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First-principles modeling of plasmons in aluminum under ambient and extreme conditions
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The theoretical understanding of plasmon behavior is crucial for an accurate interpretation of inelastic
scattering diagnostics in many experiments. We highlight the utility of linear response time-dependent density
functional theory (LR-TDDFT) as a first-principles framework for consistently modeling plasmon properties.
We provide a comprehensive analysis of plasmons in aluminum from ambient to warm dense matter conditions
and assess typical properties such as the dynamical structure factor, the plasmon dispersion, and the plasmon
lifetime. We compare our results with scattering measurements and with other TDDFT results as well as models
such as the random phase approximation, the Mermin approach, and the dielectric function obtained using static
local field corrections of the uniform electron gas parametrized from path-integral Monte Carlo simulations. We
conclude that results for the plasmon dispersion and lifetime are inconsistent between experiment and theories
and that the common practice of extracting and studying plasmon dispersion relations is an insufficient procedure
to capture the complicated physics contained in the dynamic structure factor in its full breadth.
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I. INTRODUCTION

A consistent framework for modeling the properties of
plasmons [1] in matter in the range from ambient to warm
dense conditions is of utmost importance for both enhancing
our fundamental understanding of extreme states of matter
and supporting the diagnostics of scattering experiments [2].
As we will show, the properties of plasmons seem well under-
stood under ambient conditions until one realizes that the data
on plasmon dispersions and lifetimes are actually sparse and
rarely consistent between different experiments and theories.
Capturing plasmon dispersion and lifetimes in experiment and
theory becomes even more challenging under warm dense
conditions [3].

Warm dense matter (WDM) is highly energetic and
exhibits characteristics of solids, liquids, and plasmas si-
multaneously [3–6]. Understanding WDM is essential for
enhancing our knowledge about astrophysical objects, such
as the physics in Earth’s core [7], the formation processes
of both planets in our solar system [8–14] and of exoplanets
[15,16], in brown dwarfs [17,18], and stellar interiors [19].
From a technological point of view, warm dense conditions
occur in the heating process of inertial confinement fusion
capsules on their path towards ignition [20,21] and in the walls
of high-power magnetic fusion devices [22].

Since both thermal and quantum effects have to be taken
into account [23], the quality of well-established methods of
plasma physics or of condensed-matter physics might be in-
sufficient. Hence, an understanding of plasmons under warm
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dense conditions relies on innovative theoretical tools and a
close cooperation with experiments.

Experimental measurements of plasmons are carried out
using several techniques such as x-ray Thomson scattering
(XRTS) [24], electron energy-loss spectroscopy (EELS) [25],
and inelastic x-ray scattering (IXS) at synchrotrons [26].
High pressures are induced using diamond anvil cells or
(laser-generated) shocks. Among these, the combination of
high-power optical lasers to generate WDM states and x-ray
free-electron lasers to diagnose them via XRTS is particularly
useful [27], especially for studying astrophysical phenom-
ena in the laboratory. Such an experimental setup is capable
of achieving pressures on the order of a few mbars and
temperatures up to a few eVs. These experiments are nowa-
days performed at large-scale experimental facilities, such
as SLAC [28] and the European XFEL [29]. Matter at even
higher pressures and temperatures is investigated with highly
energetic lasers at the NIF [30].

The measured XRTS signal [24,31–35] is directly linked to
the numerical modeling of plasmons via the dynamic structure
factor (DSF) [36]. The DSF is used as an important diag-
nostics for WDM [36] because systems parameters like the
density and temperature are inferred from it.

The DSF and, thus, plasmons have been modeled theo-
retically with a number of different techniques. The basic
understanding of dispersion and damping of plasmons (in a
gas of electrons) stems from the random phase approxima-
tion (RPA) [37,38]. It was then realized that the influence
of electron-ion correlations on the plasmon damping is
essential. This led to the Mermin dielectric function featur-
ing generalized dynamic collision frequencies of screened
Born or T -matrix type [39,40]. Likewise, electron-electron
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correlations are taken into account on a formally exact
level by local field corrections (LFC). Accurate expressions
for LFCs have recently been parametrized from quantum
Monte Carlo (QMC) data [41–44]. Furthermore, combining
electron-electron correlations with electron-ion correlations in
dielectric theories was enabled in terms of the LFC-Mermin
approach [45]. As the collision frequencies of Born or T -
matrix type were found to be insufficient for WDM, it was
suggested to compute them from the Kubo-Greenwood ap-
proach [46,47] and density functional molecular dynamics
(DFT-MD) instead [48,49].

The logical extension of these prior plasma physics
approaches is to simulate the system directly from first
principles using techniques formerly used solely in solid-
state physics. Dynamic properties can be obtained using
linear response time-dependent density functional theory (LR-
TDDFT). Here, Kohn-Sham (KS) orbitals incorporating the
band structure are used instead of the free-particle states as
in the traditional plasma physics methods mentioned earlier.
Then, similar to before, an approximation in terms of the
response function with or without an exchange-correlation
(XC) kernel can be established. The difficulty lies in finding
reliable, accurate, temperature- and frequency-dependent XC
functionals and XC kernels [6,49–52].

Real-time TDDFT is a method to compute the quantum
dynamics governed by a time-dependent Hamiltonian. It is
distinct from LR-TDDFT and it enables one to go beyond
the linear response regime. However, it is worth noting that
both should give the same results in the limit of the weak
perturbations that we consider in this work [53].

In this paper, we present extensive LR-TDDFT results of
the DSF, the dispersion, and lifetime of plasmons in aluminum
under ambient and warm dense matter conditions. We use
different kernels and the latest (temperature-dependent) LFC
obtained from fermionic path-integral Monte Carlo simula-
tions (PIMC) [41]. We compare these results to a variety
of theoretical and experimental data. We find insufficient
agreement of our results with published data and many incon-
sistencies in the reported results. This means that the currently
used XC functionals and kernels are not accurate enough to re-
solve remaining discrepancies between different experimental
results.

Throughout this paper we work in atomic units, where h̄ =
me = e2 = 1, such that energies are expressed in hartrees and
length in Bohr radii.

