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Fermion-induced dynamical critical point

Shuai Yin1 and Shao-Kai Jian 2

1School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
2Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA

(Received 23 June 2020; revised 4 November 2020; accepted 24 February 2021; published 8 March 2021)

Dynamical phase transition (DPT) characterizes the abrupt change in dynamical properties in nonequilibrium
quantum many-body systems. It has been demonstrated that extra fluctuating modes besides the conventional
order parameter field can bring about the Landau-forbidden quantum critical points by changing the order of
the equilibrium phase transition. However, the counterpart phenomena in DPTs have rarely been explored.
Here, we study the DPT in the Dirac system after a sudden quench and find that the fermion fluctuations
can round a putative first-order DPT into a dynamical critical point, which is referred to as a fermion-induced
dynamical critical point (FIDCP). This FIDCP gives the universal short-time scaling behavior controlled by the
dynamical chiral fixed point despite the system going through a first-order transition after thermalization. In
the novel scenario of FIDCP, the quantum Yukawa coupling gq is indispensable for inducing the FIDCP even
though it is irrelevant in the infrared scale. We call these variables dynamical dangerously irrelevant scaling
variable. Moreover, a dynamical tricritical point which separates the first-order DPT and the FIDCP is discovered
by tuning this dynamical dangerously irrelevant scaling variable. We further mention possible experimental
realizations.
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I. INTRODUCTION

Fathoming nonequilibrium dynamics of isolated quantum
systems is one of the most important and challenging issues
in modern statistical mechanics and condensed-matter physics
[1–3]. On the one hand, these studies provide fundamental
insights into how equilibrium thermodynamics emerges from
a unitary time evolution [4–8]. For example, the eigenstate
thermalization hypothesis attempts to build the gorgeous ed-
ifice of the statistical ensemble theory upon the cornerstone
of the eigenstate properties of quantum many-body systems
[4–6]. On the other hand, emergences of vibrant far-from-
equilibrium phenomena in experiments are calling for new
theoretical frameworks [9–18]. Among them the theory of
dynamical phase transition (DPT) has attracted considerable
attention. By analogy with the equilibrium phase transition,
the DPT describes the abrupt change in dynamical properties
in nonequilibrium systems [19–43]. It has been shown that the
appearance of the DPT can lead to universal short-time scaling
behavior [44–48] similar to the critical initial slip in classical
[49,50] and quantum dissipative systems [51–53].

In equilibrium phase transitions, the importance of fluctu-
ations cannot be overemphasized. Long-wavelength fluctua-
tions are at the origin of scaling behaviors near second-order
phase transitions, which results in the concept of the universal-
ity class—one of the organizational principles in condensed-
matter physics [54]. It is known that quantum fluctuations
can strongly change the properties of equilibrium phases [55].
More strikingly, fluctuations can change the nature of the
phase transition profoundly, giving phase transition beyond
Landau’s paradigm [56]. Coleman and Weinberg proposed

a fluctuation-induced first-order phase transition by coupling
the order parameter to a fluctuating gauge field [57–59]. This
proposal found important applications in the context of phase
transitions in the early universe and superconductors [58,59].
On the other hand, the theory of a deconfined quantum critical
point [60–74] takes the opposite track by showing that extra
fluctuations from emergent degrees of freedom can soften
the putative first-order phase transition [56] into a continuous
one. Another example is the fermion-induced quantum critical
point (FIQCP) [75], in which the extra fluctuations come from
massless Dirac fermions. It has been shown that both the
Landau–de Gennes and Landau-Devonshire first-order phase
transitions can be rounded into continuous ones by fermion
fluctuations [76–82]. Given these novel examples in equilib-
rium physics, equally important questions in the context of
nonequilibrium physics arise: To what extent is the DPT af-
fected by extra fluctuations? Can the Landau-forbidden phase
transition happen at nonequilibrium?

