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Dimerization and spin decoupling in a two-leg Heisenberg ladder with frustrated trimer rungs
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We study the antiferromagnetic spin-half Heisenberg ladder in the presence of an additional frustrating
rung spin that is motivated and relevant also for the description of real two-dimensional materials such as the
two-dimensional trimer magnet Ba4Ir3O10. We study the zero-temperature phase diagram, where we combine
numerical and analytical methods into an overall consistent description. All numerical simulations are also
accompanied by studies of the dynamical spin structure factor obtained via the density matrix renormalization
group. Overall, we find in the regime of strong rung coupling a gapped dimerized phase related to competing
symmetry sectors in Hilbert space that ultimately results in frustration-driven spin-Peierls transition. In the
weak rung-coupling regime, the system is uniform yet shows a gapped spinon continuum together with a sharp
coherent low-energy branch that renders the system critical overall. In either case, the additional rung spin
quickly gets sidelined and nearly decouples once its bare coupling to the ladder drops somewhat below the direct
Heisenberg coupling of the legs.
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I. INTRODUCTION

In this paper, we study a model of a frustrated spin S =
1/2 Heisenberg ladder antiferromagnet that is motivated by
a quasi-one-dimensional (1D) reduction of the trimer magnet
Ba4Ir3O10 [1–3]. That material is a member of the hexagonal
perovskite family considered a potential host for quantum spin
liquid behavior [4]. It consists of a layered structure with two-
dimensional (2D) planes where trimer units interconnected
into a quasihexagonal structure [cf. Fig. 1(b)]. The magnetism
comes from trimer units that host three Ir4+ spin-half ions
located within face-sharing octahedra. The dimensional re-
duction to 1D is partially justified by experimental indications,
and it is consistent with an extremely low Néel ordering
temperature TN = 0.2 K for the material where the bandwidth
of the spin excitations by the Heisenberg couplings is several
hundreds of Kelvin [3], thus spanning nearly four orders of
magnitude in energy scales. As such, this material may be
instrumental to the investigation of the long-standing spec-
ulation that 2D frustrated magnets might support quantum
disordered states with neutral spin-half excitations known as
spinons [5].

Our interest in this system is driven by its unusual spin
arrangement, as schematically depicted in Fig. 1. This ar-
rangement is conducive to several interesting effects. In its
classical Ising limit, the system exhibits a frustration-driven
ultranarrow phase crossover at finite temperature [6,7]. For
the quantum case, as we will demonstrate in this work, the
excitation spectrum contains a soft gapless mode separated
from the other excitations by a gap in the limit of weak
interchain coupling J2, J3 � J1. The main contribution to the
spectral weight of this mode comes from the central spins
on the rungs. These spins nearly decouple from the system
due to frustration, and they only experience an effective weak
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FIG. 1. The model system. (a) Two-leg Heisenberg ladder with
trimer rungs and couplings J ≡ (J1, J2, J3). A rung consists of three
spin S = 1/2 sites, where m = 1, 2 are the sites on the legs of the
ladder. The presence of the additional center site on a rung (site
m = 3) coupled symmetrically to the leg sites via a finite coupling
strength J3 induces frustration. (b) The same model may be seen to
represent a hexagonal brick lattice with three-site rungs, using Ly = 2
with the periodic boundary condition in the vertical direction. The
lattice spacing of the three-site unit cell (yellow shaded area) is taken
as a = 1 (horizontally, in either case) or b [vertically, panel (b) only].

higher-order interaction among each other. As far as the spins
located on the legs of the ladder are concerned, most of their
spectral weight is located at higher energies, in agreement
with experimental observations.

We point out that though the model looks like a version
of a three-leg ladder that is expected to be equivalent to a
spin-half chain and hence to be critical, this equivalence does
not hold throughout the entire phase diagram. In the parameter
range where the interchain interaction is frustrated, the “or-
bital” fluctuations are active and they may lead to dimerization
[8–12], which is absent in spin-half chains.

The paper is organized as follows: In Sec. II we introduce
the model. We then discuss first the strong rung-coupling
regime in Sec. III, followed by the weak rung-coupling regime
in Sec. IV. Each of these contains an analytical treatment
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together with a complimentary density matrix renormalization
group (DMRG [13,14]) analysis that also includes dynamical
properties via the dynamical structure factor. Section V con-
tains conclusions. Appendix A gives additional background
on the downfolding to the effective low-energy Hamiltonian.
Appendices B and C discuss an alternative, although not phys-
ically realized, possibility of an intermediate isotropic nematic
phase with spontaneously broken rung mirror symmetry due
to frustration.

II. MODEL

We study the frustrated ladder model in Fig. 1, described
by the Heisenberg Hamiltonian,

H =
∑

i

[ ∑
m=1,2

(J1 Sim·Si+1,m+J3 Sim·Si3)+J2 Si1·Si2

]

≡ H legs(J1) +
∑

i

H rung
i (J2, J3), (1)

with isotropic spin interactions, where rung i consists of three
spin-half sites m=1, 2, 3 described by the spin operators Si,m.
The couplings (J1, J2) describe the regular ladder of two legs,
whereas J3 couples the two legs to a third site m = 3 present
for each rung and referred to as the center site, which thus
frustrates the direct coupling in between the legs. We consider
antiferromagnetic Ji > 0 throughout. Moreover, we assume
J1 = 1 as the unit of energy, unless specified otherwise, as
well as h̄ = 1.

The Hamiltonian (1) has SU(2) spin symmetry, as well as
up-down mirror symmetry as shown in Fig. 1(a), with the lat-
ter referred to as rung inversion or Z2 parity symmetry. Within
the analytical or mean-field approach, we assume periodic
boundary conditions (BCs), whereas in the DMRG simula-
tions we adopt open BCs, with the ladder terminated by rungs
i = 1 and N . Overall, we are interested in the thermodynamic
limit N → ∞.

Taking J3 to zero reduces the system to the ordinary two-
leg ladder, except for the presence of decoupled and thus free
center spins. The latter would introduce macroscopic degener-
acy. As will be shown, an approximate decoupling can also be
achieved by frustration that, in practice, may give rise to spin
freezing [15]. Also, one could introduce a Heisenberg interac-
tion J ′

1 in between nearest-neighbor center spins in Fig. 1(a),
thus resulting in a three-leg ladder. But such a coupling J ′

1
is considered negligible here, except for the discussion with
Fig. 4. The motivation for this is that the center spins may
not necessarily be nearest-neighbor (NN) spins after all, as
compared to the leg spins. For example, one may assume that
the center spins in Fig. 1(a) have a two-rung periodicity in
that, e.g., they point into and out of the plane in an alternating
fashion. Even more, when viewed as a minimal model for the
decorated brick lattice in Fig. 1(b) assuming Ly = 2, the center
sites are, indeed, very clearly far from being NN sites.

III. THE LIMIT OF STRONG RUNG EXCHANGE

Let us start by focusing on a single rung consisting of three
sites as marked in Fig. 1. This is relevant in the limit J1 →
0, i.e., dominating rung coupling, which reduces the system

to (nearly) decoupled trimers or triangles. Due to the SU(2)
spin symmetry, the state space of a rung can be reduced from
d = 23 states to an effective dimension of d∗ = 3 multiplets,
having two S = 1/2 multiplets and one multiplet with S =
3/2. The latter is already symmetric under rung inversion. The
two S = 1/2 multiplets can be symmetrized, where the first is
symmetric and the second asymmetric under rung inversion
(by convention, the S = 1/2 rung multiplet space will always
be considered in this order). They will be denoted by |1/2〉±.
The antisymmetric multiplet |1/2〉− forms a singlet across sites
m = (1, 2), with a free spin-half at site m = 3. The symmetric
multiplet |1/2〉+ can be derived as a symmetric triplet on sites
m = (1, 2) that when fused with site 3 also forms a total rung
spin S = 1/2. The eigenstates of a single rung are thus divided
into two groups: the low-energy space consisting of the two
spin-full “orbitals” |1/2〉± at respective energies E (0)

± = −�0
2 ±

1
2 (J2 − J3), with �0 ≡ 1

2 (J2 + 2J3), and the high-energy S =
3/2 multiplet at energy +�0

2 .
Frustration within each rung is therefore strongest when

J2 ≈ J3. In this case, the two orbitals |1/2〉± become degenerate
in energy. A finite detuning J2 
= J3 introduces an orbital
splitting by an energy exactly equal to J2 − J3. This motivates
the dimensionless parameter

α ≡ J2−J3
J1

. (2)

The smaller the magnitude |α|, the stronger the frustration.
The excitation energy from the low-energy states to the

high-energy states is � = �0 ± αJ1
2 . For low enough tem-

peratures T satisfying e−�/T � 1 together with |α| � 1,
the thermal population of the high-energy S = 3/2 multi-
plet vanishes. With the high-energy states irrelevant to the
low-energy physics, we integrate it out by projecting the
Hamiltonian of two nearest-neighbor rungs including their
interaction along the legs into the low-energy space formed by
the multiplet space |1/2〉± using the many-body downfolding
method [16–21] based on Hubbard operators [22]. To make
the physics more apparent, we find it more convenient to
represent these operators as products of Pauli matrices acting
in the spin and effective orbital sector (see Appendix A for
details), as is customary in theoretical studies of manganites
with colossal magnetoresistance and many other materials
with active orbital physics [21,23–28].

Since the strengths of the bare projection of the Hamilto-
nian for a nearest-neighbor pair of rungs and the second-order
perturbative terms are proportional to J1 and J2

1 /�0, respec-
tively [20], for strong rung-coupling J1/�0 � 1 it suffices
to study the lowest order. This is described by the projected
low-energy Hamiltonian,

1
J1
Heff

α = 8
9

∑
i

(Si · Si+1) ⊗ Ti,i+1 + α

N∑
i=1

T z
i , (3a)

where given the two-leg ladder with center spins on the rungs
we write Ti,i+1 = T (2)

i,i+1, we have

T (2)
i,i+1 ≡ 1

4 + 1
2 (T z

i +T z
i+1) + T z

i T z
i+1 + 3T x

i T x
i+1. (3b)

Here Sa
i ≡ 1

2σ a
i and T a

i ≡ 1
2τ a

i are effective spin and or-
bital spin-half operators, respectively, with σ a and τ a Pauli
matrices with a ∈ {x, y, z}. These form the direct product
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space σ ⊗ τ that acts on rung i. In fact, the new spin op-
erators exactly correspond to the total spin operator on a
rung, Si ≡ Stot

i ≡∑3
m=1 Sim, which, once projected onto the

low-energy spin sector, indeed represent a plain proper spin
operator acting on an S = 1/2 spin degree of freedom.