II. METHODS

Approximate solutions to the many-particle Hamiltonian
can be found using methods like many-body perturbation the-
ory, DFT, and TDDFT. Electronic transport properties such as
the dynamic response function, the dielectric function, and the
DSF are computed based on these methods. We first introduce
the general formalism and our notation, then we describe the
relevant methods in more detail.

A. Coupled electron-ion problem

Within the scope of nonrelativistic quantum mechanics,
the physics of coupled electrons and ions is governed by the

many-particle Hamiltonian

Ĥ = Ĥ i + Ĥ e + Ŵ ei, (1)

with Ĥ i = T̂ i + Ŵ ii denoting the kinetic energy and inter-
action of the ions, Ĥ e = T̂ e + Ŵ ee the kinetic energy and
interaction of the electrons, and Ŵ ei the interaction between
the electrons and ions.

Furthermore, working within the Born-Oppenheimer ap-
proximation [54] reduces the solution of the coupled electron-
ion problem to solving a Schrödinger equation for the
electrons

ĤBO
(
r1, . . . , rNe ; R1, . . . , RNi

)
� j

(
r1, . . . , rNe

)
= EBO

j

(
R1, . . . , RNi

)
� j

(
r1, . . . , rNe

)
, (2)

which depends parametrically on the coordinates of the un-
derlying ionic structure through the potential energy surface
EBO

j (R1, . . . , RNi ). Here, the Born-Oppenheimer Hamiltonian
is given by ĤBO = T̂ e + Ŵ ee + Ŵ ei + Ŵ ii, where the Ne elec-
trons have coordinates r j , while the Ni ions have mass MI ,
charge ZI , and coordinates RI .

B. Dielectric response of the Born-Oppenheimer Hamiltonian

The linear response nind(q, ω) of the electronic system
defined by the Born-Oppenheimer Hamiltonian in Eq. (2) to
an external, time-dependent perturbation δv is given in Fourier
space by

nind(q, ω) = χ (q, ω)δv(q, ω), (3)

where the proportionality factor corresponds to the density-
density response function χ (q, ω). The dielectric function
ε(q, ω) is expressed in terms of the density-density response
function as

1

ε(q, ω)
= 1 + 4π

q2
χ (q, ω). (4)

Furthermore, the fluctuation-dissipation theorem [55] con-
nects the DSF to the density-density response function

S(q, ω) = − 1

πne(1 − e−ω/(kBTe ) )
Im[χ (q, ω)], (5)

and, hence, to the dielectric function [56]

S(q, ω) = − q2

4π2ne(1 − e−ω/(kBT ) )
Im[ε−1(q, ω)], (6)

where ne is the free-electron density and T the temperature.
Note that throughout the paper, the theoretical methods we
use assume equilibrated temperature for ions and electrons.
Hence, we use the term temperature to refer to both electronic
and ionic temperature. Using the detailed balance relation for
the DSF S(−q,−ω) = S(q, ω)e−β h̄ω, diagnostics of param-
eters in experiments such as the temperature, the equation
of state, the ionization potential, and the density are inferred
[36]. Traditionally, the DSF for WDM and high-energy den-
sity matter is modeled using plasma physics based theories
and various approximations. Recently, first-principles meth-
ods based on TDDFT have been successful in modeling XRTS
spectra [35,49,53,57].
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The imaginary part of the inverse dielectric function is the
spectral function of collective excitations in the system. Par-
ticularly important among these are plasmons which appear
in the DSF as sharp peaks near the plasma frequency. They
can be mathematically characterized as zeros of the complex
dielectric function, emerge in the parameter range for which
collective effects play a role in the response of the system,
and are the dominant mechanism for very small wave numbers
[37,58,59].

C. Plasmon properties from dielectric models and
time-dependent density functional theory

1. Random-phase approximation

The RPA has been applied widely in condensed matter and
plasma physics to describe collective excitations. The RPA is
the simplest approximation capable of describing collective
properties of a system of weakly interacting electrons (jellium
model) immersed in a uniform positively charged background
[1,60,61].

The form of the RPA retarded dielectric function
based on free-electron states as used here is discussed in
Refs. [37,62,63]. The imaginary and the real parts of the
dielectric function are given by

Im[ε(q, ω)] = (
2sz

e + 1
)4πm2e2kBT

h̄q3

× ln

{
1 + exp

{
β
(−E−

2m + μ
)}

1 + exp
{
β
(−E+

2m + μ
)}

}
(7)

and

Re[ε(q, ω)] = 1 − (
2sz

e + 1
)16π2me2 h̄2

q2
P

∫ +∞

−∞

d p

(2π h̄)3
p f (p)

× 1

2q

[
log

(
pab

h̄
− qab

2h̄
− mωab

q

)

+ log

(
pab

h̄
− qab

2h̄
+ mωab

q

)]
, (8)

where m is the electron mass, sz
e accounts for the spin of the

electrons, and E± = (±q/2 − mh̄ω/q)2. The plasmon disper-
sion relation within the RPA and for small wave numbers is
given by [38,59]

ω2(q) = ω2
pl

[
1 + 〈p2〉

m2

q2

ω2(0)
+ 〈p4〉

m4

q4

ω4(0)
+ · · ·

]
, (9)

where ωpl is the plasma frequency with the moments 〈pi〉 eval-
uated using the Fermi integral [64]. The plasmon dispersion
can be obtained experimentally by fitting the data as obtained
from EELS and IXS experiments to this expression [36,65].

2. Extended Mermin dielectric function

The RPA is not sufficient to account for strong correlations
and the jellium model is not sufficient to account for bound
states. Introducing a dynamic damping or relaxation term
ν(ω), while maintaining density conservation, leads to the

Mermin approach (MA) [39,40]

εMA(q, ω) = 1 + [1 + iν(ω)/ω][ε(q, ω + iν(ω)) − 1]

1 + [
i ν(ω)

ω

]
ε(q,ω+iν(ω))−1

ε(q,ω→0)−1

,

(10)
which takes into account electron-ion collisions. The dielec-
tric function ε(q, ω + iν(ω)) may be taken in RPA using the
dynamic collision frequency. The latter is obtained in screened
Born or T -matrix approximation [40], or is computed using
the Kubo-Greenwood approach based on KS orbitals and
eigenvalues [48,49].

