As
with all atomic calculations, it is necessary to specify adopted
conventions, and this we fulfill with two appendixes. Material
therein is utilized in a formulation of the magnetic neutron
scattering amplitude based on our new identity for required
matrix elements. Our findings are reported in Sec. III and
Appendix C.

II. SECOND HARMONIC GENERATION RESPONSE

By way of an introduction to our formulation of the SHG
response, we turn to the amplitude of x-ray scattering en-
hanced by an electric dipole–electric dipole (E1-E1) event
derived from the Kramers-Heisenberg dispersion formula. In
standard form it is not a response function represented by a
spherical tensor to which Racah algebra can be applied. A
spherical tensor operator, by which we mean one that obeys
the Wigner-Eckart Theorem, emerges after intermediate de-
grees of freedom are integrated out. Similar reasoning is used
in our treatment of the SHG response, and it follows pioneer
work by Judd and Ofelt [47,48]. The quantity of interest in the
dispersion formula is {〈lJM|ε′ · R|λ jm〉〈λ jm|ε · R|l ′J ′M ′〉},
where ε′ (ε) is the purely real photon polarization vector
for the secondary (primary) absorption process, and R is the
electronic dipole operator. Virtual intermediate states have
atomic quantum numbers λ jm. If these are treated as spher-
ically symmetric the dyadic can be replaced by its value
integrated over projections m in an application of the formula.
Concomitant with neglect of angular anisotropy, energies of
the intermediate states also are taken to be weak functions of
the projections, and they will not contribute to our energy-

integrated signal. One finds [49]∑
m

{〈lJM|ε′ · R|λ jm〉 〈λ jm|ε · R|l ′J ′M ′〉}

∝
∑
K,Q

(−1)QX K
−Q〈JM|T K

Q |J ′M ′〉, (1)

where the spherical tensor XK is a sole function of polarization
vectors, and 〈JM|T K

Q |J ′M ′〉 derived from dipole operators sat-
isfies Eq. (A5), whereupon TK can be used as a true spherical
tensor operator. Intermediate orbital angular momentum λ

is a parameter in the corresponding reduced matrix element
(RME), cf. Appendixes A and B.

Components of XK are evaluated from Eq. (A4) after
setting j = j′ = 1 to represent simple vectors, while the
Clebsch-Gordan coefficient [50,51] embodies the triangle rule
for addition of vectors to form spherical tensors K = 0,
1 and 2; X 0

0 = −(1/
√

3)(ε′ · ε), X1 = {(i/√2)(ε′ × ε)}, and
the traceless quadrupole X2 has a diagonal component X 2

0 =
{(1/

√
6)(3ε′

zεz − ε′ · ε)}. The RME for TK is purely real
and thus identified with Z (lJ, lJ ′) in Eq. (B5). One finds
that (lJ||T K ||lJ ′) is a sum on a (spin) and b (orbital) of a
standard unit tensor W (a,b)K (lJ, lJ ′) restricted by the con-
dition (a + b + K ) even. The unit tensor for one electron
is defined in Eq. (C8). The simple result W (a,b)K (lJ, lJ ′) =
(−1)J ′−JW (a,b)K (lJ ′, lJ ) is a direct consequence of said condi-
tion. Therefore, the RME in Eq. (B5) is proportional to χ [1 +
χ2], and χ2 = {(−1)Kσθ } for a parity-even event. In conclu-
sion, the electronic multipole for an E1-E1 absorption event
is different from zero when (−1)K = σθ , meaning the dipole
is time-odd (magnetic) and the monopole and quadrupole are
time-even (chargelike). Identical results can be derived from
crossing-symmetry [49]. The results might be inferred from
the observation that X0 and X2 differ in phase from X1 by 90◦.

Electric quadrupole–electric quadrupole (E2-E2)
enhancement is similarly described by Eq. (1) on replacing
the dipole operator therein by [(ε · R)(q · R)] where q is
the primary photon wave vector, and likewise its secondary
equivalent (ε · q = ε′ · q′ = 0). According to the triangle
rule for addition of two tensors of rank 2, E2-E2 scattering
is described by five electronic multipoles K = 0, . . . , 4. Not
surprisingly, their time signature σθ = (−1)K . Beyond electric
parity-even absorption considered thus far is parity-odd E1-E2
and, also, electric dipole–magnetic dipole (E1-M1) events
[49]. Scattering amplitudes for these events are sums of
multipoles that are time even (σπσθ = −1) and time odd
(σπσθ = +1). Using dipoles by way of illustrations, these
are expectation values of a displacement 〈RQ〉 and an anapole
(toroidal moment), respectively.