In this paper we report a fermion-induced dynamical crit-
ical point (FIDCP) in Dirac systems after a quench. We find
that a putative nonequilibrium first-order DPT can be driven
into a continuous one by fermion fluctuations, giving rise to
a dynamical version of the Landau-forbidden critical point.
We will show that this scenario of FIDCP gives plentiful
intriguing phenomena in nonequilibrium relaxation process,
as illustrated in Fig. 1. A counterintuitive result is that the
universal dynamics appears only in the short-time stage con-
trolled by the FIDCP, while it fades away in the long-time
thermal stage. Moreover, we find that although the quantum
Yukawa coupling is irrelevant near the renormalization group
(RG) fixed point of the FIDCP, it plays an indispensable role
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FIG. 1. An illustration of the fermion-induced dynamical critical
point (FIDCP). The putative first-order dynamical phase transition
can be induced to a dynamical critical point by gapless Dirac fermion
fluctuations, leading to short-time universal dynamics before ther-
malization, although the discontinuous thermal transition survives in
the long-time thermal stage.

in bringing out the FIDCP, in contrast to usual irrelevant
scaling variables which are negligible in equilibrium phase
transitions. We refer to this kind of scaling variable as the
dynamical dangerously irrelevant scaling variable (DISV),
reminiscent of the DISV in equilibrium Landau-forbidden
phase transitions [61,70,79,80]. In spite of this, we will show
that the dynamical DISV in the FIDCP is quite different from
the equilibrium DISV in the equilibrium Landau-forbidden
critical points [70,79,80]. It is “more dangerous” since its
ultraviolet (UV) value can manipulate a dynamical tricritical
point (DTCP), which is the watershed between the first-order
DPT and the FIDCP. We will show that this DTCP corre-
sponds to a nonthermal fixed point, which cannot be cast
to any thermal/quantum critical point. Some sharp physical
consequences and a lattice model, which should be within the
experimental reach, will also be discussed.

This paper is organized as follows. In Sec. II we show the
model and the quench protocol. Then in Sec. III the FIDCP is
illuminated. We first present the RG equations in Sec. III A.
Then we show in Sec. III B that a first-order DPT appears
without the Yukawa coupling. In Sec. III C we demonstrate
that this first-order DPT can be rounded to a dynamical crit-
ical point by large enough Yukawa coupling. In Sec. IV, the
critical properties near the DTCP are further explored. Possi-
ble experimental realization is then discussed in Sec. V. We
conclude with a brief summary in Sec. VI. Some supplemen-
tary results and a lattice model are briefly discussed in the
Appendixes.

II. MODEL AND QUENCH PROTOCOL

We consider the quench dynamics in a system with a neg-
ative quartic boson interaction and study the effects induced
by its coupling with Dirac fermions. The nonequilibrium dy-
namics is described by the generating function Z = Tr[eiSK ]
[44–47]. The Keldysh action SK ≡ iSi + Sb therein consists of
two parts, Si and Sb, corresponding, respectively, to the initial

state and the postquench dynamics, where [48]

Si = 1

2

∫
x

∫ ∞

0
dτ [(∂τφ)2 + (∇φ)2 + �2φ2],

Sb =
∫

x

∫ ∞

0
dt

[
(φ̇qφ̇c − ∇φc∇φq − rφcφq)

− 2uc

4!
φ3

c φq − 2uq

4!
φ3

qφc + �†(i∂t + i�σ · ∇)�

− gc√
2
φc�

†σz� − gq√
2
φq�

†τxσz� + · · ·
]
, (1)

in which the subscripts c and q represent the classical and
quantum parts of the action, respectively, in the Keldysh rep-
resentation. φ is the Ising boson field, and � ≡ (ψc, ψq )T

is the Dirac fermion field. The summation over N flavors
is assumed.

∫
x ≡ ∫

dd x, where d is the spatial dimension,
�σ ≡ (σx, σy) is the Dirac matrix in two dimensions and can be
generalized accordingly to higher dimensions, and τx acts on
the Keldysh contour. uc/q < 0 is the boson quartic coupling,
gc/q > 0 is the Yukawa coupling, and the ellipses represent
the higher-order terms to stabilize the system (see Appendix
D). The system is initially prepared in the disordered phase
with a boson mass �2 > 0; then at t = 0 the boson mass is
suddenly changed r, and the system evolves according to the
postquench Hamiltonian.