The last term in Eq. (3a) is merely the aforementioned
“orbital” splitting of αJ1. It now functions as an effective mag-
netic field applied on the τ pseudospins along the z-direction.
It is offset by the linear T z

i term in Eq. (3b). The prefactor can
be roughly estimated via a mean-field value for a decoupled
Heisenberg chain [29,30], resulting in (cf. Appendix B)

α0 ≡ − 8
9 〈Si · Si+1〉 ≈ 8

9

(
ln 2 − 1

4

) = 0.394. (4)

Therefore, only if α ≈ α0 does the effective magnetic field be-
come zero in the orbital sector. This offset also approximately
agrees with the full many-body calculation, where the DMRG
simulation in Fig. 2(c) shows that α0 renormalizes to a slightly
smaller value of 0.341.

The orbital magnetization 〈T z
i 〉 or 〈T x

i 〉 can be directly
related to the intrarung spin-spin correlations,

C(i)
12 ≡ 〈Si1 · Si2〉 = − 1

4 + 〈
T z

i

〉
, (5a)

C(i)
3+ ≡ 〈(Si1 + Si2) · Si3〉 = − 1

2 − 〈
T z

i

〉
, (5b)

C(i)
3− ≡ 〈(Si1 − Si2) · Si3〉 =

√
3
〈
T x

i

〉
, (5c)

where 〈· · · 〉 denotes thermodynamic average. Equation (5a)
shows that 〈T z

i 〉 measures whether the two-leg spins (1,2)
are ferromagnetically or antiferromagnetically correlated. In
fact, 〈τ z

i 〉 ≡ 2〈T z
i 〉 measures the rung parity Z2, where based

on Eq. (5a), τ z
i acts like a swap operator for the two-leg

sites. Conversely, 〈T x
i 〉 measures the Z2 symmetry breaking

between the leg spins if present. As seen from Eq. (5c), a
nonzero value indicates a spontaneous breaking of the mirror
symmetry between the upper and lower leg.

As an aside, we note that when the site-specific spin opera-
tors themselves are fully projected into the low-energy space,
caveats apply, e.g., for sum rules. Since Si = Stot

i is fully
constrained to the S = 1/2 spin sector, one obtains S2

i = 3
4 .

However, if the site-specific spin operators Sim themselves
are fully projected to the low-energy S = 1/2 space, then∑3

m=1 S2
im = 5

4 (and not 3 × 3
4 , as this misses weight not of

interest from intermediate excitations into the high-energy
S = 3/2 multiplet), such that the sum rule becomes (S1 ·
S2 + S1 · S3 + S2 · S3)i = 1

2 ( 3
4− 5

4 ) = − 1
4 . In the absence of

intermediate truncation in the spin operator products, as with
Eqs. (5) above, this reads C12 + C3+ = − 3

4 instead.
The effective Hamiltonian (3) only includes nearest-

neighbor terms derived from bare projection, which, at
first glance, may be taken as an indication of a uniform
ground state. In addition, one may also includes next-nearest-
neighbor (NNN) interactions via second-order perturbation.
This translates the local rung frustration of the original ladder
into frustration along the chain in the effective model. Such
NNN interactions, while they leave the effective Hamilto-
nian translationally invariant, can be expected to generate
dimerization as a relevant perturbation. This can give rise
to spontaneous breaking of the translational symmetry along
the chain [8,9]. Based on second-order perturbation, such a

symmetry breaking, however, should diminish in the limit of
strong rung couplings J2, J3 � 1.

Nevertheless, as will be seen in the DMRG analysis be-
low, the lowest-order projected Hamiltonian in Eq. (3) itself
already gives rise to dimerization. Being at lowest order, the
resulting dimerization also does not diminish but remains
sizeable in the limit of strong rung couplings J2, J3 � 1.
This suggests that spin and orbital degrees of freedom remain
intrinsically entangled, and cannot be mean-field decoupled.
The frustration of the spins on each rung in the original model
is present via the (near) degeneracy of the two multiplets
|1/2〉±. One may argue that the decoupled spin chains de-
scribed by the first term only in Eq. (3b) are subjected to
relevant effective NNN order terms based on the remainder
of the interactions in Eq. (3b). Therefore, overall, frustration
is already intrinsic also to the effective projected Hamiltonian
(3b).

Interestingly, dimerization as found in our DMRG simula-
tions has been reported on an isotropic three-leg Heisenberg
ladder in [11]. Translated to our model, this would turn on
the coupling also for nearest-neighbor center sites (m = 3).
Taking it equally strong as for the initial two legs having J1,
then following the same downfolding procedure above, one
obtains instead of Eq. (3b) the modified effective Hamiltonian
in the orbital sector,

T (3)
i,i+1 ≡ 3

8 + 3
(
T x

i T x
i+1 + T z

i T z
i+1

)
. (6)

As compared to the two-leg case in Eq. (3b), the linear terms
in T z disappeared [hence one also expects no offset here to the
orbital magnetic field as estimated in Eq. (4)]. Also the T zT z

term got strengthened, making it as strong as the T xT x term,
which kept its prefactor unchanged. If one were to analyze
the orbital sector effectively decoupled from the spin sector,
this would result in a plain fermionic tight-binding chain af-
ter Jordan-Wigner transformation. On the contrary, however,
the three-leg ladder mentioned above features dimerization
instead [11]. This emphasizes the strongly correlated inter-
play between spin and orbital degrees of freedom. We will
show below by continuously turning on the NN Heisenberg
coupling on the center spins (cf. Fig. 4) that the spin gap
observed with dimerization in the system never closes on
the way, making an isotropic three-leg ladder with the same
coupling J1 on all three legs. This suggests that the underlying
physics is identical.

A. Preliminary discussion

We proceed to discuss the physics of the effective
strong-coupling Hamiltonian. The symmetries that can be
spontaneously broken in the ground state are the Z2 symmetry
between the chains and the translational, or to be more precise,
the inversion symmetry along the chains. Qualitative consid-
erations suggest a possibility of the following T = 0 phases.
First, there are two diagonal, “orbital”-ordered phases with
〈T z〉 > 0 and 〈T z〉 < 0, respectively, which can coexist with
translational symmetry breaking. There is the possibility of a
nematic phase with spontaneously broken Z2 symmetry, hav-
ing 〈T x〉 
= 0. It is nematic, since with Eq. (5c) the local order
parameter would consist of Z2 symmetry-breaking variations
in the energy density described by scalar products of spins
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with the SU(2) spin symmetry itself preserved. The nematic
order may coexist with translational symmetry breaking.

The diagonal phases appear at strong effective field |α| �
1 [cf. Eq. (2)], while also J2, J3 � 1 (= J1). Then quantum
orbital fluctuations in the xy orbital plane are suppressed. For
α � 1, i.e., dominant J2 � J3, the effective field via the last
term in Eq. (3a) aligns, 〈T z

i 〉� − 1/2. By Eq. (5a), this results
in the strongest possible antiferromagnetic correlation for the
leg spins (1,2), such that they form an approximate singlet
(S = 0), while the center spin becomes nearly decoupled.
Overall, this is precisely the antisymmetric rung multiplet
|1/2〉−. On the other hand, for α � −1, i.e., dominating cou-
pling to the center spin, J3 � J2, the effective field in Eq. (3a)
aligns 〈T z

i 〉 � 1/2. Again by Eq. (5), this shows that here
the leg spins align ferromagnetically such that they form
an approximate triplet (S = 1) with an antiferromagnetically
aligned center spin. This is merely the symmetric rung multi-
plet |1/2〉+.

In the latter diagonal phase for α � −1, the spin dynamics
in Heff is described by a simple single-chain spin-half Heisen-
berg model in terms of the symmetric multiplet |1/2〉+ and
coupling strength of order J1. As will be shown below, also the
first diagonal phase (α � 1) reduces to an effective spin-half
Heisenberg model in terms of the antisymmetric multiplet
|1/2〉−. There, however, this translates into a Heisenberg chain
of weakly coupled center spins, such that in this case the
coupling strength, and with it the energy scale of the spin
dynamics, becomes vanishingly small for α � 1.

The above analysis indicates that there may exist a quan-
tum critical point (QCP) in the regime of weak |α| < 1 (i.e.,
strong spin frustration) that separates the two phases with an-
tiferromagnetic and ferromagnetic correlations, respectively.
Alternatively, there is also the possibility of a nematic phase
for small α whose phase boundaries would require two QCPs
where the nematic order vanishes. The latter is suggested by a
semi-mean-field approach as discussed in Appendix B. How-
ever, based on the detailed DMRG analysis presented below,
neither turns out to capture the low-energy regime. Instead, the
system favors a spontaneously broken translational symmetry
with dimerization along the ladder that smoothly connects the
regime α � −1 to α � 1, as will be demonstrated next.

B. Dimerization

In this section, we present extensive DMRG ground-state
simulations on the two-leg ladder model in Eq. (1), as well
as in its projected version in Eq. (3). The results are overall
consistent, e.g., in that the total weight in the reduced density
matrix for J3 = 4 in the local S = 3/2 rung multiplet remained
below 0.01 throughout. Here we use uniform ladders with
open boundary conditions for J = (1, J2, 4), where we scan
J2 and subsequently combine the data from the system center
for each DMRG run at fixed J2. Our results, with a focus
on dimerization, are summarized in Fig. 2. Snapshots of the
NN spin interactions are shown in Fig. 3 for J2 = 4, 4.3, and
5. The DMRG data for these snapshots was obtained for a
system size of L = 128 rungs, with very minor variations as
compared to L = 64, as seen in Figs. 2(a)–2(c). For clarity,
we only show the left end, center, and right end of the ladder,
with the intermediate regions cropped as indicated with the

lower axis sets. This demonstrates that the dimerization is
well-established and uniform along the entire system.