SHG response. A Cartesian form of natural circular dichro-
ism (NCD) from the SHG response uses an E1′-E1-E1 event.
Our coordinates are defined by the primary beam parallel
to the z axis and σ polarization parallel to the x axis. The
secondary beam, engaged in an E1 event, is inclined to the
z axis and its polarization vector has a component parallel to
it. The generic form of the energy-integrated NCD signal is
(see Ref. [52] and Sec. A 6 of Ref. [46]),

F (NCD) ∝ P2

∑
f , f ′

{〈g|x| f 〉〈 f |y| f ′〉〈 f ′|z|g〉 − 〈g|y| f 〉〈 f |x| f ′〉〈 f ′|z|g〉}. (2)
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Here, g denotes the electronic ground state and f and f ′ label
intermediate states, while P2 is a pseudoscalar for helicity in
the primary radiation. We proceed as in Eq. (1) and integrate
out intermediate projections of the orbital angular momen-
tum, with the same caveat about our energy-integrated signal
not being a function of intermediate energies, i.e., they are
independent of labels f and f ′, to a good approximation.
Again, products of matrix elements factor, as depicted in
Fig. 3, although the analog of the photon tensor XK is more
complicated [46]. Our goal is to produce operator equiva-
lents for multipoles in NCD and magnetic circular dichroism
(MCD), i.e., F(NCD) and F(MCD), defined by corresponding
response RMEs that we derive in accord with Eq. (B5).

Specifically, a result for ZK (lJ, l ′J ′) for use in Eq. (B5)
suitable for NCD and MCD in the SHG response is calculated
from {〈lJM|E1|λ jm〉〈λ jm|E p|λ′ j′m′〉〈λ′ j′m′|E1|l ′J ′M ′〉},
where index p = 1, 2, and 3 labels modes available in the
primary beam. Previously, we established that p = 1 (2) for
NCD (MCD). Following nontrivial sums on projections m
and m′ [Eq. (11) in Ref. [46]],

ZK (lJ, l ′J ′)

= (−1)J− j (lJ‖R‖λ j)(λ j‖Cp(R)‖λ′ j′)(λ′ j′‖R‖l ′J ′)

×
{

1 p K
J ′ J j

}{
p 1 p
J ′ j j′

}
, (3)

with remaining sums on j, j′, λ, λ′ understood. The normal-
ized spherical harmonic C1(R) = R. (Strictly speaking, the

FIG. 3. Integrating out projections of intermediate states in the
matrix element of the E1′-E p-E1 event, depicted in Fig. 1, creates
an electronic spherical tensor operator with rank K, projection Q and
an RME given by Eq. (3). Photon and electronic tensors are linked by
a mode label p, which has no analogy in two-photon events described
by the Kramers-Heisenberg dispersion formula.

spatial argument is the unit vector n = R/R, whereas our
use of R for the dipole operator might help visual track-
ing of the development.) The corresponding RME is purely
real with (l j||Ck||l ′ j′) = (−1) j− j′ (l ′ j′||Ck||l j) in the general
case. Derivation of ZK (l ′J ′, lJ ) from Eq. (3) is thereafter
straightforward. Another recoupling of variables in Eq. (3)
leads to an entirely new RME for the SHG response that is
consistent with Eq. (B5). It has an appealing form:

(lJ‖OK‖l ′J ′) = χ (−1)J− j
∑

x

(2x + 1)

{
1 1 x
p K p

}⎧⎨
⎩

1 1 x
j j′ p
J J ′ K

⎫⎬
⎭[1 + σπσθ (−1)x+p]

× (lJ‖R‖λ j)(λ j‖Cp(R)‖λ′ j′)(λ′ j′‖R‖l ′J ′). (4)

The Racah 6 j and 9 j symbols in Eqs. (3) and (4) are defined in accord with standard references [50,51], which are sources
of their many symmetry properties. Both dichroic signals of interest have σπσθ = −1, and the index x = 0, 1, 2 in Eq. (4) is
uniquely defined, namely, x = 2 for NCD (p = 1, K = 2) and x = 1 for MCD (p = 2, K odd).