For �2 = r, Eq. (1) with uc/q < 0 returns to the equilib-
rium case describing the equilibrium type-II FIQCP. It was
shown that although at zero temperature a bosonic first-order
phase transition [83] can be rounded by fermion fluctuations
[82], the first-order phase transition can reappear at finite tem-
peratures since the massless fermion fluctuation is inhibited
by the finite Matsubara frequency gap proportional to the tem-
perature [82]. So this argument indicates that the dynamical
version of the FIQCP may not occur since the injection of the
external energy by the sudden quench for �2 �= r is similar to
the thermal effects according to the eigenstate thermalization
hypothesis [4–6]. Surprisingly, we will show that the FIDCP
can happen at the short-time stage in the following.

We will focus on the deep quench for � � 	, with 	2

being the UV momentum scale [44–47,84]. In this situation,
the DPT is tuned by the renormalized boson mass,

reff (t ) = r + 1

2

∫
dd kDK (t, t )

− gcgq

2

∫ t

0
dt ′

∫
dd kTr[τ0σzG(t, t ′)τxσzG(t ′, t )],

(2)

in which DK (t, t ′) ≡ −i〈φc(t )φc(t ′)〉 is the boson Keldysh
Green’s function and G(t, t ′) ≡ −i〈�(t )�†(t ′)〉 is the
fermion Green’s function. For the deep quench, DK (t, t ′) �
−i�[cosωk (t−t ′)−cosωk (t+t ′)]/ω2

k [44–47], ω2
k ≡ �k2 + r.

Note that the initial condition is contained in DK (t, t ′) and
the second term in DK (t, t ′) breaks the time-translational
symmetry explicitly. By comparing DK (t, t ′) with the ther-
mal Keldysh function, D(th)

K (t, t ′) � 2T cosωk (t − t ′)/ω2
k , one

finds that � is similar to an effective temperature Teff = �/4
[44–47]. Although reff oscillates with a frequency propor-
tional to 	, the universal behavior of the DPT is contained
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FIG. 2. The Feynman diagrams for the one-loop corrections to
uc. The dashed line presents the classical boson field, the wiggly line
presents the quantum bosonic field, and the solid line indicates the
fermion field.

in its time-independent part. The DPT controlled by Eq. (2)
happens in a short-time stage before the thermalization time
tth [44–47]. After tth, the secular terms with dissipation effects
dominate, and the system tends to the thermal state [85,86].

III. FERMION-INDUCED DYNAMICAL CRITICAL POINT

A. RG equations

To explore the DPT properties, we resort to the RG anal-
yses. By integrating out the momentum within the range
[	,	e−l ] (l > 0 is the running parameter) for the inner line
of the Feynman diagrams (some Feynman diagrams are shown
in Fig. 2 for illustration) and rescaling the couplings accord-
ing to k → kel , uc → ucel (4−d−2ηb), uc → ucel (2−d−2ηb), g2

c →
g2

cel (4−d−ηb−2η f ), and g2
q → g2

qel (2−d−ηb−2η f ), one obtains the
following RG equations [48]:

duc

dl
= (4 − d − 2ηb)uc − 3

8
u2

c + 6Ng3
cgq, (3)

duq

dl
= (2 − d − 2ηb)uc − 3

8
ucuq + 6Ngcg3

q, (4)

dg2
c

dl
= (4 − d − ηb − 2η f )g2

c − 3

8
g4

c − 3

8
g3

cgq, (5)

dg2
q

dl
= (2 − d − ηb − 2η f )g2

q − 3

8
g2

cg2
q − 3

8
gcg3

q, (6)

where N is the flavor number of the Dirac fermions and
ηb = Ngcgq/4 and η f = g2

c/12 + gcgq/12 are the anomalous
dimensions of the boson and fermion fields, respectively. The
boson mass r is relevant as a transition-tuning parameter, so
we set r to zero in Eqs. (3)–(6) to describe scaling properties.
Although in the UV scale uc = uq and gc = gq, the classical
part and the quantum part of the couplings have different
dimensions for the deep quench case since � is dimensionless,
similar to the status of the temperature in classical phase
transitions [44–47]. And we will see that the quantum Yukawa
coupling plays a vital role in the FIDCP.