Figures 2(a) and 2(b) analyze the NN spin correlations
along the ladder, C(i,i+1)

mm′ ≡ 〈Sim·Si+1,m′ 〉, whereas Fig. 2(c)
shows the perpendicular ones, i.e., within rungs. These inter-
actions are computed based on the actual sites (m=1, 2, 3),
but in Figs. 2(a) and 2(c) also in terms of the effective spin
operator Si (black line). By plotting data separately for even
from odd bonds in the system center of the ladders analyzed,
dimerization is absent if these curves lie on top of each other
[e.g., Fig. 2(c)]. Dimerization develops where the curves split
as in Fig. 2(a), where Fig. 2(b) plots the actual difference.
Therefore, for a given parameter setting, dimerization starts
around J2 � J3 = 4 [cf. Figs. 2(a) and 2(b)]. It develops a
pronounced maximum around J2 ∼ 4.3 [Fig. 2(b)] and drops
again thereafter up to J2 ∼ 4.6. The dimerization “bubble”
that opens between even and odd bonds in Fig. 2(a) is absent
for Fig. 2(c), which analyzes the three bonds within a rung.
The latter data is uniform when going from one rung to the
next. Therefore, dimerization, and correspondingly sponta-
neous symmetry breaking, only exist along the legs, but not
within the rungs.

The dimerization observed in the spin-spin correlations for
J2 ∈ [4, 4.5] � J3, and therefore α ∈ [0, 0.5] � 0, goes hand
in hand with the appearance of a small but well-established
spin gap �S � 0.15 as shown in Fig. 2(d). There by simul-
taneously targeting multiple lowest-energy states in various
global SU(2) symmetry sectors, we find that both the singlet
and triplet gap are maximal for J2 � 4.31 and are already
well-converged to the aforementioned value for L = 64 (light
colors) as compared to L = 128 (strong colors). While the
ground state evolves smoothly, the excited states feature a
sharp kink, which suggests a crossing of state spaces. This
is natural, bearing in mind that the many-body Hilbert space
can be partitioned into states that are either symmetric or
antisymmetric under rung inversion symmetry and where their
presence in the low-energy regime is expected to be reversed
for J2 significantly larger or smaller as compared to J3.

The location of the maximal spin gap coincides well with
the crossing of weights for the symmetric and antisymmet-
ric rung multiplet, as reflected by the crossing of the lines
in Fig. 2(c): that crossing occurs at the exact point where
the symmetric and antisymmetric rung multiplets, |1/2〉+ and
|1/2〉−, gain equal weight, since with Eq. (5) for m 
= m′, 〈Sim ·
Si,m′ 〉 = −0.25 when 〈T z

i 〉 = 0. As indicated with Fig. 2(c),
the crossing occurs at J2 � 4.341, i.e., αDMRG

0 � 0.341, which
therefore slightly reduces the mean-field estimate for α0 in
Eq. (4). For J2 � 4.2, the gap diminishes and dissolves within
strong finite-size effects. The system appears critical and non-
symmetry-broken for J2 � J3 = 4 (e.g., see the center region
in the upper panel of Fig. 3), even though based on the DMRG
data we cannot exclude that a small but finite gap persists even
for 1 � (J2 < J3).

The situation for large J2 � 4.6 differs as compared to the
case of small J2 < J3 = 4. By looking at Fig. 2, one notices
two points: (i) the finite-size spacing in Fig. 2(d) is much
smaller for large J2 � 4.6 as compared to J2 < 4, and (ii)
while the dimerization in Fig. 2(b) diminishes on the actual
legs of the ladder (m = 1, 2), the dimerization starts to grow
again for the center spins for J2 � 4.6 (see also the lower
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FIG. 2. Dimerization in the ladder model of Hamiltonian (1) in
the strong rung-coupling limit, having J = (1, J2, 4) vs J2 based on
DMRG ground-state simulations for arbitrary but fixed J2 for L = 64
(light thick lines) and L = 128 (color matched thin dark lines).
(a) NN interaction energies along the chain in the system center,
showing even (odd) bonds around the system center separately as
individual curves in solid (dashed-dotted), respectively. The data
includes NN interaction in terms of the original spins with respect
to to sites m = 1, 2, 3, but also of Si ≡ Stot

i , as indicated with the
legend. (b) Same as (a), also sharing the same legend, but plotting the
difference between the even and odd bonds along the chain. The inset
shows the average over even and odd bonds, denoted by 〈〈· · · 〉〉, vs J2

for the 〈Si · Si+1〉 data in (a). Here again the color-matched black line
refers to L = 128, whereas the lighter gray line (mostly underneath
the black line) refers to L = 64. The horizontal guide at the bottom
of the inset indicates the analytically known expectation value for
a plain spin-half Heisenberg chain, 1

4 − ln(2) [cf. Eq. (4)]. (c) NN
interaction energies within a rung in the system center. Same analysis
as in (a), but here the data from even/odd rungs lies indistinguishably
on top of each other. (d) Targeting lowest-energy states in global
SU(2) spin sectors as indicated in the legend.

snapshot in Fig. 3 for J2 = 5). Point (i) is fully consistent with
the earlier discussion that for α � −1 (α � 1), which in the
present case corresponds roughly to J2 � J3 = 4 (J2 � 4.6),
respectively, the symmetric rung multiplet |1/2〉+ (or antisym-
metric |1/2〉−) dominates the rung state space. This is clearly
visible in the upper as compared to the lower snapshot in
Fig. 3: the upper snapshot ties in all three spins on a rung
based on antiferromagnetic correlations routed through the
center spin. In contrast, the lower snapshot directly couples
the leg spins, hence resulting in a dominant |1/2〉−, which
eventually results in these orbitals being gapped out, akin
to a rung singlet phase in the plain Heisenberg ladder [31].
The residual center spins, however, only experience a very
weak indirect coupling among each other via higher-order
perturbative processes. Their effective spin-spin interaction
diminishes to zero for J2 � J3, in qualitative agreement with
the finite-size level spacing seen in Fig. 2(d).

Point (ii) is a priori unexpected. While all our DMRG data
is very well-converged to start with (e.g., even for all the
L = 128 data, the ground-state energy is converged to well
below 10−6 relative accuracy throughout), there is room to
believe that the eventual increase of the dimerization with the

FIG. 3. Snapshots of NN bond strength C (i,i′ )
mm′ ≡ 〈Sim·Si′,m′ 〉 in the

ladder model of Hamiltonian (1) for J = (1, J2, 4) (same as in Fig. 2)
with J2 as specified with the panel. The NN bond strength is drawn
to scale proportional to the bond width (see the value for the bond
at the upper right of each panel for reference). The NN interactions
between center spins are shown as semitransparent (light colors)
to indicate that no interactions are present in the Hamiltonian for
these bonds. All bonds are of the same color, and hence of the same
negative sign, thus being antiferromagnetically correlated. The data
is for an L = 128 ladder, showing left boundary, center, and right
boundary, with the intermediate ranges cropped as indicated with
each horizontal axis.

center spins in Fig. 2(b) is a numerical artifact. In fact, the
DMRG simulations for J2 � 4.6 were difficult to start with in
that random initialization also randomizes the (very) weakly
coupled center spins. This becomes very difficult to get rid
of later toward a more uniform ladder, in that DMRG may
be stuck within certain initial antiferromagnetic spin clusters
with domain walls in between. Hence for J2 � 4.6, the DMRG
was (also) initialized with a drastically down-sampled ground
state obtained for smaller J2 ∼ 4.3. For the larger J2 values
where a randomized starting state could still be afforded, the
resulting data was overall consistent. Nevertheless, as seen
from Fig. 2(b), the L = 64 data shows a systematically smaller
dimerization for J2 � 5, which may be attributed to the fact
that the L = 64 data is still overall systematically somewhat
better converged than the L = 128 data. So one may take
this as a first indication that the dimerization seen with the
center spins for large J2 shows a tendency to become smaller
or even diminish altogether. In addition, the data for large J2

also shows some minor irregular, noisy behavior versus J2

for either system length L. This is mainly also attributed to
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the quick decoupling of the center spins with increasing J2.
For similar reasons, the dimerization on the center spins may
also be strongly influenced still by the presence of the open
boundaries. The precise fate of the dimerization for large J2

therefore remains open, but there is room to believe that it
diminishes for large J2 also for the center spins eventually.
In this sense, in what follows we only refer to the intermedi-
ate range J2 ∼ J3 + [0, 0.5] with J3 � J1 = 1 as the (clearly)
dimerized regime with the precise boundaries of this phase
left for future studies.

The averaged correlations 〈〈Si · Si+1〉〉 including both even
and odd bonds are shown in the inset of Fig. 2(b). For J2

far detuned from J3 = 4, this approaches the analytical value
known for the plain spin-half Heisenberg chain indicated by
the horizontal line. This clearly supports the overall picture
that in the strong rung-coupling limit, the system effectively
reduces to a plain spin-half Heisenberg chain, either in the
symmetric or antisymmetric rung multiplet, |1/2〉+ or |1/2〉−,
for J2 � J3 or J2 � J3 + 0.6, respectively.

C. Connection to the dimerized regime in a three-leg tube

The model of interest in this work is the two-leg ladder
in Eq. (1), or its projected version in Eq. (3). Nevertheless,
in the dimerized regime as in the center snapshot in Fig. 3,
the center spins virtually correlate the same way as the leg
spins, despite there being no direct coupling in between the
center spins in the Hamiltonian at all [hence these bonds
were depicted in semitransparent (light) colors]. Based on
this, one may suspect that the dimerized phase persists even
if a NN coupling is explicitly turned on also in between the
center spins in the Hamiltonian. The resulting projected model
results in the altered orbital Hamiltonian (6).

Figure 4 tracks the spin gap while turning on an explicit
NN coupling J ′

1 in between center spins, starting around the
maximal spin gap in the two-leg model at J = [1, 4.3, 4] at
J ′

1 = 0 (cf. Fig. 2). Because the three-leg Hamiltonian in (6)
has no linear offset to the orbital magnetic field as discussed
with Eq. (4), at the same time as J ′

1 is turned on, J2 is tuned
linearly toward J3, i.e., α = 0, as indicated with Fig. 4. With
this, J ′

1 = 1 = J1 corresponds to a three-leg “tube” [10–12]
with three equivalent legs, having J = [1, 4, 4]. As is evident
from Fig. 4, the spin gap never closes; it even gets enhanced
as J ′

1 is turned on. Hence the dimerization of the three-leg tube
observed in Ref. [11] has the same physical character as the
dimerized phase observed for the two-leg model here. Refer-
ence [11] analyzed the three-leg tube for any J2 = J3 relative
to J1, which in the present case translates to αeff ≡ α − α0 =
0. They argued that this model is always gapped and dimerized
due to spin-frustration. Therefore, Fig. 4 shows that the dimer-
ized regime seen in our model has the same physical origin,
namely a frustration-induced spin-Peierls transition [32]. As
we will demonstrate below, the spin-Peierls character of the
dimerized phase is supported by the analytic calculations.