In order to perform sums on j and j′ in Eq. (4) we need an explicit result for the RME of a spherical harmonic (l j‖Ck‖l ′ j′).
In our chosen s-l coupling scheme [51],

(σ l j‖Ck‖σ l ′ j′) = (−1)σ+l ′+ j+k[(2 j + 1)(2 j′ + 1)]1/2
{

l j σ

j′ l ′ k

}
(l‖Ck‖l ′), (5)

with

(l‖Ck‖l ′) = (−1)l [(2l + 1)(2l ′ + 1)]1/2
(

l k l ′
0 0 0

)
,

and the 3 j symbol can be different from zero for (l + k + l ′) even.
We define the response RME (l||OK ||l ′) to conform with an identical s-l coupling scheme, i.e., (lJ||OK ||l ′J ′) and (l||OK ||l ′)

are related as in Eq. (5), with

(l‖OK‖l ′) = −χ
∑

x

(2x + 1)

{
1 1 x
p K p

}⎧⎨
⎩

l l ′ K
1 1 x
λ λ′ p

⎫⎬
⎭[1 + σπσθ (−1)x+p](l‖R‖λ)(λ‖CP(R)‖λ′)(λ′‖R‖l ′). (6)

Equation (6), with sums on intermediate angular momenta λ, λ′, is our core result for the SHG response, from which we proceed
to derive NCD and MCD signals.
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The NCD signal in the SHG response is created by

(l‖O2(NCD)‖l ′) = −χ
√

(2/15)(l‖{R ⊗ C2
}2‖l ′), (7)

and χ2 = −1. Equation (7) follows from summation over
angular momenta λ, λ′ with p = 1, which is appropriate for
NCD. A standard definition of a tensor product in Eq. (7) is
modeled on Eq. (A4),

{Aa ⊗ Bb}K
Q =

∑
α,β

Aa
αBb

β (aα bβ|KQ ). (8)

Equation (7) says that the NCD signal in the SHG response
can be calculated using matrix elements of the operator
{R ⊗ C2}2, which is evidently parity odd and time even.
Simply put, the multipole 〈{R ⊗ C2}2〉 for the material under
illumination is allowed to be different from zero when NCD is
detected. As in our previous calculation, the operator equiva-
lent is a dyadic [46]. The index p = 2 for the MCD signal and
another lengthy mathematical exercise yields

(l‖OK (MCD)‖l ′) = −χ [6/(2K + 1)]1/2

×
{

1 1 1
2 K 2

}
(l‖{C2 ⊗ L}K‖l ′),

(9)

with K = 1 and 3, and χ2 = +1. The operator equivalent
{C2 ⊗ L}K is manifestly both parity even and time odd.
Multipoles 〈{C2 ⊗ L}K〉 calculated with Eq. (9) are used
in the MCD signal F (MCD) = {q0P2[

√
2〈O1

0〉 + √
3〈O3

0〉]},
where q0 ≡ qz represents the primary wave vector [46]. For
a crystalline material, permitted motifs of 〈{R ⊗ C2}2〉 and
〈{C2 ⊗ L}K〉 are delineated by time and space in the unit
cell, and prescribed by the relevant space group, likewise for
symmetry in reduced dimensions and molecular systems.

III. NEUTRON SCATTERING

The amplitude for magnetic scattering of neutrons is writ-
ten Q⊥ = [κ × (Q × κ)] using a unit wave vector κ = k/k
where k is the scattering wave vector. An intermediate op-
erator can be written

Q = exp (iR j · k)[s j − (i/h̄k)(κ × р j )], (10)

in which R j , s j , and p j are operators for position, spin, and
linear momentum of unpaired electrons, respectively. Note
that Q is arbitrary to within any function proportional to κ.

Orbital-spin contribution. If k is treated as a small param-
eter,

{exp (iR · k)s} = s + i(R · k)s − · · · . (11)

The leading term contributes to an overused approximation for
Q, namely, Q ≈ (L + 2S)/2 for an isolated ion with orbital
angular momentum. As for the second, manifestly parity-odd
term in Eq. (11) there is a standard decomposition,

i(R · k)sα = (kR)iκβ{(1/3)δαβs · n + (1/2)εαβγ (s × n)γ

+ (1/2)[sαnβ + sβnα − (2/3)δαβs · n]}, (12)

where n = R/R (Einstein summation convention). The scalar
operator does not contribute to Q⊥, i.e., the electronic Dirac