3. Local field corrections

Local field corrections (LFC) in isotropic systems like
fluids or plasmas are defined such that the full response func-
tion can be obtained from a convolution of the free density
response function χ0(q, ω) and the LFC G(q, ω):

χ (q, ω) = χ0(q, ω)

1 − V (q)
[
1 − G(q, ω)

]
χ0(q, ω)

. (11)

The corresponding equation for the dielectric function reads
as

ε(q, ω) = 1 − 1 − εRPA(q, ω)

1 + G(q, ω)[1 − εRPA(q, ω)]
. (12)

Such an expression can be used to incorporate strong electron-
electron correlations into the Mermin approach (10), which
leads to a dielectric function of extended Mermin type [45].

Since the electronic LFC of a realistic system like warm
dense aluminum intrinsically depends on the ionic compo-
nent as well, the full problem typically cannot be solved.
Therefore, one often substitutes the correct G(q, ω) of the
full system by the LFC of a uniform electron gas at the same
density and temperature.

Often QMC data for the LFC, and representations thereof,
are restricted to the static limit ω = 0. While such a static
approximation would, in principle, constitute an uncontrolled
approximation, it has recently been shown [66–68] that the
frequency dependence of G(q, ω) has a negligible impact for
rs � 4, which is the case for the conditions considered in this
work.

The first accurate data for the static LFC G(q, 0) of the
UEG have been obtained by Moroni et al. [69,70] on the
basis of ground-state QMC simulations. These data have sub-
sequently been parametrized by Corradini et al. [71] (CDOP),
and have been widely used to include electronic correlation
effects in many-body theory. Unfortunately, their parametriza-
tion is limited to the zero-temperature limit, which is often
not sufficient for realistic WDM applications [72]. This prob-
lem has been overcome only recently by Dornheim et al.
[41–44], who presented a machine-learning representation of
the static LFC (hereafter denoted as T-LFC) with respect to rs,
� = KBT/EF , and q on the PIMC data at finite temperature,
covering the entire WDM regime, where EF denotes the Fermi
energy and KB the Boltzmann constant.

The T-LFC is illustrated in Fig. 1 at the density of alu-
minum (rs = 2.07) for four different temperatures. For T = 0
(solid green), the ML representation reproduces the ground-
state parametrization of CDOP. At T = 3 eV (dashed red,
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FIG. 1. Static LFC of aluminum (rs = 2.07) at four different
temperatures. The data have been obtained from the machine-
learning representation from Ref. [41].

� ≈ 0.26), the effect of the temperature on G is small and
only starts to manifest at large wave numbers. Upon further
increasing the temperature to T = 8 eV (dashed-dotted black,
� ≈ 0.69) significant deviations from the ground-state result
are apparent, which are particularly pronounced for large q
where the tail of the LFC [i.e., the asymptotic behavior of
G(q) for large wave numbers] shows a negative slope and
eventually becomes negative. This is related to a lowering
of the kinetic energy due to XC effects at these conditions
(see Ref. [41] for an extensive discussion). Finally, the largest
deviations are observed at T = 12 eV (dashed blue, � ≈
1.03), where G is systematically lower than at T = 0 for wave
numbers higher than the Fermi wave number. Therefore, we
expect temperature effects of the LFC to be observable in
our simulation results for temperatures T � 8 eV and wave
numbers q > qF .

4. Density functional theory coupled to molecular dynamics

In the framework of KS-DFT [73], a solution to Eq. (2)
is found in a computationally feasible manner by introduc-
ing a fictitious system of noninteracting electrons that yields
the same electronic density as obtained from directly solving
Eq. (2). This is achieved by solving a set of KS equations[ − 1

2∇2
k + VS(r)

]
φk (r) = εkφk (r) (13)

for the KS orbitals φk from which the electronic density is
constructed according to n(r) = ∑Ne

k φ∗
k (r) φk (r).

Note that the solutions of the KS equations have a
parametric dependence on the underlying ionic configura-
tion {R1, . . . , RNi} via the KS potential vS(r; R1, . . . , RNi ) =∑Ni

I=1 ZI/|rk − RI | + vH[n](r) + vXC[n](r), where vH[n](r) =∫
dr′n(r)/|r − r′| denotes classical electrostatic interaction

potential of a charge cloud (Hartree potential) and vXC[n](r) =
δEXC[n]/δn(r) the XC potential. While formally exact, in
practice the XC energy EXC[n] is unknown and approxi-
mations need to be used [74]. Furthermore, KS-DFT is
generalized to finite temperature via Mermin’s theorem [75].
We follow the common approximation, where the explicit
temperature dependence of the XC energy is neglected and
only the implicit temperature dependence in the electronic
density is taken into account. To that end, the temperature-
dependent density is computed from the KS orbitals as n(r) =

∑∞
k fk (T )φ∗

k (r) φk (r), where fk (T ) denotes the Fermi-Dirac
distribution at temperature T .

5. Time-dependent density functional theory

LR-TDDFT [76] is a commonly used method to compute
electronic response properties in a sufficiently accurate and
computationally feasible manner. The formally exact, linear
density-density response of the electronic system defined by
the Born-Oppenheimer Hamiltonian given in Eq. (2) to an
external, time-dependent perturbation δv(r, t ) is given as

χGG ′ (q, ω) = χKS
GG′ (q, ω)

1 − [V (q) + fXC(q, ω)]χKS
GG′ (q, ω)

, (14)

where χKS
GG ′ denotes the KS density-density response function

[50,77]

χKS
GG′ (q, ω)=− 1

V
lim

η→0+

∑
nm;k

[ fm;k+q(T ) − fn;k(T )]

×〈ψm;k+q|ei(q+G)r|ψn;k〉〈ψn;k|e−i(q+G′ )r′ |ψm;k+q〉
ω − εm;k+q + εn;k + iη

,

(15)

defined in terms of the KS orbitals, eigenvalues, and Fermi
occupations given by f (T ). η → 0+ is the Lorentzian
broadening. V (q) = 4πδ(G − G ′)/[|(G + q)(G ′ + q)|] is the
Coulomb potential with G, G ′ being the reciprocal lattice vec-
tors [78]. The DSF in this work is given by the macroscopic
response functions which are obtained using χ (q, ω)G=0,G′=0.