D. Dynamical properties and crossover of spinon continua

The dynamical structure factor (DSF) examines the en-
ergetics of spin-spin correlations. Here we use it in the

FIG. 4. Lowest-energy eigenstates of model (1) in the strong
rung-coupling regime except that here, in addition, also a NN Heisen-
berg coupling J ′

1 ∈ [0, 1] (horizontal axis) between the center spins
was turned on. Therefore, J ′

1 = 0 well corresponds to the projected
two-leg ladder in Eq. (3b). J2 was tuned with J ′

1 as indicated in the
panel, such that J ′

1 = 1 corresponds to the uniform three-leg model
with the projected low-energy orbital Hamiltonian as in Eq. (6).
While the full, i.e., nonprojected rung state space was present in the
simulations, the total weight of the S = 3/2 multiplet was � 0.01,
throughout. Light colors are for L = 64, whereas darker colors are
for L = 128, similar to Fig. 2(d). States are color-coded according to
their global SU(2) spin sectors as indicated in the legend.

form

Smm′ (k, ω) =
∑

i

e−ikxi

∫
dt eiωt Smm′ (xi, t ), (7)

where we only consider momentum k along the ladder, yet
site-specific, and hence with real-space resolution along the
“vertical” direction within a rung. Here xi refers to the hor-
izontal distance along the ladder using unit lattice spacing,
xi = i, with m and m′ the local site indices within a rung,
having Smm′ (xi, t ) ≡ 〈Sim(t ) · S0m′ (0)〉 with site spins Sim as
in Eq. (1) with SU(2) spin symmetry intact. Here S0m′ refers
to site m′ on a reference rung at location i′ = 0. In the present
DMRG context, using open BCs, this always refers to a site on
the center rung of the system. The DMRG prescription is then
as follows: one performs real-time evolution [33,34], followed
by double-Fourier transforms. To be specific, we subtract a
static long-time background and perform zero padding in real
space, followed by Fourier transform to momentum space. Af-
ter careful linear prediction [35] of S(k, t ) in time, the system
is then also Fourier transformed to frequency space, followed
by a final weak broadening to remove artificial speckles from
pushing linear prediction. We emphasize that linear prediction
in momentum space, and thus mixed coordinates (k, t ), is
crucial, since for fixed k significantly fewer frequencies occur
within S(k, t ). This is in stark contrast to S(x, t ), which has all
frequencies from the entire DSF spectrum present, which then
results in delayed, light-cone-like dynamics that is ill-suited
for linear prediction.

The DSF obeys simple spectral sum rules. Frequency in-
tegration results in the static spin-spin correlation function,
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whereas the fully integrated weight yields

S(S + 1) Imm′ ≡
∫

dk
2π

∫
dω
2π

Smm′ (k, ω)

= Smm′ (xi = 0, t = 0) = 〈S0m · S0m′ 〉. (8)

Here the prefactor was chosen such that in the present context
of S = 1/2 sites one obtains the normalized total weight,

Itot ≡
∑
mm′

Im′m = 4

3

〈
Stot

0 · Stot
0

〉 ≡ 4

3

〈
S2

0

〉
� 1. (9)

In the strong rung-coupling regime, where the local S = 3/2
multiplet is effectively projected out, we have Itot � 1, which
is assumed in the remainder of this section. The upper limit
given by Itot = 5 holds for the hypothetical case in which the
S = 3/2 rung multiplet dominates. In the weak rung-coupling
regime discussed later, we will encounter 1 � Itot � 2.

In the presence of dimerization, the structure factor as
defined in Eq. (7) becomes complex [while Smm′ (x, ω) is still
real because the ground state can be taken real for our model,
the Fourier transform in real space becomes complex due to
the broken inversion symmetry]. In this case, we take the
real part of the right-hand side of Eq. (7), which in the pres-
ence of dimerization is equivalent to symmetrization of the
structure factor with respect to the location of site i′ ∈ {0, 1}.
The resulting DSF then is again symmetric for k → −k, and
also conforms to the standard momentum space definition and
experimentally accessible DSF.

Within DMRG we start from real space, and hence
full real-space resolution. We explicitly compute 〈Sim(t ) ·
S0m′ (0)〉 = 〈0|Sim · [e−i(H−E0 )(S0m′ |0〉)]. With m, m′, i′ = 0
fixed, the data is computed from real-time evolution and
collected versus i. For simplicity, we sum the resulting data
over the site index m. This corresponds to the spectral data at
ky = 0 with respect to m, which is equivalent to using Si. The
resulting DSF,

Sm′ (k, ω) ≡
∑

m

Smm′ (k, ω), (10)

then refers to the spectral data resulting out of having acted
with the initial spin operator on rung site m′. Since by the
preserved mirror symmetry in the ground-state calculations
it follows that S1 = S2, it suffices to compute S1(k, ω) and
S3(k, ω) (e.g., as shown in Fig. 5). While much of Sm′ (k, ω)
is dominated by m = m′, which results in a positive spectral
density, it also contains an off-diagonal contribution m 
= m′.
Therefore, if the local spin excitation induced at time t = 0
preferentially propagates to a different rung site m 
= m′, then
due to the underlying antiferromagnetic NN correlation, the
spectral density of the DSF can turn negative for a partic-
ular range in momentum and frequency space. By properly
combining S1(k, ω) and S3(k, ω), however, the weighted aver-
age 2S1(k, ω) + S3(k, ω) again must result in a non-negative
spectral density throughout, as this represents the DSF now at
ky = 0 for both m and m′, which is equivalent to computing the
DSF based on 〈Si(t ) · S0(0)〉. Similarly, the respective total
integrated spectral density is given by Itot ≡ 2I1 + I3 � 1 [cf.

FIG. 5. Dynamical structure factor for the two-leg ladder (3) in
the strong rung-coupling regime as in Fig. 2, having J = [1, J2, 4]
for various J2, is indicated with the left panels top to bottom. The
panel labels (a)–(f) each refer to a row that shares the same J2. The
left panels show S1(k, ω), whereas the right panels show S3(k, ω)
with the initial spin operator acting on site m′ = 1 or 3, respectively
(see the text). The corresponding total integrated spectral density is
also specified (I1 and I3), as well as the resulting total Itot = 2I1 + I3.
The color bar at the top holds for all panels. The spectral data is
smoothened with δω = 0.05 to remove speckles from linear predic-
tion, except for J2 = 4.3, which only uses half that value and which
also shows a guide for the approximate spin gap at ω = 0.15 (dotted
line). Panel (a) shows a guide at ω � 2.9 that approximates the upper
bound of the dominant spinon band. The weak superimposed wrinkly
features as in (f) are attributed to state space truncation within the
DMRG, and hence a numerical artefact.

Eq. (9)], which is well obeyed in the actual numerical data in
the strong rung-coupling regime (cf. Fig. 5).

All DSF spectra presented here for the limit of large rung
couplings are computed with the projected Hamiltonians,
which have the S = 3/2 rung state space removed, as this
speeds up calculations considerably. This is justified given
that the total weight of the S = 3/2 multiplet states is typically
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below 1% in ground-state calculations. Hence we only expect
minor effects as a result of this simplification here, as verified
in exemplary DSF calculations with the full rung state space
kept (data not shown). Since the S = 3/2 multiplet lies at high
energy from the very outset here, having �0 � 5, this simply
means that faint spinon continua at high energy are absent,
thus only marginally affecting spectral sum rules, while at
the same time the DSF in the low-energy regime is well
captured. Overall, the DSF results here are consistent with the
ground-state DMRG analysis above based on the unprojected
Hamiltonians, but they greatly compliment these by adding a
dynamical perspective.

Our results for the DSF in the strong-coupling regime
for the two-leg ladder (3) are summarized in Fig. 5, where
left (right) panels show the DSF Sm′ (k, ω) for m′ = 1 (3),
respectively. As explained above, the DSF shown can turn
negative, but the combined total DSF, 2S1(k, ω) + S3(k, ω),
is necessarily positive throughout, as verified (not shown). As
a demonstration of the latter, we show that the total spectral
density is well-normalized, with a well-obeyed spectral sum
rule Itot � 1 to good numerical accuracy throughout.

The DSF for J2 = 2 [row Fig. 5(a)] shows the behavior of
a nearly pristine spin-half Heisenberg chain. Only a very faint
higher-lying band is visible around ω ∼ 5 in S3 (right panel).
The clearly visible, dominant part of the spinon continuum is
constrained within an upper bound of ω � 2.9 (dotted hori-
zontal line), which is already within 4% of the expected value
of (8/9)π for the limit 1 � J2 � J3.

The very faint higher-lying band around ω ∼ 5 in Fig. 5(a)
actually relates to the state space of the symmetric rung multi-
plet |1/2〉−. Having the effective orbital magnetic field α − α0,
its “Zeeman” splitting for Fig. 5(a) is 2|α − α0| ≈ 4.6, which
indeed coincides with the onset of the higher-lying band.
Conversely, the low-energy spinon continuum originates from
the symmetric rung multiplets |1/2〉+. Now increasing J2 (go-
ing to lower rows in Fig. 5), the faint |1/2〉− continuum at
high energies moves downward in energy, such that it starts
overlapping and interfering with the low-energy |1/2〉+ spinon
continuum.