FIG. 4. Radial integrals for Dirac multipoles. Dimensionless
variable w = 12πaos, where ao is the Bohr radius, while the stan-
dard variable for radial integrals s is derived from the Bragg angle
and neutron wavelength s = sin(θ )/λ. Legend: red: [w × (g1)]/10,
green: (h1), blue: [w × ( j0 )] and purple: ( j2). Note that (g1) and
( j0) from Eq. (C3) arise from the component of Q in Eq. (10) that
contains the linear momentum operator and they are proportional to
1/w as the wave vector approaches zero. Atomic wave functions
are 4 f 5 − 5d1. Also included in the figure is the standard radial
integral 〈 j0(k)〉. Results obtained with our Sm3+ (4 f 5) wave function
are denoted by the continuous black curve, to which we added for
comparison four values (+) derived from the standard interpolation
formula [53].

monopole is not visible in neutron scattering, although it
is visible in resonance enhance x-ray scattering [49]. Next
in line, the spin anapole contribution {κβεαβγ (s × n)γ } =
[κ×(s × n)]α has been unambiguously detected in diffrac-
tion by two compounds with the C15 cubic Laves structure
[34,35]. Last, the traceless Dirac quadrupole accounts for
Bragg diffraction patterns collected on pseudogap phases of
Hg1201 and YBCO [36].

For arbitrary magnitudes of k we make use of a purely real
function (hK ) that is the mean value of the spherical Bessel
function jK (kR) with respect to radial parts of atomic orbitals.
It reduces to a standard radial integral 〈 jK (k)〉 for equivalent
electrons [53]; Fig. 4 contains (h1) and 〈 j0(k)〉 for samarium,
and definitions are derived from Eq. (C4). The integer K is
even for equivalent electrons, and odd for orbitals with oppos-
ing parities. We go on to find

{exp (iR · k)s} =
∑
K,K ′

iK ′+1(2K + 1)1/2{CK (κ) ⊗ HK ′ }1.

(13)
The RME of the tensor operator,

HK ′ = (−i)K ′+K+1[(2K + 1)(2K ′ + 1)/3]1/2

× (hK ){s ⊗ CK (n)}K ′
, (14)

satisfies the fundamental requirement Eq. (B5). To
this end, (lJ||{s ⊗ CK (n)}K ′ ||l ′J ′) = {√(3/2)
(l||CK ||l ′)W (1,K )K ′

(lJ, l ′J ′)} with (K + l + l ′) even,
K ′ = K, K ± 1 and a maximum rank K ′ = (1 + l + l ′).
Equation (12) is recovered from (13) and (14) using
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j1(kR) ≈ (kR)/3 for a small argument, and K ′ = 1 and
2. Values of the unit tensor for equivalent electrons are
tabulated [54]. The rank K ′ is odd if electrons belong to a
manifold J = J ′, which can be verified from (C8) for a single
electron and states l = l ′.

Orbital contribution. An analog of the spin dipole in
Eq. (11),

−(i/h̄k){exp (iR · k)(κ × p)}
= {(1/2)[〈 j0(k)〉 + 〈 j2(k)〉]L + i(κ × D)} + · · · , (15)

uses a Dirac dipole D = (1/2)[i(g1)n − ( j0)�], where � is
an orbital anapole defined in Eq. (C5), and integrals ( j0)
and (g1) are made with radial functions belonging to states
with opposing parities, e.g., atomic 4 f and 5d states. Unlike

Eq. (11), Eq. (15) is valid for arbitrary values of the wave
vector. While 〈 j0(0)〉 = 1 for equivalent electrons, ( j0) and
(g1), depicted in Fig. 4, both diverge as k approaches zero.

An RME for the orbital operator Eq. (15) that includes all
tensor operators is complicated, as illustrated by the compar-
atively simple result for equivalent electrons,

−{exp (iR · k)(κ × ∇)} =
∑

K ′
{СK ′−1(κ) ⊗ OK ′ }1

, (16)

with odd K ′ = 1, 3, . . . (2l−1), and a tensor operator defined
by the RME,

(l‖OK ′ ‖l ) = kA(K ′, l )[〈 jK ′−1(k)〉 + 〈 jK ′+1(k)〉], (17)

where the purely real function,

A(K ′, l ) = iK ′−1[K ′(K ′ + 1) − 2(l + 1)]−1(l‖{L ⊗ CK ′
(n)}K ′

‖l + 1)

×{[K ′(2K ′ − 1)(2K ′ + 1)(2l + 1)(2l + 2 + K ′)(2l + 1 − K ′)]/[3(2l + 3)]}1/2
, (18)

uses definition (C3). The RME (lJ||OK ′ ||lJ ′) =
{√2(l||OK ′ ||l )W (0,K ′ )K ′

(lJ, lJ ′)} complies with Eqs. (B1)
and (B3), given σπσθ = −1(σθ = −1, σπ = +1, ) and K ′
odd. One finds A(1, l ) = (l||L||l )/2, consistent with Eq. (15).
Results Eqs. (16)–(18) are precisely Eq. (11.48) in Ref. [55].