Adler-Wiser local field effects for the ideal lattice con-
ditions are thus included by default [79,80]. Higher-order
electron-electron correlations are represented by the XC ker-
nel which is formally defined as

fXC(q, ω) = χKS−1
(q, ω) − χ−1(q, ω) − v(q). (16)

It is related to the XC potential via fXC(q, ω) =
δvXC(q, ω)/δn(q, ω) and to the LFC of dielectric models
via fXC(q, ω) = −v(q)G(q, ω), where v(q) = 4π/q2.

Virtually all practical calculations in LR-TDDFT employ
a static (i.e., frequency-independent) fXC, usually using the
adiabatic local density approximation (TDDFT-XC, ALDA).
Further neglecting the XC kernel, i.e., fXC → 0, yields what
is called RPA calculations within the LR-TDDFT frame-
work (TDDFT-RPA). When we employ a LFC from quantum
Monte Carlo calculations or other methods, we call the results
TDDFT-LFC.

Then, plasmon properties such as the DSF are computed
within the LR-TDDFT from the density-density response
function through the fluctuation-dissipation theorem as be-
fore.

D. Computational workflow

While we use the well-established ideal crystal structure
for ambient conditions, we run DFT-MD simulations (usually
using VASP [81–84]) for warm dense or high-pressure condi-
tions in order to generate snapshots of ionic configurations.
A number of these supercells of up to N = 32 ions are then
subject to a high-resolution DFT calculation. Based on the
resulting KS orbitals and various choices of LFCs and XC
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(a) (b)

(c) (d)

FIG. 2. DSF for aluminum in atomic units under ambient conditions at (a) 1.08, (b) 1.48, (c) 1.75, and (d) 1.88 (Å−1). Experimental data
(in black) stem from Refs. [51,86,87]. Theoretical data (in red) stem from Ref. [51]. TDDFT-RPA/TDDFT-XC/TDDFT-LFC/RPA/RPA-LFC
results of this work are shown in blue. The scattering parameter α = κ/q, with κ being the inverse screening length, is unity for q = 2.04/Å,
collective effects dominate for α 
 1 [36,59].

kernels, the density response function and, hence, plasmon
properties are computed. Further details on all the technical
parameters, settings, and certain convergence test results can
be found in Appendix A.

III. RESULTS

In what follows, we analyze the aluminum DSF under
a variety of thermodynamic conditions, comparing to prior
experiments and LR-TDDFT calculations. We first consider
ambient conditions, allowing us to establish an understand-
ing of the effect that various approximations have on the
results of our calculations relative to a tightly constrained tem-
perature and ionic configuration. Here, aluminum adopts its
standard face-centered-cubic (fcc) crystal structure for which
the electronic structure is well described by band theory and
the collective plasmonic excitations are described in terms
of standard condensed matter terminology. We then study
the aluminum DSF under more extreme conditions under
which this picture might break down. It may be the case that
the crystalline order is destroyed, in which case short-range
electron-ion correlations provide the dominant contribution to
the physics beyond a picture of aluminum as a uniform elec-
tron gas. In this context we adopt language that is more typical
in the warm dense matter literature in which correlations,
collisions, or interactions between electrons and ions give
rise to “electron-ion correlations” that impact the behavior of
plasmons.

We are careful to note the distinction between TDDFT-
RPA and RPA. Without the TDDFT prefix, RPA generically
refers to response functions calculated using model dielectric
functions. With the TDDFT prefix it refers to atomistic LR-
TDDFT calculations in which G(q) = fxc = 0.

A. Ambient conditions

At standard temperature and pressure, solid aluminum
adopts a fcc crystal structure with lattice constant 4.05 Å and
density 2.7 g/cm3. With a Seitz radius of 2.07 atomic units
and a density of states resembling the free-electron gas, one
would expect the plasmon dispersion to be described well by
the RPA [85].

1. Dynamic structure factor

The DSF at ambient conditions (T = 300 K) for a range of
wave numbers is shown in Fig. 2, where our calculations are
compared to the nearest set of wave numbers available in the
literature [51,86,87].

We start our discussion with Fig. 2(a) at a wave num-
ber 1.08 Å−1 for which the system is clearly dominated by
collective effects, and the sharp plasmon carries most of the
spectral weight. The peak of the free-electron RPA result is
roughly 2 eV above both experiments and all of the adia-
batic TDDFT calculations. That the TDDFT-RPA result gives
a plasmon peak that is more consistent with these results
suggests that deviations from a free-electron model due to
the lattice are a critical feature of the density response. In

125118-5



KUSHAL RAMAKRISHNA ET AL. PHYSICAL REVIEW B 103, 125118 (2021)

fact, the TDDFT-XC and TDDFT-LFC results both agree
well with TDDFT-RPA, suggesting that exchange-correlation
effects and local field corrections do not matter as much
as capturing deviations from the free-electron model due to
band-structure effects at this value of |q|. All three of these
results stem from the same initial set of KS orbitals and thus
capture the deviations from a free-electron model in the same
way.

Interestingly, TDDFT-XC calculations by Cazzaniga et al.
[51] yielded an identical peak location, but a rather smaller
peak height. This means that in the energy range of the plas-
mon, Cazzaniga’s imaginary part of the response function is
about 10% larger than in our calculations. The main difference
between our results and those of Cazzaniga et al. is that ours
are obtained using an all-electron code and Cazzaniga et al.
use a norm-conserving pseudopotential.

Even more different is the shape and location of the exper-
imentally determined plasmon peaks for this wave number.
The two different experimental results are in good agreement
with each other [51,86]. However, they are another factor
of 1.5 smaller than Cazzaniga’s and therefore only 60% as
high as our results. Its location is lower by another eV. The
differences appear even more pronounced if one takes into
account that the considered wave numbers are not identical.

There are a few possible sources for the disagreement be-
tween experiment and theory. Cazzaniga et al. noted that the
use of an adiabatic XC kernel might be one, and they report an
improvement in the agreement when incorporating lifetimes
from GW calculations [51]. However, even this procedure
does not give good agreement between theory and experi-
ment for all wave numbers. A nonlocal and dynamic Kernel
as suggested by Panholzer et al. might give improvements
[88]. However, there is also always the possibility that the
KS orbitals (and therefore the XC functional) are not good
enough when they are to be used to calculate the KS response
function.