Their different origin also qualitatively translates into dif-
ferent signs in the DSF S3(k, ω), and hence to different colors
in the right panels of Fig. 5. There the |1/2〉− spinon continuum
appears positive (reddish), yet the |1/2〉+ spinon continuum ap-
pears negative (blueish). Hence by following the color coding
in the right panels in Fig. 5 top to bottom, one can observe
with increasing J2 toward J3 and above that the original |1/2〉−
spinon continuum at high energies crosses over with the |1/2〉+
spinon continuum at low energies, which itself then starts
lifting off to higher energies. For the case in which the or-
bital magnetic field is approximately zero, e.g., at J2 = 4.3
in Fig. 5(e), both spinon sectors show a small but finite gap
due to dimerization, with the earlier estimate for the spin
gap �S � 0.15 marked by the vertical dotted line, and thus
consistent with the dynamical spectral data. This scenario of
crossing state spaces is also supported by analyzing ground-
state entanglement spectra versus J2 (not shown).

For the largest J2 = 4.5 (Fig. 5), a different effective spin-
half Heisenberg continuum has developed at low energies
(dark red feature at the bottom right panel). This newly formed
spinon continuum, however, now belongs to the antisymmet-

ric rung multiplet, and hence to the nearly decoupled center
spins. Its bandwidth does not saturate, but it will diminish
to zero when J2 is taken to J2 � J3. Since the leg spins are
gapped out, this low-energy spinon continuum lives predom-
inantly on the center spins. Hence S3 is dominated by m =
m′ = 3 [cf. Eq. (10)], which is thus expected to be positive
(reddish in color in Fig. 5, indeed).

E. Mean-field theory for dimerized phase

If translational invariance is not spontaneously broken,
then a mean-field argument suggests that the low-lying ex-
citations in the spin sector are as in the uniform Heisenberg
model. It is quantum critical and hence is susceptible to per-
turbations. The most likely relevant operator is the staggered
energy density. This emerges as a result of spontaneous break-
ing of the translational symmetry resulting in dimerization.
In the mean-field scheme, the staggered energy density in
the spin sector emerges simultaneously with the staggered
component of energy density in the orbital sector. The spin
sector will certainly lose energy by the dimerization. There-
fore, one has to look for a balance to establish whether or not
the dimerized phase gains the overall lower energy.

To develop a mean-field theory for the dimerized phase,
it is convenient to use Jordan-Wigner transformation in the
orbital (τ ) sector. Then with J1 = 1, Eq. (3) becomes

Heff
α =

∑
i

(
8
9 (Si · Si+1) ⊗ T (2)

i,i+1 + iαχiρi

)
,

T (2)
i,i+1 = 1

4+ i
2 (χiρi+χi+1ρi+1)+ 3i

2 χiρi+1︸ ︷︷ ︸
≡T̃ (2)

i,i+1

−χiρiχi+1ρi+1,

(11)

where χi = 1√
2
(ci+c†

i ) and ρi = i√
2
(c†

i −ci ) are Majorana and
thus real fermions that are subject to the anticommutation
relations {χi, χ j} = {ρi, ρ j} = δi j . Due to the reality of the
Majorana fermions, Hamiltonian (3) is Hermitian as it stands,
yet it may be symmetrized via Heff

α = 1
2 (Heff

α +Heff
α

†). To
simplify matters, we will omit the four-fermion (last) term
above that corresponds to the T zT z term in Eq. (3b), as we
do not aim for precision here, leaving this to the numerical
calculations. This results in the mean-field approximation of
Eq. (11),

HMF ≡
∑

i

βi(Si · Si+1)+ i
∑

i

χi
(− 3αi

2 ρi+1+hρi
)

︸ ︷︷ ︸
≡Hτ

(12a)

having

αi ≡ − 8
9 〈Si · Si+1〉 ≡ α0 [1 + δ(−1)i], (12b)

βi ≡ 8
9

〈
T̃ (2)

i,i+1

〉 ≡ β0 [1 + γ (−1)i], (12c)

h ≡ α − 1
2 (αi−1 + αi ) = α − α0, (12d)

with α0 ≈ 0.394 [cf. Eq. (4)]. Here δ and γ are additional
parameters to describe the strength of dimerization in the spin
and orbital sector, respectively.

Further progress can be made assuming that the result-
ing spectral gap is small in comparison with the bandwidth,
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which, as we will see, is consistent with the numerical cal-
culations. Under this assumption, we can bosonize the spin
part of (11). The uniform part of the Heisenberg Hamilto-
nian becomes the Gaussian model, and the staggered part
is (−1)i(Si · Sn+1) = A cos(

√
2π
), where one can conclude

from Ref. [36] that coefficient A ∼ 1. Then we obtain the
following sine-Gordon Lagrangian:

LMF
s =

∫
dx

[
1

2v
(∂τ
)2 + v

2 (∂x
)2 − m2
0

2π
cos(

√
2π
)

]
, (13)

where v = β0π and m2
0 = 2πAγ . This sine-Gordon model has

a hidden SU(2) symmetry. Its excitations are massive, and
consist of one massive triplet (soliton, antisoliton, and the first
breather) with mass mt ≈ 0.893 m4/3

0 as can be extracted from
[37], and the second breather with mass

√
3 mt . Then we have

δ ∼ 〈cos(
√

2π
)〉 ≈ 0.163
√

mt = 0.154 (Aγ )1/3. (14)

Next we diagonalize the τ -part of the Hamiltonian where
we also aim to obtain a relation between the dimerization
parameters δ and γ . In momentum space with a two-site unit
cell, the Hamiltonian assumes the matrix form

Hτ =
∑
k>0

�†(k)Hτ (k) �(k),

Hτ (k)= 3iα0
4

⎛
⎜⎜⎝

0 h̃ 0 (1 + δ)
−h̃ 0 (1 − δ)e−ik 0
0 −(1 − δ)eik 0 h̃

−(1 + δ) 0 −h̃ 0

⎞
⎟⎟⎠,

(15)

where h ≡ 3α0
2 h̃ and �T =((χ, ρ)A,k (χ, ρ)B,k ). Its eigenvalues

ε(k) ≡ 3α0
4 ε̃(k) out of det(Hτ − ε) = 0 are given by

ε̃2 = 1 + δ2 + h̃2 ± 2δk , (16)

with δ2
k ≡ δ2 + h̃2[1 − (1 − δ2) sin2( k

2 )]. The dimerization δ

shifts the critical field and renormalizes the velocity, as seen
by expanding around small k,

ε̃2 � (1 ±
√

δ2 + h̃2)2 ∓ (1−δ2 )h̃2

4
√

δ2+h̃2
k2. (17)

Now by making use of the Hellmann-Feynman theorem, we
also have from Eqs. (12) above,

∂
∂δ

〈Hτ 〉 = 〈 ∂Hτ

∂δ
〉 = −α0

∑
i

(−1)i 3i
2 〈χiρi+1〉

= −α0
N
2

〈
T̃ (2)

2,3 − T̃ (2)
1,2

〉︸ ︷︷ ︸
= 9

8 (β2−β1 )

= − 9N
8 α0β0 γ . (18)

Here in the orbital sector, δ is considered an external parame-
ter that gives rise to a finite orbital dimerization γ . Therefore,

γ = 8
9α0β0

(
− 1

N
∂
∂δ

〈Hτ 〉
)

= 1
9α0β0π

∂
∂δ

∫ ∞

−∞
dε

∫ π

0

dk
2π

ln det[Hτ (k) − iε]

≡ B(h̃)
6β0

δ, (19a)

FIG. 6. The dimensionless function B(h̃) from Eq. (19b). Dashed
gray lines indicate asymptotic behavior. The inset shows a weak
nonanalyticity at h̃ = 1 resulting in a vertical slope in main panel.

where

B(h̃) ≡
∫ π

0

2dk
π

∑
σ=±1

1+σ
1+h̃2 sin2(k/2)

h̃| cos(k/2)|(
1+h̃2+2σ h̃| cos

k
2 |
)1/2 � 0, (19b)

where we expanded to linear order around δ = 0. With
Eq. (16), 〈Hτ 〉 is an even function in δ. Therefore, γ (δ) is
necessarily odd and hence, to lowest order, linear in δ. There-
fore, it also holds that B(h̃) ∝ − ∂2

∂δ2 〈Hτ 〉. With h acting like an
external magnetic field in the orbital sector, Eq. (19b) yields
a linear relationship between the dimerization parameters γ

and δ. Matching this with the earlier relation in Eq. (14),
γ ∝ δ3, we get two solutions: (i) the nondimerized phase at
γ = δ = 0, as well as (ii) the nontrivial dimerized solution
with (Aγ )2/3 = Aγ /(Aγ )1/3 � 0.154 A γ /δ, i.e.,

(Aγ )2/3 = 0.154 A
6β0

B( 2h
3α0

). (20)

As seen in the numerical evaluation of the function B(h̃) in
Fig. 6, it vanishes quartically at h̃ = 0, has a nonanalytic-
ity with vertical slope at h̃ = 1, followed by a maximum at
h̃c ∼ 1.35, and then for large h̃ decays like 2/h̃. Hence there
is an area of the phase diagram where the assumption γ � 1
is valid, and so the current calculation is self-consistent.

Having B(h̃) ∼ − 1
δ

∂
∂δ

〈Hτ 〉 > 0, it follows that an orbital
dimerization pattern that is aligned with the dimerization in
the spin sector (in the sense that γ and δ have the same
sign) allows the orbital sector to lower its energy. Hence
we conclude that the system favors dimerization, and in
the strong-coupling limit a self-consistent dimerized solu-
tion always exists, at least for these somewhat simplified
calculations with the T zT z term omitted. This conclusion is
consistent with our DMRG data, which show a noticeable
dimerization in the vicinity of |h| � 1 (e.g., see Fig. 3).

IV. THE LIMIT OF WEAK RUNG EXCHANGE

In the limit of weak rung couplings, the full state space
of the rungs needs to be included. Specifically, the S = 3/2
symmetry sector can no longer be simply integrated out. In
this section, we start with the theoretical description, followed
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by DMRG simulations of the dynamical structure factor. The
results are mutually consistent. In contrast to the strong rung-
coupling regime above, we do not find any indication for
dimerization here. Instead, we find a low-energy coherent
branch. Consequently, there needs to be a quantum phase tran-
sition when decreasing J2, J3 � 1 to small values J2, J3 < 1,
the precise determination of which is left for future studies.
By comparison, it may be noted that a fermionic model on the
same lattice as in Fig. 1 in the weak rung-coupling regime also
features flatbands that are predominantly associated with the
weakly coupled center spins.