Contributions to the Dirac dipole D and all higher-order
operators are discovered in an expression suitable for atomic
states with opposing parities l = l ′. It is delegated to Ap-
pendix C on account of its complexity. One thing to note
here is that the result Eq. (C2) is an explicit example of the
response RME in Eq. (B5).

IV. DISCUSSION AND CONCLUSIONS

Optical radiation can be expanded in multipole terms, such
as electric dipole (E1), electric quadrupole (E2), and mag-
netic dipole (M1), together with higher-order terms that can
normally be neglected. In a two-photon process, described
by the Kramer-Heisenberg formulism, the optical activity in-
duced by a pure transition must have even parity, so that
only interference terms can give odd parity. The pure E1-E1
process produces magnetic circular dichroism (MCD), which
is a time-odd, parity-even event. The E1-M1 interference in
the visible region allows natural circular dichroism (NCD) or
optical rotation in powdered samples or in solution and single
crystals. In the case of x-ray absorption, which involves core
to valence shell excitations, M1 transitions are forbidden due
to the restriction imposed by the monopole selection rule for
the radial part. Although in the visible region the E2 tran-
sitions are negligibly small, their magnitude increases with
photon energy, so that for harder x rays the E1-E2 interference
becomes significant, giving rise to NCD.

In this paper, we extended our inquiry to the second
harmonic generation (SHG) response, with two primary pho-
tons of frequency ω and one secondary photon of frequency
2ω, as depicted in Fig. 1. Instead of the Kramer-Heisenberg
formulism, SHG is adequately described by third-order per-
turbation theory, cf. Eq. (2). Using theoretical techniques from
atomic physics we derived explicit expressions for electronic

multipoles of the SHG response. Polarization-dependent pho-
ton spectroscopy (dichroism) of the SHG response is shown
to reveal chiral and magnetic properties of a sample. Two
dichroic signals are allowed with electric-dipole (E1) and
electric-quadrupole (E2) scattering events, and both require
circular polarization in the primary beam. NCD is derived
from an (E1′-E1-E1) event, and a parity-even event (E1′-E2-
E1) yields MCD [46].

Results Eqs. (7) and (9) for the SHG response are energy-
integrated signals. That is to say, from Eq. (7), the multipole
〈{R ⊗ C2(R)}2〉 is the total NCD signal available from a
substance in a suitably designed measurement, with a like
statement derived from Eq. (9) for the MCD signal. Here,
{. ⊗ .}K denotes a tensor product of rank K, C2(R) is a
spatial spherical harmonic of rank 2 normalized such that
C1(R) = R, and the MCD signal is a sum of multipoles
〈{C2(R) ⊗ L}K〉 with K = 1 and 3. A meaningful context
for our results is the analogy between Eqs. (7) and (9) with
celebrated sum rules for conventional, parity-even dichroic
signals [40–42] and their extensions to parity-odd signals
[56], derived from the Kramers-Heisenberg dispersion for-
mula. In the present setting, Eqs. (7) and (9) are products
of our new statement in Eq. (B5) for the reduced matrix
element (RME) of a response function. While compatible with
earlier results for the same quantities, we submit that they are
stronger statements. This claim is grounded on the recoupling
Eq. (4) of the exact result Eq. (3) for matrix elements in an
E1′-E p-E1 event, depicted in Fig. 1, that was not previously
accomplished [46]. Notably, we now complete sums over
intermediate states and arrive at closed expressions for NCD
and MCD multipoles cited above. A straightforward passage
to results in Eqs. (7) and (9) is testament to insight from the
recoupling.