Increasing the wave number of the perturbation as shown in
Figs. 2(b)–2(d) leads to a broadening of the plasmon peak and
finally to a mix of collective and single-particle effects which
all contribute to the DSF. As was the case in Fig. 2(a), the
TDDFT peaks occur at lower energies than for the RPA. The
influence of the LFC is best visible at large q when compared
to the electron gas RPA, with lower intensities at the peaks
and a shift towards lower energies at small q. In the TDDFT
results, the difference between no LFC and different types of
LFCs (ALDA or CDOP) is less distinct, still the same trend
of redshift remains. The effect of the LFC in aluminum has
been determined experimentally by Larson et al. [89] for q
up to 4.37/Å. They suggest a stronger impact at large wave
numbers as predicted by calculations with LFCs.

The overall shape of the spectra in Figs. 2(c)–2(d) con-
tinues to differ from the experimental results. While the
maximum intensity is now in better agreement with the theo-
retical results, the TDDFT curves start to show a double-peak
structure still absent in the experimental curves displayed
here. The overall peak position in our results remains shifted
to higher energies as compared to the experimental and Caz-
zaniga’s theoretical results. The disagreement is even more
worrying, when considering the higher number of bands, k
points, and the number of explicitly treated electrons that are

FIG. 3. Aluminum plasmon dispersion under ambient condi-
tions. The critical and the Fermi wave numbers are indicated by
the vertical lines. Experimental data shown in black symbols stems
from Refs. [51,96–98]. Theoretical data shown in red symbols are
taken from Refs. [51,99–101]. TDDFT-RPA/TDDFT-XC/TDDFT-
LFC/RPA-LFC/RPA results of this work are indicated with blue
symbols.

taken into account in our calculations as compared to the
earlier published results.

Usually, a two-peak structure, as it seems to emerge from
TDDFT at the higher wave numbers in Fig. 2, is associated
with plasmon and double-plasmon excitations. It is already
accounted for by the noninteracting electron-hole bubble (and
the band structure) and does not need higher-order Coulomb
correlations to appear. However, it seems that our TDDFT
calculations overestimate the double-plasmon excitations as
in experiments they appear only at larger wave numbers.

Inclusion of many-body effects, in the form of vertex cor-
rections, might improve the agreement with the experimental
measurements at large q [90]. The inclusion of a nonlocal and
dynamical XC kernel in TDDFT is further shown to improve
the DSF in some metals and semiconductors including the
double-plasmon excitation [88,91–93]. Sturm et al. [94,95]
demonstrated that at large q and large frequencies dynamical
correlations in fXC are more important than band-structure
effects in the description of the DSF.

2. Plasmon dispersion

The plasmon dispersion under ambient conditions is shown
in Fig. 3. The plasmon disperses quadratically up to the criti-
cal wave number (qc) and a flattening is observed for q > qc.
qc is defined as the wave number at which the dispersion
merges into the continuum of the single-particle excitations
[102,103]. For very small wave numbers, in the optical limit,
the Landau damping is very small [104] and the decay of
the plasmon is mainly due to band-structure effects [103].
Electron-electron interactions play a stronger role with in-
creasing wave number [59]. For wave numbers above qc, a
plasmon cannot be defined based on many-particle dielectric
theories [59], hence, a shift based on the location of the peak
of the DSF is given (Fig. 2).

For small q, the various TDDFT approaches agree well
with the theoretical results of Quong et al. [101] and the

125118-6



FIRST-PRINCIPLES MODELING OF PLASMONS IN … PHYSICAL REVIEW B 103, 125118 (2021)

FIG. 4. Aluminum plasmon peak FWHM under ambient con-
ditions. The critical wave number is indicated by the vertical line.
Experimental and theoretical data shown in black symbols stems
from Refs. [65,97,107–110]. TDDFT-RPA/TDDFT-XC/TDDFT-
LFC results of this work are indicated with blue symbols.

experimental measurements by Sprösser-Prou and Batson
et al. [96,97]. Near qc, we start to see deviations between
experiment and different theoretical results, as already men-
tioned in the discussion of Fig. 2. This is due to the broadening
of the plasmon peak and the onset of two-peak features in
the DSF, which complicate determining the peak position
without determining the zeros of the dielectric function [59].
Therefore, we do not provide TDDFT results for the shift in
the intermediate range.

For large q, the experimental results obtained by Batson
[97] and Höhberger [98] et al. agree with our results. In this
case, one should not speak of a plasmon anymore. The ob-
served feature is better described by a shift of the peak of the
DSF that is now dominated by single-particle excitations. The
results of Batson [97] et al. show a flattening in the plasmon
dispersion curve only for larger q as plotted.

The inclusion of different LFCs (TDDFT-LFC, CDOP Cor-
radini et al. [71]), and XC kernels (TDDFT-XC) results in
a lowering of the plasmon shift at intermediate and large q.
The influence of the TDDFT XC kernel compared to RPA
in the lowering of the plasmon shift is also observed in the
theoretical results of Quong and Cazzaniga et al. [51,101].
Further improvements to the ALDA kernel can be achieved
by considering an exact-exchange kernel (EXX) [105]. The
inclusion of lifetime effects in TDDFT lowers the shift further
as shown by Cazzaniga et al. [51]. However, the experimental
results at large wave numbers by Cazzaniga et al. [51] seem to
contradict the results of Sprösser [96], Batson [97], and Höh-
berger [98]. This mainly illustrates the difficulty of extracting
peak positions from structure factors at large q.

3. Plasmon lifetimes

The full width at half-maximum (FWHM) of the plasmon
is shown in Fig. 4. This quantity reflects the strength of plas-
mon damping as can be extracted from the Lorentz profile
of the weakly damped plasmon at small wave numbers. It
can also be determined by finding the zeros of the complex

dielectric function ε[q, ω(q) − iγ (q)] [59,103] in which the
imaginary parts correspond to inverse lifetimes.

As the FWHMs computed using LR-TDDFT depend on
η, it is necessary to consider how to extract this quantity
consistently. We extrapolate the value of the FWHM for mul-
tiple values of η to the η → 0 limit for a sufficiently dense
sampling of both the energy domain and the first Brillouin
zone [106].