A. Field theoretic approach

If the interchain exchange interactions are small, J2, J3 �
J1 = 1, we can use the continuum limit description. In this
limit, the chains are described by the critical SU1(2) Wess-
Zumino-Novikov-Witten (WZNW) theories [38,39], and the
interchain interaction and the interaction with the central spins
are perturbations to this critical model. Both perturbations are
relevant, but the interaction with the central spins is more
relevant since it has scaling dimension 1/2 and the interchain
coupling of the staggered magnetizations has dimension 1. We
will consider the case when the interchain exchange is zero
first.

Our derivation is a strict generalization of the one for a
single chain coupled to dangling spins presented in [40]. We
will reproduce it below with the appropriate modifications.
The most convenient way is to combine the path integral
representation for the middle spins with the field theory de-
scription for the legs. In this representation, the middle spins
are replaced as S0, j = S0N j , where N j is a unit vector field
with the Berry phase action. In the current context, S0 = 1/2,
but we prefer to keep it arbitrary for the time being. As far as
the Heisenberg chains are concerned, at energies � 1 we can
use the field theory description, which is given by the SU1(2)
WZNW theory. The resulting action for energies � 1 is given
by

S =
∑

j

S0A[N j] + W [g1] + W [g2]

+ iγ
∑

j

(−1) j
∑

a=1,2

∫
dτ N jTr[�σ (g+

a − ga)], (21)

where S0 = S0N, N2 = 1, ga(τ, x) are the SU(2) matrix
fields, and W [g] is the action of the SU1(2) WZNW theory,
A[N] is the Berry phase, and γ ∼ S0J3. The Heisenberg spins
are related to the WZNW fields,

S j,a = i
2π

Tr(�σga∂xg+
a ) + i(−1) jC Tr[�σ (ga − g+

a )], (22)

where C is a nonuniversal amplitude. The WZNW model is
a critical theory with a linear excitation spectrum, ω = v|k|
with v = πJ/2.

In the interaction term in (21) we kept only the most rele-
vant term, which describes the interaction of the central spins
with the staggered magnetization of the Heisenberg chains.
This action is not yet what we need since the central spin
variables remain lattice ones. To obtain the continuum limit,
we have to integrate out the fast components of the central
spins. We assume that at low energies these spins have a

short-range antiferromagnetic order, so we can write

N j = m(x) + (−1) j (1 − m2)1/2n(x), x = a0 j, (23)

where n2 = 1 and |m| � 1. The validity of this assumption
is justified by the final result, which demonstrates that the
correlation length of the middle spins is much larger than the
lattice constant. Substituting this into (21) and following the
well-known procedure [39,41], we obtain

S =
∫

dτ dx
{

iS0
2

(
n[∂τ n × ∂xn]

) + iS0(m[n × ∂τ n])

+ iγ (1 − m2)1/2 Tr
∑

a

[(�σn)(ga − g+
a )]

}
+W [g1] + W [g2]. (24)

Now notice that G = i(�σn) is an SU(2) matrix. Hence, ha =
gaG+ is also an SU(2) matrix, and we can use the identity [42]

W [hG] = W [h] + W [G] +
∫

dτ dx
2π

Tr(h+∂hG∂̄G+) (25)

with ∂, ∂̄ = 1
2 (∂τ ∓ iv∂x ), so that the action (24) becomes

S = Smass+Sm+Sn +
∑

a

∫
dτ dx

2π
Tr(h+

a ∂haG∂̄G+), (26a)

where

Smass = W [h1] +W [h2] + γ
∑

a

∫
dτ dx Tr(ha + h+

a ), (26b)

Sm =
∫

dτ dx
{

D
2 m2 + iS0(m[n × ∂τ n])

}
, (26c)

Sn = 2W [i(�σn)] + S0(top-term), (26d)

Stop =
∫

dτ dx i
2 (n[∂τ n × ∂xn]), (26e)

having

D = γ
∑

a

〈Tr(ha + h+
a )〉 ∼ γ 4/3. (26f)

The latter estimate follows from the fact that the h-matrix
operator in the SU1(2) WZNW model has scaling dimen-
sion 1/2. In a (1+1)-dimensional critical theory, a relevant
perturbation with a scaling dimension d and coupling con-
stant λ generates a spectral gap, � ∼ λ1/(2−d ). Consequently,
the perturbation itself acquires a vacuum expectation value,
∼�d ∼ λd/(2−d ), giving rise to (26f).

Integrating over m and taking into account that

W [i(�σn)] = 1
2π

∫
dτ dx[v−1(∂τ n)2 + v(∂xn)2] + 1

2 Stop,

(27)

we obtain the effective Lagrangian density for the slow field
n:

L = 1/2

(
S2

0

D
+ 1

πv

)
(∂τ n)2 + v

2π
(∂xn)2 + iS0

2
(n[∂τ n × ∂xn])

(28)
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plus the action for the massive part for each a = 1, 2:

Smass = W [h] + γ

∫
dτ dxTr(h + h+)

+
∫

dτ dx Tr(JL[n × ∂̄n]). (29)

This theory without the last term is, in fact, equivalent
to the famous sine-Gordon model at the special value of
the coupling constant β2 = 2π . Indeed, the SU1(2) WZNW
model is equivalent to the Gaussian theory and Tr(h + h+) ∼
cos(

√
2πφ) such that

W [h] + γ

∫
dτ dx Tr(h + h+)

=
∫

dτ dx
[
1/2(∂μφ)2 − γ̃ cos(

√
2πφ)

]
. (30)

This theory is massive, and the spectrum consists of an SU(2)
triplet with mass M ∼ γ 2/3 composed of sine-Gordon kink
and antikink excitations and the first breather, and the second
breather with mass

√
3M.

Note that the contribution to the topological term from (27)
shifts the coefficient by 1, which is equivalent to 0. The mass
gap � serves as the ultraviolet cutoff for the σ model (28). The
corrections to the σ model generated by the last term in (29)
carry a higher power of gradients of the n-field, and therefore
they can be discarded for momenta < �v−1.

For the case relevant to this paper, the S0 = 1/2 σ model
(28) has a gapless spectrum in the same universality class as
the S = 1/2 Heisenberg chain [43]. This mode is slow since
the corresponding velocity is

c2 = v2

1+ πv
4D

. (31)

We emphasize that the above treatment is valid only in the re-
gion of energies much smaller than the excitation bandwidth.
As is evident from the DMRG calculations, for most of the
Brillouin zone the spectrum of the gapless mode is rather flat,
which is consistent with the smallness of the velocity (31).
The linear spectrum holds only in the vicinity of zero or π

wave vectors. On the other hand, models describing rotated
spins (29) have a spectrum with a gap �3

∼= J2/3
3 (all energies

in units J1 = 1).
The spectral weight of the slow gapless mode is concen-

trated on the central spins, which is fully consistent with the
results of the DMRG calculations displayed in Fig. 8. As for
the spins located on the legs, they receive only a portion of the
spectral weight. The spin-spin correlation functions of spins
located on the legs of the ladder are symmetric, and thus
also in a phase with unbroken Z2 symmetry. Substituting the
expression for g = G+h into (22), we get for the staggered
magnetization

Sstag ∼ n〈cos(
√

2πφ)〉 + [n × K], (32)

K = (sin(
√

2πφ), cos(
√

2πθ ), sin(
√

2πθ )), (33)

where θ is the field dual to φ. The correlation functions of
the sine-Gordon model are well known; in particular, for this
value of β the lowest part of the spectral weight consists of a
coherent peak. As we can see from (32), in the spectral weight

FIG. 7. Static spin expectation values Cmm′ ≡ 〈Sim · Sim′ 〉 within
the same rung i = 0 in the system center of L = 64 ladders with open
BC for (a) (J2 = J3) � J1 = 1 and (b) vs J3 for fixed smaller J2 � 1
as indicated in the legend. The color coding in the legend in (a) holds
for both panels.

of the leg spins this peak will be broadened by the emission of
soft excitations of the n-field. Such broadening cannot exceed
the bandwidth of these excitations. Such a picture is consistent
with Fig. 8.

The solution presented above is valid when the spectral
gap of the “rotated” fields �3 ∼ J2/3

3 is much larger than
the spectral gap generated by the direct interchain exchange,
�2 ∼ J2, i.e., 1 � J2/3

3 � J2 (all energies in units J1 = 1),
and it holds only in the vicinity of the wave vectors 0 and π

where excitations of the n-field are gapless, in agreement with
the DMRG. In fact, the opposite case, �3 � �2, would not
differ qualitatively from this one. Indeed, the strong interchain
coupling would generate a spectral gap in the spin-half ladder.
Integrating out the gapped mode, we would get an effective
exchange interaction between the central spins. These spins
would then form a spin S = 1/2 Heisenberg chain with gap-
less excitations. In both limits considered above, the spin-spin
correlation functions of spins located on the legs of the ladder
are symmetric. From a topological perspective, therefore, the
weak-coupling limit is also trivial with no hidden order.

B. Numerical analysis

In the weak rung-coupling regime, the legs of the ladder in
the model system (1) tend to be weakly coupled from a static
perspective. This is demonstrated via the static spin-spin cor-
relators C(i)

mm′ ≡ 〈Sim · Sim′ 〉 between the sites of the same rung
i = 0 in the system center in Fig. 7. For J2 = J3 [Fig. 7(a)], the
direct leg-spin correlation, C12 (blue line), diminishes much
faster than the correlation of the leg spins to the center spin
(yellow line, same for both legs). For fixed small but finite J2,
tuning the coupling J3 [Fig. 7(b)] induces a sign change of the
direct leg correlation C12. Eventually, it saturates to a finite
negative value for J3 → 0 since J2 > 0. At the same time,
the correlation C13 to the center spin (yellow line, same for
both legs) needs to vanish there. Hence the lines in Fig. 7(b)
eventually cross for sufficiently small J3.