B. First-order DPT without Yukawa coupling

When gc/q = 0 and uc/q < 0 at the UV scale, Eqs. (3) and
(4) show that in the infrared (IR) scale uc tends to negative
infinity. It is quite different from the case for uc > 0, where
a finite IR fixed point is reached [44–47]. Actually, Eq. (3)
is similar to the RG flow equation of the quartic boson
coupling in the equilibrium d-dimensional Landau-

FIG. 3. For N = 2 and d = 3, the RG flows running from l =
0 (UV) to l → ∞ (IR) are shown. The bare parameters are chosen
to be uc(0) = uq(0) = −3 and g2

c(0) = g2
q(0) = 0.75. (a) shows that

uc runs from a negative value to a positive one. (b) shows uq also
changes sign and then tends to zero. The arrows in (a) and (b) denote
positions of the sign changes for uc and uq, respectively. gc tends to
a finite fixed point, as shown in (c), and gq tends to zero, as shown
in (d).

Devonshire model [83], indicating that the DPT is a
first-order DPT [83]. This similarity also exists between
the (d + 1)-dimensional dynamical fixed point and the
d-dimensional Wilson-Fisher fixed point for the pure boson
model [44–47]. The absence of the finite IR fixed point
demonstrates that there is no self-similarity aging dynamics
near this first-order DPT.

C. FIDCP with Yukawa coupling

Remarkably, the situation can be changed when the cou-
pling to the Dirac fermion is introduced. We will show that
the gapless fluctuations of the Dirac fermion can trigger an
emergent dynamical critical point, and as a result the univer-
sal dynamics governed by the long-wavelength modes near
this FIDCP appears. To see this, one can inspect Eq. (3).
The anticommutativity of the fermion fields leads to an ad-
ditional minus sign in the fermionic loop diagram, as shown
in Fig. 2(b). This makes the last term in Eq. (3) positive.
Accordingly, the last term makes an opposite contribution
compared to the first two terms. Heuristically, the direction
of the RG flow of uc can be changed for large enough gc/q.

To quantitatively explore the FIDCP, we solve the RG
equations (3)–(6) explicitly by taking N = 2 and d = 3 as an
example and show the results in Fig. 3. From Fig. 3(a) one
finds that for a finite UV gc/q, uc changes sign from negative
to positive and then tends to an IR fixed point. Moreover, the
massless boson correlation can induce a nontrivial Yukawa
fixed point, as shown in Fig. 3(c), via the one-loop correction
to the Yukawa coupling. The appearance of the finite fixed
point demonstrates that the fermion fluctuation can induce a
dynamical critical point.
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FIG. 4. For N = 2 and d = 3, a fixed point corresponding to
a DTCP is determined by tuning gq. Other parameters in the UV
scale are chosen to be uc(0) = uq(0) = −3 and g2

c(0) = g2
q(0). At the

DTCP, g2
qtr (0) � 0.726624313854. uc is relevant at the DTCP, and its

fixed-point value is zero. gc tends to a finite value, indicating this is a
nonthermal fixed point. Both uq and gq are irrelevant in the IR limit.

The critical behavior associated with the FIDCP is deter-
mined by the properties of the fixed point. Actually, the fixed
point of the FIDCP is just the dynamical chiral fixed point
reported previously [48]. This fixed point is a nonthermal with
a nonzero value of the gc since it should be zero in the thermal
critical point owing to the finite Matsubara frequency gap. The
most remarkable phenomenon associated with this fixed point
is the universal critical initial slip behavior, in which the boson
order parameter M changes with time as M ∝ M0t θ , with θ

being the critical initial slip exponent [44–48]. Moreover, the
fermion field has an anomalous dimension η f = (4 − d )/12
[48].