The data are shown up to the wave numbers near qc where
a stable plasmon feature is obtained from S(q, ω). The width
calculated within TDDFT-RPA and TDDFT-XC has a flat
feature for q < 1.0/Å and then grows rapidly with increasing
q which can also be seen in the experimental measurements
[65,97,107,108]. The inclusion of LFC increases the width for
q above qc and has negligible impact for small q where the
width is dominated by the band structure as calculated in the
DFT calculations. This is exemplified by the good agreement
of TDDFT-RPA and TDDFT-XC for q < 1.0/Å. Significant
deviations between the two emerge near qc when the LFC
has an increasing impact. However, the deviations between
TDDFT-RPA and TDDFT-XC for the plasmon dispersion start
to appear at much smaller wave numbers.

While our calculated plasmon dispersion curves are in
good agreement with the results of Batson et al. [97], the
lifetimes and decay rates given by Batson deviate from our
results. Our plasmon lifetime results are in best agreement
with the experimental results of Krane et al. [65] and, at
small q, with the experimental results of Kloos et al. and Von
Festenberg et al. [107,108].

Any experimental measurement, e.g., via XRTS, gives a
q-dependent scattering signal featuring a plasmon energy shift
and a width associated with it. Information on both of these
parameters is vital to benchmark (dynamic) LFCs, collision
frequencies, and kernels in order to produce accurate TDDFT
models. However, most experimental results available to us
for ambient aluminum provide either the dispersion or the
decay rates with the exception of Batson et al. [97]. Thus,
with the Batson data in its entirety not being consistent with
our results and the lack of further consistent plasmon position
and FWHM data from experiments, it yields an inconclusive,
hence, very unsatisfactory picture. We are not able to compare
both plasmon position and FWHM of the plasmon peak to
other theoretical predictions either due to a lack of data.

B. Extreme conditions

Measurements of the plasmon dispersion and plasmon
peak FWHM at extreme conditions of high pressure and tem-
perature are quite challenging. Using isochoric heating by
optical or x-ray pulses, solid aluminum foils can be heated
to high temperatures. Combining such a setup with x-ray and
optical diagnostics, the electronic response of WDM can be
accessed [111]. Higher densities and, therefore, higher pres-
sures can also be reached via isentropic or shock compression
using high-intensity laser pulses [34,112]. The technical de-
tails of our (TDDFT) calculations for WDM conditions are
listed in Appendix A.

1. Plasmon dispersion

In Fig. 5, the plasmon dispersion is shown for densities
2.7 g/cm3 (uncompressed) and 3.5 g/cm3 (compressed) at

125118-7



KUSHAL RAMAKRISHNA ET AL. PHYSICAL REVIEW B 103, 125118 (2021)

FIG. 5. Aluminum plasmon dispersion under extreme condi-
tions (T = 0.3 eV) for densities of 2.7 g/cm3 (uncompressed) and
3.5 g/cm3 (compressed). The Fermi wave number is indicated by
the vertical line. Experimental and theoretical data for RPA, MA,
RPA+LFC (in green) stems from Refs. [48,112]. TDDFT-RPA,
TDDFT-XC, and TDDFT-LFC results of this work are indicated with
blue and red symbols.

ambient temperature and at T = 0.3 eV. Under these con-
ditions, the temperature should have negligible impact on
the plasmon dispersion because it depends primarily on the
electron density when the Fermi energy exceeds the tem-
perature (i.e., for small �). However, the quadratic term in
Eq. (9) is generally temperature dependent. The influence
of any finite-temperature LFC (T-LFC), G(q, rs,�), can be
readily assessed based on the density, temperature and the
momentum vector of the system (Table I in Appendix C).
Due to extremely small � = 0.02–0.025, temperature effects
can be ignored in G(q, rs,�) → G(q, rs). To this end, we
also perform a comparison with RPA and TDDFT results
computed at ambient temperature.

When the static LFC is included, the plasmon dispersion
is reduced at large q and approaches the results obtained
with TDDFT akin to the LFC approximation used for the XC
kernel in TDDFT. Within the RPA, we also investigated the ef-
fect of treating the electrons within an all-electron formalism
rather than a pseudopotential-based formalism. We found that
including the core electrons on a system size up to N = 32
yields only an insignificant deviation on the shift from those
calculated with the use of a pseudopotential.

We compare our data for the uncompressed case at nom-
inal T = 0.3 eV with both the experimental measurements
(black symbols) and the theoretical plasma physics models
(green curves) of Witte et al. [48]. For small wave numbers,
all our TDDFT results agree well with the experimental and

other curves, which is mainly an indication that the density
is correct. At larger wave numbers, deviations are apparent
which are caused by differing temperatures and different lev-
els of approximations. Due to the large error bars, it is not
possible to outright discard any theory with the exception of
the pure RPA (green dashed). However, it seems that within
the TDDFT results, there is no indication of the temperature
being as extracted by Witte et al. [48]. The T = 0.3 eV results
(red) seem consistently on the lower end of error bars of the
measurements. A better agreement is reached when consider-
ing the ions at ideal lattice positions and not in a molten state
(blue symbols). This seems reasonable, as the time frame of
the measurements is in the 100-fs range and, hence, too short
for the onset of any significant ion motion. This demonstrates
the problem of the model-dependent temperature extraction in
such experiments [57,113].

In the compressed case, the available data set is restricted to
two measurements, i.e., at small and large q [112]. At small q,
the data agree well with the experimental measurement which
in this case is not trivial due to the shocked state of the system.
Thus, the density determination seems reasonable. At large
q, the TDDFT results are much lower than the experimental
results due to the strong influence of the ions, which are
in a liquid or plasmalike state, at the elevated temperature.
Ignoring the temperature of the ions (ideal lattice at ambient
temperatures), the simulations are in better agreement with the
experimental plasmon shift.

The transition from a quadratic dispersion to a flat feature
can be observed at a smaller q when compared to aluminum
at ambient density. RPA+LFC theory and TDDFT results
indicate an increased damping with a raise in density (top ver-
sus lower panels in Fig. 5), but the experimental data remain
inconclusive.