The dynamical behavior in the weak rung-coupling regime
is summarized in the DSF simulations presented in Fig. 8.
These calculations are considerably more demanding numer-
ically, since the full rung state space needs to be included.
Clearly, for J2, J3 � 1 the S = 3/2 rung states are also ex-
pected to pick up considerable weight, hence they cannot be
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FIG. 8. Dynamical structure factor obtained via DMRG for the
two-leg ladder (1) in the intermediate to weak rung-coupling regime
for L = 64 rungs [except for row (f), which has L = 128]. The
coupling strength is specified with the panels (panel label and J
hold per row). Rows (a)–(c) have decreasing isotropic rung coupling
J2 = J3. Rows (c)–(e) have J2 < J3 � 1 with α = 0, α < 0, and
α > 0, respectively. The remainder of the rows have α > 0 with
increasing rung coupling. Exactly the same analysis as in Fig. 5
otherwise. In the present case, however, Itot > 1 indicates that there
is also a significant admixture of the S = 3/2 rung multiplet.

ignored. This is explicitly seen in Fig. 8 by having Itot > 1,
with the total weight in the S = 3/2 given by (Itot−1)/4 [cf.
Eq. (9)]. Therefore, the simulations here are constrained to
shorter ladders of length L = 64, except for row Fig. 8(f),
which has L = 128. The affordable time range prior to Fourier
transform is also more constrained, which translates into less
overall spectral resolution. With the help of linear prediction,
we can sharpen certain physical features in the DSF, but at the
price of other “wrinkly” artificial features. Nevertheless, we
preferred smaller subsequent broadening (same as in Fig. 5)
over significant overbroadening of the data to completely
smear out artifacts due to DMRG truncation. Also due to
the shorter system size, discretization artifacts are also seen

versus momentum k. Bearing this in mind, we proceed to the
physical interpretation of the results.

Within our energy resolution, all spectra are gapless. The
low-energy regime of the DSF is dominated by a sharp coher-
ent branch below the spinon continuum. Its energy quickly
diminishes with decreasing J2 ∼ J3 < 1, and it develops a
close to flat dispersion over an extended momentum range
(e.g., see the center rows in Fig. 5). It is much sharper in
energy, and it does not show the energy spread typically seen
with spinon continua. In this sense, the weak rung-coupling
regime is qualitatively different from the crossings of the
two spinon continua that were observed in the strong rung-
coupling regime in Fig. 5. Similar to the strong rung-coupling
regime, however, the low-energy branch here is also largely
associated with the center spins, as implied by the sign (color)
in the spectral data in the left versus right panels in Fig. 8.
Specifically, we see a fainter negative (blue), yet a strong
positive (dark red) spectral weight in the low-energy branch in
the right panels, which relates to off-diagonal (m′ 
= 3) versus
diagonal (m′ = 3) correlations, respectively.

The very flat branch close to zero energy as seen for
J2, J3 ∼ 0.2 in the middle panels of Figs. 8(c)–8(e) nearly
resembles static scatterers. Due to frustration, and the spectral
data above, it can be argued that this is due to nearly decoupled
center spins. Conversely then, from an experimental point of
view, this coherent low-energy branch may be very difficult to
distinguish from the static background that arises from actual
impurities and imperfections in samples. In combination, it
may also give rise to spin freezing [15] with reference to the
magnetic moments on the center sites. Overall, the numerical
results presented here are in qualitative agreement with the
analytical discussion of the weak rung-coupling regime above.

V. CONCLUSIONS

We have studied the model of a spin S = 1/2 Heisenberg
ladder with trimer rungs in the antiferromagnetic regime. The
two legs of the ladder are coupled by a direct exchange, yet
also indirectly, via an additional center spin for each rung,
which introduces frustration. Many results are consistent with
the general expectations. In particular, there is a significant
part of the phase diagram where the spectrum of the spin
excitations is gapless and critical belonging to the univer-
sality class of the spin S = 1/2 Heisenberg antiferromagnet.
The noteworthy feature is the presence of dimerization in
the regime of strong rung coupling. For reference, the model
studied can be considered as a version of a three-leg ladder
with anisotropic rung coupling and where the coupling along
the third leg is taken to zero. We numerically show that the
dimerized phase in our model smoothly connects to the dimer-
ized phase that has been previously reported on the isotropic
three-leg ladder [11]. This provides support and further phys-
ical insight into our findings, namely that the dimerization is
driven by a frustration-driven spin-Peierls transition [32].

In the regime of weak rung-coupling, we find a sharp
coherent low-energy branch. It is largely associated with
the center spins, which become nearly decoupled. This is
consistent with the experimental observation in the trimer
magnet Ba4Ir3O10 that we started out from, where the onset
of AF ordering is deferred to extremely low temperatures as
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compared to the estimated exchange energies [3]. Note
that when returning to the 2D hexagonal model system in
Fig. 1(b), the center spins in our quasi-1D reduction form an
effective square lattice where Néel order eventually may be
expected.

ACKNOWLEDGMENT

Brookhaven National Laboratory was supported by U.S.
Department of Energy (DOE) Office of Basic Energy Sciences
(BES), Division of Materials Sciences and Engineering.

APPENDIX A: MATRIX REPRESENTATION
OF MANY-BODY DOWNFOLDING

Here we present a general method of many-body down-
folding in matrix representation. We show the method by
means of the specific example for the model Eq. (1). The
basis set is given by the 23 = 8 states |Sz

1Sz
2Sz

3〉 ≡ |Sz
1〉|Sz

2〉|Sz
3〉

which form the direct product space of S1 ⊗ S2 ⊗ S3, where
Sz

m ∈ {↑,↓} denote spin up and down in a spin-half state. The
orthonormal eigenvectors of H rung

i are given by

|�1〉 ≡ | 1
2 , +1

2 〉+ = 1√
6
[ |(↑↓ + ↓↑) ↑〉 − 2|↑↑↓〉],

|�2〉 ≡ | 1
2 , −1

2 〉+ = 1√
6
[−|(↓↑ + ↑↓) ↓〉 + 2|↓↓↑〉],

|�3〉 ≡ | 1
2 , +1

2 〉− = 1√
2
|(↑↓ − ↓↑) ↑〉,

|�4〉 ≡ | 1
2 , −1

2 〉− = 1√
2
|(↓↑ − ↑↓) ↓〉,

|�5〉 ≡ | 3
2 , +3

2 〉 = |↑↑↑〉,
|�6〉 ≡ | 3

2 , +1
2 〉 = 1√

3
| ↑↑↓ + ↑↓↑ + ↓↑↑〉,

|�7〉 ≡ | 3
2 , −1

2 〉 = 1√
3
| ↓↓↑ + ↓↑↓ + ↑↓↓〉,

|�8〉 ≡ | 3
2 , −3

2 〉 = |↓↓↓〉, (A1)

where |1/2〉± are the low-energy doubly degenerate S = 1/2
multiplets with the eigenvalue of −�0/2 ± αJ1/2, with �0 ≡
1
2 (J2 + 2J3). They are symmetric (+) or antisymmetric (−)
under rung exchange, i.e., exchange of sites m = 1, 2. They
merge into a fourfold degeneracy at α = 0. Otherwise, there
exists an “orbital” splitting of αJ1 ≡ J2 − J3. The remaining
four states are the eigenvectors that form the high-energy S =
3/2 multiplet with eigenvalue +�0/2, which are symmetric
under rung exchange.

The excitation energy from the low-energy states to
the high-energy states is �(α) = �0 ± αJ1/2. For the low-
enough temperature T satisfying e−�/T � 1 (i.e., vanishing
thermal population of the four high-energy states) and �/J �
1 (i.e., little quantum fluctuations between these two groups),
the high-energy states are irrelevant to the low-energy physics.
Therefore, we project the Hamiltonian into the space formed
by the four low-energy states using the many-body downfold-
ing method [16–22] based on Hubbard operators [22]. For the
Hamiltonian with spin-only operators, it is convenient to use
the following matrix representation [20]. The eigenvectors in
Eq. (A1) constitute the unitary transformation (also indicating

the order of states to the left),

U =

↑↑↑
↑↑↓
↑↓↑
↑↓↓
↓↑↑
↓↑↓
↓↓↑
↓↓↓

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
−2√

6
0 0 0 0 1√

3
0 0

1√
6

0 1√
2

0 0 1√
3

0 0

0 −1√
6

0 1√
2

0 0 1√
3

0
1√
6

0 −1√
2

0 0 1√
3

0 0

0 −1√
6

0 −1√
2

0 0 1√
3

0

0 2√
6

0 0 0 0 1√
3

0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A2)

The projection for any operator Ô is done in the follow-
ing procedure: Perform U T ÔU and retain the entries in the
low-lying four-dimensional Hilbert space as the zeroth-order
approximation and/or use the canonical transformation to get
the higher-order terms [16–21]. The resulting 4 × 4 matrices
in the low-energy regime can be conveniently described by
introducing two auxiliary spin S = 1/2 operators

Sa = 1
2σ a ⊗ 1(2), (A3)

T a = 1(2) ⊗ 1
2τ a, (A4)

with σ a and τ a the Pauli matrices, having a ∈ {x, y, z}, and
1(2) the 2 × 2 identity matrix. Assuming that σ represents the
fast index in σ ⊗ τ (also known as column major ordering),
then given the state ordering in Eq. (A1), the S operators
are spinlike because they operate within |�1〉 and |�2〉, or
within |�3〉 and |�4〉, referred to as orbital 1 or 2, respectively.
Conversely, the T operators connect these two “orbitals” split
by the energy αJ . Then, any projected operator Ô can be
written in the basis of the S and T operators,

Ôprojected = U T ÔU

= f (I,Sx,Sy,Sz, T x, T y, T z ), (A5)

where I is the 4 × 4 identity matrix.
Since the strengths of the zero- and first-order terms are

proportional to J and J2/�, respectively, it suffices for J/� �
1 to study the zeroth order, i.e., the plain projection into the
low-energy regime [20]. The projected interrung interaction J
terms in the zeroth-order approximation are given in Eq. (3).
They can be obtained by using the projected spin operators in
the zeroth-order approximation,

Sa
1 = 2

3 S
a
(

1
2 I + T z +

√
3T x

)
,

Sa
2 = 2

3 S
a
(

1
2 I + T z −

√
3T x

)
, (A6)

Sa
3 = 2

3 S
a
(

1
2 I − 2T z

)
,

with a ∈ {x, y, z}. The spin operators Sa have the simple in-
terpretation that they exactly represent the total rung spin, i.e.,
S ≡ S1 + S2 + S3 ≡ Stot

rung. With the low-energy space fully
residing within the S = 1/2 symmetry sector, this is indeed
a well-defined spin-half operator. However, we stress that for
the projection of the intrarung and general physical quantities,
one should not use Eq. (A6). The correct way is to follow
Eqs. (A2)–(A5), i.e., first do the exact transformation in the
8 × 8 space and then do the reduction as the very last step. For
example, in the correct way, S2

i,1 = 3
4 is correctly reproduced
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FIG. 9. Schematic phase diagram suggested by the SMF anal-
ysis vs J1/(J2+J3) and effective orbital field h̃ ∼ α ∼ J2−J3. The
leg spins are ferromagnetically (〈T z

i 〉 > 0) and antiferromagnetically
(〈T z

i 〉 < 0) aligned in the two phases α � −1 and α � +1, respec-
tively. They are separated by a phase with spontaneously broken Z2

symmetry where 〈T x〉 
= 0.

in both the 8 × 8 and 4 × 4 matrix representations. In contrast,
S2

i,1 = 5
12 I + 1

3T z + 1√
3
T x in the above-mentioned incorrect

way. This is a consequence of the special algebra of Hubbard
operators for on-site or intrarung actions [22].