A proof that (E1′-M1-M1) with M = (L + 2S) does not
produce a NCD signal in the SHG response was given in a
previous paper (Appendix B in Ref. [46]). In the present set-
ting, the null result for NCD follows most easily from Eq. (3),
because RMEs for spin and orbital angular momentum are
diagonal with respect to angular momentum, e.g.,
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(σλ′||S||σ l ′) and (σλ′||L||σ l ′) are zero for λ′ = l ′. One
finds mixed contributions from S and L to ZK (lJ, l ′J ′) sum
to zero. On the other hand, pure S and pure L contributions
to ZK (lJ, l ′J ′) are nonzero but each one cancels out in the
response RME (lJ||OK ||l ′J ′) found in Eq. (B5).

Turning to the second experimental technique in the
present study, the orbital contribution to the magnetic neu-
tron scattering amplitude can be calculated with Eq. (17).
The equation, combined with (18), finds immediate appli-
cation for a single electron in an atomic shell, e.g., Ce3+

[57]. An extension of Eq. (17) to equivalent electrons is well
established and, therefore, not pursued here [54,55]. The gen-
eralization to electrons in different atomic orbitals given in
Appendix C is a specific example of our new statement in
Eq. (B5) for the RME of a response function. The orbital-spin
contribution to the magnetic scattering amplitude Eq. (14),
by comparison, is a much simpler response function that
obeys Eq. (B5), as expected—perhaps deceptively simple,
since Eq. (14) is the sole source of even rank multipoles in
the scattering amplitude that are permitted by a correlation of
the spin anapole and spatial degrees of freedom [54,58].
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APPENDIX A: DEFINITIONS

Cartesian (x, y, z) and spherical components RQ of a
vector R are related by x = (R−1 − R+1)/

√
2, y = i(R−1 +

R+1)/
√

2, z = R0. Evidently, spherical components of a
dipole are complex for Q different from zero, and {RQ}× =
(−1)QR−Q, where × is complex conjugation. Operators we
use possess discrete symmetries with respect to the reversal of
the coordinates of space and time, with corresponding signa-
tures σπ and σθ . An operator is parity even (odd) for σπ = +1
(−1), while time even (odd) for σθ = +1 (−1). Parity and
time inversions are conjugate operations that reverse the sign
of a four-vector. The vector (dipole) R is polar with σπ = −1,
whereas spin S (and orbital angular momentum L and J =
S + L) is axial with σπ = +1. We adopt the convention that
σθ is the sign difference between time-reversal and complex
conjugation. Since the two operations applied separately to
RQ yield identical results, the time signature σθ = +1, while
SQ possesses a time signature σθ = −1. More generally, the
rank of a spherical tensor operator is labeled by a positive in-
teger K, and it possesses (2K + 1) projections −K � Q � K .
Our operators obey [OK

Q ]+ = (−1)QOK
−Q, where + denotes

Hermitian conjugation, and the diagonal component OK
0 is

Hermitian.
The action of our time-reversal operator θ on a time-

dependent wave function of the system ψ (R, t ) is θψ (R, t ) =
ψ×(R,−t ), while θψ (H) = ψ×(H) = ψ (−H) for a station-
ary state subject to a magnetic field H. A matrix element of an
arbitrary operator B satisfies [59]

(ψ, Bϕ) = (θϕ,B̄+θψ ), (A1)

with B̄ = θBθ−1, which follows from standard properties
θ (cψ ) = c×(θψ ) and (θψ, θBϕ) = (ψ,Bϕ)× (c is a classical

number), whereupon

(ψ, Bϕ)H = (ϕ, B̄+ψ )−H = σθ (ϕ, Bψ )−H, (A2)

and our definition B̄ = σθB+ equates change in the polarity
of an applied magnetic field with change in the mean value
of B with respect to the reversal of time, which is a sensible
outcome.

The Wigner 3 j symbol and Clebsch-Gordan coefficient
(aα bβ|KQ) are related by

(aα bβ|KQ ) = (−1)−a+b−Q
√

(2K + 1)

(
a b K
α β −Q

)
.

(A3)
The 3 j symbol is invariant with respect to inversion of
spatial coordinates [49,50]. The parity operator commutes
with the rotation operator, because rotations are generated by
parity-even operators Jα . Thus, states |JM〉 that differ only in
projections M have the same parity. The time-reversal operator
θ changes the sign of a projection. If we equate θ (c|JM〉) with
c×(−1)J−M |J,−M〉, a composite state,

|JM〉 =
∑
mm′

| jm〉| j′m′〉( jm j′m′|JM ), (A4)

is fully compatible with it. Notably, θ2|JM〉 = (−1)2J |JM〉 =
±|JM〉, where the upper sign is for integer J and the lower
sign is for half-integer J.