In summary, we find that the ambient data are in much
better agreement with both XRTS measurements than the
results obtained at T = 0.3 eV [57]. Of course, temperature
measurements via XRTS, if not done via detailed balance, are
always model dependent. We stress that LR-TDDFT using
appropriate XC kernels or LFCs, respectively, is far more
capable of including electron-electron as well as electron-ion
correlations in the computation of collective effects and struc-
ture factors than any other theory.

2. Plasmon lifetimes

In Fig. 6, the plasmon FWHM is shown for a density of
2.7 g/cm3 and temperatures of 0.3 and 6.0 eV. The data are
compared to the available experimental results of Witte et al.
and their calculations using plasma theory [48,114]. Nominal
at T = 0.3 eV, the experimental data agree well with the
TDDFT results for the cold case. The width resulting from
TDDFT in the cold case features a similar trend than the
free-electron gas where both methods agree for small q. At
T = 0.3 eV, the width is obtained from the linear response
calculations involving DFT-MD snapshots. Here, the TDDFT
results feature larger widths for small q but the data still
lie within the large error bars of the experimental results at
large q.

A similar trend can be observed for the case of T = 6 eV
as presented in the bottom panel of Fig. 6. The cold TDDFT
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FIG. 6. Aluminum plasmon peak FWHM under extreme con-
ditions for ρ = 2.7 g/cm3 at T = 0.3 eV (above) and T = 6 eV
(below). The Fermi wave number is indicated by the vertical line.
Experimental and theoretical data for RPA, MA (in green) stems
from Refs. [48,114]. TDDFT-RPA, TDDFT-XC, and TDDFT-LFC
results of this work are indicated with blue and red symbols.

results fit the experimentally determined width much better
than the TDDFT data at elevated temperatures where the
width is increased strongly due to the liquid structure of the
ions.

Remarkably once again, the cold data are in much better
agreement with the XRTS measurements than results at 0.3
and 6 eV data. Apart from the model-dependent temperature
determination as mentioned above, this hints at the fact that
the experimental timescales are too short to allow an equilib-
rium of the coupled electron-ion system to be established.

3. Temperature dependence of the DSF

In Fig. 7, the DSF of aluminum for various temperatures
is shown. The usual dispersion and change in lifetime of the
plasmon can be observed in Figs. 7(a)–7(c). For TDDFT, we
notice that as long as the plasmon dominates the spectrum
[Figs. 7(a) and 7(b)], the locations of the peaks at a specific
q are independent of temperature. This is contrary to the
prediction of the Lindhard RPA (with and without LFCs, cyan
and olive curves, respectively), for which the energy of the
plasmon changes drastically with temperature in Fig. 7(b).
Of course, temperature results in an increase of width of the
plasmon peak. Once single-particle effects start to influence
the structure factor for larger wave numbers as in Fig. 7(c),
temperature causes a change in the position of the peak as
predicted by TDDFT, too.

The inclusion of LFCs yields a downshift of the intensities
to lower frequencies. Within TDDFT, also a slight increase of

(a)

(b)

(c)

FIG. 7. DSF for aluminum in atomic units for (a) 0.47, (b) 0.94,
and (c) 1.42(Å−1) at various temperatures. The TDDFT-RPA results
are shown only at 12 eV. The TDDFT-XC results are shown from
1 to 12 eV in the blue area (black curves for 1 and 12 eV) and
are broadening with temperature. The purple and green dashed lines
are the RPA and RPA + T-LFC results at 1 eV, respectively. The
RPA results are normalized with respect to the TDDFT-XC results
at 12 eV to allow plotting them at the same scale.

the peak height at large wave numbers shown in Fig. 7(c) is
observed.

The influence of the finite-temperature LFC is only appar-
ent at large q and at high temperatures, that is, at 12 eV where
a deviation from ground-state LFC is observed in the energy
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FIG. 8. Static structure factor for aluminum (rs = 2.07) com-
puted using PIMC and RPA including LFCs at � = 0.75 (T =
8.77 eV). The ESA results are shown for � = 0, � = 0.68 (T =
8 eV), and � = 1.03 (T = 12 eV). The TDDFT-XC results are
shown from ambient to T = 12 eV for q/qF up to ∼1.0.

range 0–10 eV. Table I in Appendix C summarizes the LFCs
considered in this work. We conclude that the temperature
determination from the plasmon peak and width is highly
model dependent and great care should be taken in the choice
of the applied theory.

4. Static structure factor

An important test of the quality of the DSF as presented in
the preceding sections is given by the calculation of several
different moments of the structure factor. Here, we focus on
the calculation of the static structure factor from the TDDFT
spectra according to

S(q) =
∫ ∞

−∞
S(q, ω)dω. (17)

In Fig. 8, the electronic static structure factor of aluminum
(rs = 2.07) within different theories is shown for several
values of the degeneracy temperature �. The red circles cor-
respond to PIMC results for the uniform electron gas at � =
0.75 and are compared to RPA calculations including static
LFCs both at finite temperature (T-LFC) and in the ground
state (CDOP). The TDDFT-XC results are also shown for
comparison in the temperature range up to 12 eV for q/qF �
1.0. Note that only the contribution of the valence electrons is
considered in the TDDFT-XC calculations. Furthermore, the
TDDFT-XC results are limited to the displayed range of wave
numbers because at higher values there are other excitations
(L edge, specifically with L2,3 and L1) that do not occur in an
electron gas as considered in PIMC. Finally, the green curves
have been obtained using the effective static approximation
(ESA) [42], which has been shown to yield highly accurate
results for S(q) over the entire WDM regime, with a typical
systematic error of ∼0.1% as compared to PIMC.

The agreement between the integrated TDDFT spectra
and the static structure from both PIMC and ESA is very
satisfactory and can serve as a benchmark of the quality of
the TDDFT spectra. However, it should also be noted that

integrated quantities like the static structure factor are prone
to hiding inaccuracies of the dynamic quantities [42].

IV. CONCLUSIONS

We demonstrated the capabilities of LR-TDDFT in cal-
culating plasmon dispersion and plasmon lifetimes for the
simple metal aluminum at ambient and extreme conditions.
We studied aluminum as a perfect fcc lattice as well as
a high-pressure fluid. We used both all-electron codes and
projector augmented-wave (PAW) pseudopotentials. Starting
from TDDFT-RPA, we used a variety of XC kernels in
the LR-TDDFT equations: ALDA, static T = 0 LFCs, and
temperature-dependent LFCs, the latter two based on QMC
simulations.