APPENDIX B: MEAN-FIELD TREATMENT WITH
TRANSLATIONAL INVARIANCE ENFORCED

Here we show that a semi-mean-field (SMF) treatment
assuming a uniform, i.e., nondimerized state permits an entire
intermediate phase with 〈T x〉 
= 0 instead of a QCP at suffi-
ciently small α, as schematically depicted in Fig. 9. We stress,
however, that eventually this is not realized in the many-body
low-energy regime of the system, in that DMRG clearly finds
a gapped dimerized ground state instead. Nevertheless, we
believe this still represents an interesting point of view, hence
we present it here in this Appendix. To start with the SMF
treatment, we assume translational invariance, and we perform
a mean-field decoupling of the spin from the orbital degrees
of freedom [cf. Eqs. (3)],

H̃ = H̃spin + H̃orb − Ẽ0, (B1)

where

H̃spin ≡
∑

i

J̃SSi · Si+1, (B2a)

H̃orb ≡
∑

i

(
−J̃T

(
T z

i T z
i+1 + 3T x

i T x
i+1

) + h̃T z
i

)
, (B2b)

Ẽ0 ≡ 8J1

9
N〈Si·Si+1〉〈T z

i + T z
i T z

i+1 + 3T x
i T x

i+1〉, (B2c)

with the effective mean-field couplings

J̃S ≡ 8J1
9

〈
1
4 + T z

i + T z
i T z

i+1 + 3T x
i T x

i+1

〉
� 0, (B3a)

J̃T ≡ − 8J1
9 〈Si · Si+1〉 = α0J1 > 0, (B3b)

h̃ ≡ J1

(
α + 8

9 〈Si · Si+1〉︸ ︷︷ ︸
≡−α0

)
. (B3c)

Here Eq. (B2c) is just the mean-field reference energy, with
the various local expectation values assumed independent
of i = 1, . . . , N . The decoupled spin and orbital sectors,
Eqs. (B2a) and (B2b), respectively, can be solved self-

consistently now given their respective quantum Hamiltonians
(hence the terminology “semi-mean-field”). Having assumed
translational invariance, the spin Hamiltonian (B2a) is always
gapless. In contrast, for large |h̃|, the orbital Hamiltonian
(B2b) is always gapped. Its ground state determines the active
orbital in the spin Hamiltonian (B2a).

The resulting schematic SMF phase diagram, assuming a
nondimerized phase, is depicted in Fig. 9. We shall briefly
discuss its three phases. For the ground state of a spin-
half Heisenberg chain, one has the exact result, 〈Si · Si+1〉 =
1
4 − ln 2 [29,30]. Therefore, assuming that the spin sector is
close to its ground state, one obtains α0 ≈ 0.394 for T = 0
[cf. Eq. (B3c)]. For the value α = α0, then, i.e., h̃ = 0, the
dominance of the symmetric or antisymmetric S = 1/2 rung
multiplet switches roles.

In the orbital sector, the Hamiltonian (B2b) has quantum
critical points in the same universality class as the quantum
Ising model with ferromagnetic interaction. The interaction
strength for the T x

i T x
i+1 term is three times as large as that for

the T z
i T z

i+1 term. In the continuum limit, the T z operator be-
comes a product of right- and left-moving Majorana fermions,
and hence the term T z

i T z
i+1 ∼ ρiχiρi+1χi+1 ∼ ρ∂xρχ∂xχ [cf.

Eq. (11) in the main text] becomes highly irrelevant with a
scaling dimension of d = 4. In the absence of the T zT z term,
the criterion for the emergence of the symmetry-broken state
with finite 〈T z〉 can be estimated by [44]∣∣ 2h̃

3J̃T

∣∣ = 2
3

∣∣ α−α0
α0

∣∣ < 1, (B4)

given the critical field |h̃|cr � (3J̃T )
2 [cf. Eq. (B2b)]. This cor-

responds to α ∈ α0
2 [−1, 5] ≈ [−0.197, 0.985]. The neglected

T zT z term is expected to shift these boundaries, as motivated
by a mean-field decoupling T z〈T z〉.

Right at h̃ = 0, the orbital Hamiltonian becomes a version
of the XY model in zero magnetic field where exact results
for the magnetization are available: 〈T x

i 〉 =
√

2
3 ≈ 0.471 [45].

The state with a spontaneously broken Z2 symmetry can be
understood as the state where the center spins predominantly
form singlets with a particular leg of the ladder that would
translate into an asymmetry of correlation functions that in-
clude leg spins. When α increases, the system undergoes a
phase transition into the symmetric state with nonzero 〈T z

i 〉
where the above asymmetry disappears. For any finite tem-
perature T , the symmetry is restored by thermal average, i.e.,
having 〈T x

i 〉 = 0, whereas 〈T z
i 〉 is proportional to the effective

field when it is weak [44,45]. As a result, it does not contain a
phase transition at finite temperature.

For large h̃ the orbitals become strongly polarized, as
discussed in the main text. With 〈T z

i 〉 � ± 1
2 , the effective

spin coupling in Eq. (B3a) becomes J̃S � 8J1
9 ( 2

4 ± 1
2 ), which

thus motivates the positive sign indicated with Eq. (B3a).
For example, for dominant J2, i.e., α � +1 with 〈T z

i 〉 �
− 1

2 , the center spins become nearly decoupled, which thus
corresponds to a spin-half Heisenberg chain with vanishing
effective coupling J̃S ∼ 0 in the low-energy regime of the sys-
tem. Conversely, for dominant J3, i.e., α � −1 with 〈T z

i 〉 �
+ 1

2 , the low-energy behavior is described by a single effective
Heisenberg chain with finite effective coupling J̃S � 8J

9 . Note
that the same picture for large h̃, and hence large α, already
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FIG. 10. Local DMRG expectation values as in Eqs. (C1) with
a focus on the presence of a nematic phase for the full Hamiltonian
(1) for L = 64 and J = [1, J2, 4], as also analyzed in Fig. 2, having
S2 ≡ S1 + S2 + S3. Light colors use the full local spin operators
Sm, whereas strong colors use the projected spin operators Sm, as
reflected in Eqs. (C1). The ground state is the same in either case,
hence it also includes the local S = 3/2 multiplet.

also applies in the original Hamiltonian (3) in the main text,
and hence is not constrained to the mean-field analysis here.

APPENDIX C: ABSENCE OF Z2 SYMMETRY BREAKING
IN DMRG

In the strong-coupling limit, we have [cf. Eqs. (A6)]

Sm ≡ 〈Sm ·S〉i = 2s2

3

(
1
2 + 〈T z

i 〉 ±
√

3〈T x
i 〉) (m = 1, 2),

S3 ≡ 〈S3 · S〉i = 2s2

3

(
1
2 − 2〈T z

i 〉), (C1)

where s2 is the spectral weight in the spin sector. Therefore,
S1 can be negative only in the nematic phase, whereas S3 < 0
is permitted more generically, namely when 〈T z〉 > 1/4.

We evaluated the expectation values in Eqs. (C1) using
DMRG, with the results summarized in Fig. 10. Given that
S1 and S2 stay positive, there is clearly no support for a
nematic phase. In addition, the data for S1 and S2 lies exactly
on top of each other, which thus also demonstrates that the
rung exchange symmetry is preserved. The local expectation
value S3 can become negative, but that simply reflects orbital
polarization. As already seen with Fig. 2 in the main text,
dimerization is only visible for expectation values that stretch

FIG. 11. Comparison of the orbital expectation value 〈T z
i 〉 vs h̃

between DMRG and SMF: DMRG data as in Fig. 10, the exact mean-
field solution of Eq. (B3a) in the absence of the 〈T z

i 〉 term (i.e., the
Ising model in a transverse field [44]), and the self-consistent mean-
field theory for Eq. (B3a).

along the system. For expectation values within individual
rungs, these data is the same for even and odd rungs, i.e., they
do not display dimerization in itself. This also holds in the
present case for the data in Fig. 10.

Adding up the data, S1 + S2 + S3 = S2, this yields the ex-
pectation value of the total spin operator (also labeled S2 in
Fig. 10), which is approximately constant, having S2 ≈ 0.75.
This demonstrates that the present parameter setting with
J3 = 4 is deep within the strong rung-coupling regime, in
that the local density matrix is overwhelmingly dominated
by the S = 1/2 multiplets. The S2 data displayed in light
color reaches slightly above 0.75, which shows that they also
include a weak S = 3/2 component. The S2 data is displayed
in strong color are slightly deficient of 0.75, because it refers
to the projected spin operators.

Overall, our DMRG data here again finds no evidence for
the Z2-symmetry-broken phase with 〈T x〉 
= 0 near h̃ = 0, as
suggested by a semi-mean-field analysis on a uniform sys-
tem. Instead, bond dimerization is found. To evaluate what
has been missed in the SMF analysis assuming translational
invariance, we compare the obtained 〈T z

i 〉 with the DMRG
result, as shown in Fig. 11. The vertical slopes that indicate the
phase boundaries of the intermediate Z2-broken phase in the
self-consistent SMF analysis are entirely absent in the DMRG
data, which evolves smoothly throughout. The considerably
stronger 〈T z

i 〉 values in the DMRG data near h̃ = 0 suggest
that the semi-mean-field theory needs to allow for bond dimer-
ization, as discussed in the main text.
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