The Wigner-Eckart theorem says a matrix element
(JM,OK

QJ ′M ′) ≡ 〈JM|OK
Q |J ′M ′〉 is related to a reduced ma-

trix element (RME) that does not depend on projections, M
and M′. We use a standard definition of the theorem whereby

〈JM|OK
Q |J ′M ′〉 = (−1)J−M

(
J K J ′
−M Q M ′

)
(J‖OK‖J ′).

(A5)
The RME (J||OK ||J ′) is also called a double-barred matrix
element. Total angular momentum J = (l ± σ ), with σ =
1/2, where l labels the orbital angular momentum. Electronic
matrix elements and RMEs are diagonal with respect to the
magnitude of the spin, of course, and σ is not made explicit
henceforth.

APPENDIX B: RESPONSE FUNCTIONS

Two key identities must be satisfied in the RME of a
response function. The first is a straightforward consequence
of the definition [OK

Q ]+ = (−1)QOK
−Q and the Wigner-Eckart

theorem, namely (Secs. A 3 and A 5 in Ref. [51]),

(lJ‖OK‖l ′J ′) = (−1)J−J ′
(l ′J ′‖OK‖lJ )×, (B1)

and it is worth noting that (−1)J−J ′ = (−1)J ′−J . The second
identity is a direct outcome of (A1) for which we now use an
operator of rank K with parity signature σπ , i.e., application of
the parity operator results in (PπBK P−1

π ) = σπBK . Simultane-
ous inversion of space and time coordinates on an elemental
state |JM〉 is represented by

Pπθ (c|JM〉) = c×(−1)J−M |J,−M〉, (B2)

whereupon [51]

(l ′J ′‖BK‖lJ ) = (−1)J ′−J (−1)Kσπσθ (lJ‖BK‖l ′J ′) (B3)
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follows from the Wigner-Eckart theorem. Together, Eqs. (B1)
and (B3) yield

(lJ‖OK‖l ′J ′) = (−1)Kσπσθ (lJ‖OK‖l ′J ′)×. (B4)

A fundamental result for the RME of a response function
that sits at the heart of all we report combines Eqs. (B1) and
(B3). It is simple to verify that

(lJ‖OK‖l ′J ′) = χ [ZK (lJ, l ′J ′) + ρZK (l ′J ′, lJ )] (B5)

obeys requirements Eqs. (B1) and (B3) for purely real
ZK (lJ, l ′J ′). The two phase factors are found to be χ2 =
{(−1)Kσπσθ } and ρ = χ2(−1)J ′−J , meaning ρ = ±1 and χ

purely real or imaginary.

APPENDIX C: NEUTRON SCATTERING AMPLITUDE

Referring to Eq. (15), it is natural to separate the electronic
linear momentum operator p = −ih̄∇ into its angular and

radial components that we label by the letters a and r. It can
be shown that [60]

−(1/h̄k) exp (iR · k)(κ × ∇)q

=
∑
K,K ′

{CK (κ) ⊗ OK ′
(K ; a)}1

q

+
∑

K ′
{CK ′

(κ) ⊗ OK ′
(r)}1

q. (C1)

The radial tensor operator vanishes for equivalent electrons,
as we will see, unlike the angular tensor (17) for l = l ′. The
angular tensor in (C1) necessarily depends on two indices,
K and K ′, while a single index (rank) suffices for the radial
tensor

Angular tensor

OK ′
(K ; a) = iK+K ′−1(2K + 1)

√
[3(2K ′ + 1)]

∑
x,y

(−1)(1+K+x)/2( jx )(2x + 1)(2y + 1)

×
(

1 K x
0 0 0

)(
1 x y
0 0 0

){
1 x y
K ′ 1 1

}{
K K ′ 1
1 1 x

}
{L ⊗ Cy(n) − (−1)K ′+yCy(n) ⊗ L}K ′

, (C2)

with n = R/R. In Eq. (C2),

(l ′‖{L ⊗ Cy(n)}K ′ ‖l ) = (−1)l+l ′ (l‖{Cy(n) ⊗ L}K ′ ‖l ′) = (−1)K ′+l+l ′√2K ′ + 1(l ′‖L‖l ′)(l ′‖Cy‖l )

{
l ′ l K ′
y 1 l ′

}
. (C3)

The first thing to note is that (l||OK ′
(K ; a)||l ′) =

(−1)K ′+1(l ′||OK ′
(K ; a)||l ) follows from (C2) and (y + l + l ′)

even. In consequence, the RME satisfies Eq. (B5). The radial
integral is

( jx ) =
∫ ∞

0
dRR2 fl (R) fl ′ (R){ jx(kR)/kR}, (C4)

with jx(kR) a spherical Bessel function, and fl (R) and fl ′ (R)
radial parts of electron orbitals labeled by their angular mo-
menta l and l ′.