We compared our results to other TDDFT results and to
plasma physics theories using the Mermin dielectric function
and several different collision frequencies. Also, where avail-
able, we compared to experimental values.

Our analysis is based on relatively few complete data
sets of both plasmon lifetimes and plasmon dispersion (of
which we present one) for aluminum at room temperature.
Within this data set, there is basically no consistent case in
which two theories (or experiments) agree in plasmon location
and lifetime simultaneously. It is even more worrisome that
TDDFT calculations that should be capable of obtaining very
similar results (based on the published set of parameters and
methods) fail to do so. While this is the case for aluminum at
ambient conditions, the situation is naturally worse for warm
dense or high-temperature aluminum where the error bars and
uncertainties are larger due to experimental difficulties and
computational challenges.

This has significant repercussions for the evaluation of ex-
perimental spectra from XRTS and other experiments because
such spectra are also used for temperature and density deter-
mination of the created states. While this is less problematic
for states under ambient conditions or at high pressure in
solids, it is a challenge for WDM states. XRTS is, in principle,
one of the very few methods capable of obtaining such basic
parameters which are used as input to subsequent simulation
techniques. We, therefore, not only need accurate and reliable
methods to calculate the dynamic structure, but also fast meth-
ods to be able to fit spectra. Our assessment clearly points to a
strong need for the development or improvements in reliable
methods such as in LR-TDDFT.
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APPENDIX A: COMPUTATIONAL DETAILS

At ambient conditions (T = 300 K), the LR-TDDFT cal-
culations were performed using the full-potential linearized
augmented-plane-wave code implemented in ELK [115]. A
k-point grid of 40 × 40 × 40 points was used and 80 bands
were considered for the fcc unit cell. Fermi smearing was
used with a width of 0.01 Ha. The adiabatic local density
approximation (ALDA) as implemented in the ELK code was
used.

At WDM conditions, DFT-MD simulations were per-
formed using VASP [81–84]. We used PAW pseudopotentials
[116] with three electrons considered valence and a core ra-
dius of rc = 1.7aB. The plane-wave cutoff was set to 350 eV
and the convergence in each self-consistency cycle was set to
10−5. We used the Mermin formulation of thermal DFT [75]
and Fermi occupation of the eigenvalues. Generally, the first
Brillouin zone was sampled on a 2 × 2 × 2 grid of k points.
The number of bands varied with the temperature up to 1050
for the highest temperature of T = 12 eV in a N = 32 super-
cell. Both LDA [73] and PBE [117] XC functionals were used.
The thermostat in the NVT ensemble was of Nose-Hoover
type [118]. Ionic time steps of �t = 0.2 fs were taken.

Simulations involving large system sizes at high tempera-
tures and pressures are computationally too expensive within
a full-potential linearized augmented-plane-wave code. The
KS orbitals for a supercell containing 32 aluminum atoms
were, therefore, generated from DFT calculations on pseu-
dopotential within QUANTUM ESPRESSO electronic structure
code [119,120]. The LDA norm-conserving pseuopotentials
were generated with the OPIUM package [121]. 11 valence
electrons were considered in the psuedopotential, while the
1s2 core is ignored. The plane-wave cutoff to represent the KS
orbitals is set to 70 Ry. Electronic occupations are generated
using a Methfessel-Paxton smearing [122] where the number
of bands at a temperature of 12 eV is set to roughly 1050. The
Brillouin zone was sampled using 3 × 3 × 3 Monkhorst-Pack
mesh throughout. Based on these KS orbitals as input, LR-
TDDFT were performed with the YAMBO [123], turboTDDFT
[124], and TDDFPT [125,126] packages. The static limit of
the LFCs is substituted in Eq. (11) as G(q, rs) at ground state
and as G(q, rs,�) at finite temperature.

APPENDIX B: CONVERGENCE ANALYSIS OF THE DSF

The convergence with respect to the number of k points and
bands is important due to the computational cost. The DSF
for aluminum at 2 and 6 eV using 32 atoms for 600 and 750
bands, respectively, is shown with respect to the k points and
the number of electrons considered in the pseudopotential in
Fig. 9. The calculations are well converged with respect to

FIG. 9. DSF for aluminum (ρ = 2.7 g/cm3) in atomic units at
T = 2 and 6 eV with respect to k points and the number of elec-
trons considered in the pseudopotential. AE refers to the use of
an all-electron pseudopotential (11 electrons ignoring the 1s2 core)
compared to the 3 valence electrons otherwise.

the number of k points. The all-electron (AE) LDA Perdew-
Zunger norm-conserving pseudopotential results in a lowering
of the peak intensity and an increase in the intensity to higher
energies at the shoulder for T = 6 eV at frequencies near
10 eV.

APPENDIX C: DETAILS ON THE LOCAL FIELD
CORRECTIONS

The LFCs for aluminum at ambient and compressed densi-
ties (2.7 and 3.5 g/cm3) in this work are shown in Table I.

TABLE I. Local field corrections (LFC) and finite-temperature
LFCs (T-LFC) for aluminum at 2.7 and 3.5 g/cm3 for various tem-
peratures and wave numbers.

ρ (g/cm3) T (eV) q (Å−1) LFC T-LFC

2.7 1.0 3.02 0.79 0.79
2.7 3.0 3.02 0.79 0.79
2.7 6.0 3.02 0.79 0.76
2.7 8.0 1.89 0.33 0.34
2.7 8.0 2.36 0.53 0.51
2.7 8.0 2.83 0.72 0.67
2.7 8.0 3.02 0.79 0.74
2.7 12.0 0.47 0.02 0.02
2.7 12.0 0.94 0.08 0.09
2.7 12.0 1.42 0.19 0.20
2.7 12.0 1.89 0.33 0.34
2.7 12.0 2.36 0.53 0.48
2.7 12.0 2.83 0.72 0.63
3.5 0.3 1.89 0.29 0.29
3.5 0.3 2.36 0.45 0.45
3.5 0.3 2.83 0.63 0.63
3.5 0.3 3.02 0.70 0.70
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