The rank y defines the parity of the tensor operator, i.e.,
σπ = (−1)y. It is even for equivalent electrons in an atomic
shell, l = l ′, and OK ′

(K ; a) together with (C1) are identical
to Eqs. (16)–(18). However, it is worthwhile to add a few
words about properties of Eq. (C2) for equivalent electrons
and recovery of the dipole contribution displayed in Eq. (15).
Use of Eq. (C3) in Eq. (C2) shows that the tensor operator
is different from zero for (y + K ′) odd, meaning K ′ odd.
Moreover, x = K ′ on inspection of Eq. (C2). The sum on K
in Eq. (C1) is removed by addition of a function proportional
to κq that leaves the amplitude for magnetic scattering of
neutrons Q⊥ unchanged. The outcome is to set K = K ′ − 1 in
Eq. (C1), and simultaneously replace all dependence on K by√{(2K ′ − 1)/[3(K ′ + 1)]} in Eq. (C2). It remains to perform
the sum on y = K ′ ± 1, and it is proportional to (l||L||l ) for
K ′ = x = 1 with a constant of proportionality that reproduces
Eq. (15). The combination of radial integrals seen in Eq. (17)
follows from the identity jn(z) = {z[ jn−1(z) + jn+1(z)]/(2n +
1)}.

Consideration of orbitals with angular momenta that differ
by an odd integer equates to parity y odd. It follows that x is
even and K is odd in Eq. (C2). One finds y = K = K ′ for K ′
odd, while x = K ′ for K ′ even. To recover the Dirac dipole
D = −{(1/2)( j0)�} contribution to Eq. (15), set K ′ = 1 and
y = K = 1. Thereafter, two uses of an identity for the tensor
product of two dipoles. First {C1(κ) ⊗ O1}1 = (i/

√
2)(κ ×

O1) in Eq. (C1), and the same identity yields

{L ⊗ C1(n) − C1(n) ⊗ L}1

= (i/
√

2)[L × n − n × L] = (i/
√

2)�. (C5)

Properties of the orbital anapole � are reviewed in Ref. [49].
It remains to define the radial tensor operator in Eq. (C1)

and survey its properties. The radial integral in the result,

(l‖OK ′
(r)‖l ′) = iK ′

(1/2)(gK ′ )l,l ′ [K ′(K ′ + 1)(2K ′ + 1)/3]1/2

× (l‖CK ′
(n)‖l ′), (C6)

is odd with respect to the exchange of l and l ′. Specifically,

(gK ′ )l,l ′ = (2K ′ + 1)
∫ ∞

0
dRR2[ fl (R)(d/dR) fl ′ (R)

− fl ′ (R)(d/dR) fl (R)]{ jK ′ (kR)/(Rk2)}, (C7)

and (g1)l,l ′ is included in Fig. 4. The RME in Eq. (C6) satisfies
Eqs. (B1) and (B3). Eq. (C6) evaluated for K ′ = 1, using
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C1(n) = n, yields the contribution made to the Dirac dipole.
Note that the contribution to D uses the anti-Hermitian, time-
odd and parity-odd operator {i n}. The RME of the momentum
operator is

(l‖p‖l ′) = (h̄/2)[(l‖�‖l ′) − 2i(l‖n‖l ′)].

We can infer from this result that the anapole and {i n} possess
identical discrete symmetries.

The unit tensor for one electron [51],

W (a,b)K ′
(σ l j, σ l ′ j′) = [(2 j + 1)(2K ′ + 1)(2 j′ + 1)]1/2

×
⎧⎨
⎩

σ σ a
l l ′ b
j j′ K ′

⎫⎬
⎭, (C8)

with σ = 1/2, and j = (l ± σ ). The magnitude of the 9 j
symbol is unchanged by an even or odd exchange of columns
or rows, but an odd exchange changes its sign by a factor
(−1)� with � = (1 + a + l + l ′ + b + j + j′ + K ′) [50,51].
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