Although the FIDCP with uc/q(0) < 0 has the same dy-
namical universality class as the case for uc/q(0) > 0, the
quantum part of the Yukawa coupling gq plays different roles
in these two cases. For the latter case, gq is just a usual
irrelevant scaling variable which is negligible near the phase
transitions. But for the former case, the role played by gq is
quite nontrivial, although it also tends to zero near the dynam-
ical chiral Ising fixed point. To see this, by setting gq to zero
in the UV scale [87], one finds from Eq. (3) that the fermion
fluctuations do not participate in the postquench dynamics,
resulting in a first-order DPT, as we discussed above. It is the
finite gq, together with gc, at the UV scale that brings fermion
fluctuations into the boson potential, reverses the sign of uc/q,
and, consequently, results in the dynamical chiral Ising fixed
point and generates the universal critical initial slip behavior.
In this sense, we find that gq is a dynamical DISV.

IV. DYNAMICAL TRICRITICAL POINT

In the equilibrium case, appearances of dangerously ir-
relevant scaling variables can reshape critical properties in
both the deconfined quantum critical point and the FIQCP
[70,79,80]. Here we show in Fig. 4 that the dynamical danger-
ously irrelevant scaling variable gq plays a different role and
can maneuver a DTCP, although it is still irrelevant near this

DTCP. This DTCP appears at gqtr (0) when other parameters
are fixed at the UV scale. And only for gq(0) > gqtr (0) can
the FIDCP arise. At the fixed point of this DTCP, u∗

ctr = 0.
Besides r, whose scaling is relevant, r ∝ re2l , Fig. 4 shows
that uc is the other relevant direction near the DTCP. When
gq(0) is close to gqtr (0), uc lingers over a plateau for a period
of scale, then tends to negative infinity or the dynamical
chiral fixed point depending on whether gq(0) < gqtr (0) or
gq(0) > gqtr (0). From Eq. (3) one finds that uc deviates from
u∗

ctr by uc ∝ ucel .
Some remarks on the DTCP are as follows: (a) An intrigu-

ing feature of the DTCP is that although gq is an irrelevant
variable near the DTCP, it can control the direction of the rel-
evant variable uc. This cross-rank tuning behavior has rarely
been reported in the usual equilibrium phase transitions, in-
cluding the type-II FIQCP. (b) gc tends to a finite value at
DTCP, indicating that this fixed point is a nonthermal fixed
point. (c) The larger the fermion flavor number N is, the
smaller gqtr (0) becomes since more fermion fluctuations can
be taken into account according to Eq. (3). (d) The DTCP
appears only for uc/q < 0, while for uc/q > 0 the short-time
dynamical phase transition is always a continuous one with
critical phenomena controlled by the dynamical chiral fixed
point [48].

V. DISCUSSION

The results obtained above provide several sharp experi-
mental signatures. To see this, we compare different cases. (a)
When u > 0, the universal behaviors exist in both the short-
time stage and the thermalization stage [48]. According to the
eigenstate thermalization hypothesis, the scaling behavior in
the thermalization stage is just the classical phase transition
governed by the Wilson-Fisher fixed point [88–90]. (b) When
u < 0 and g < gtr is small, the quench dynamics does not
show any universal scaling behavior in any stage after the
quench since both the DPT and the thermal phase transition
are first order. (c) When u < 0 and g > gtr is large enough to
bring out the FIDCP, universal scaling behaviors emerge in
the short-time relaxation stage. After the equilibration t � tth
in the thermal region, the Matsubara frequency of fermion
modes opens a gap proportional to the effective temperature
Teff � 	2. Thus, the mechanism of the FIDCP is interdicted,
and consequently, the long-time thermal region exhibits no
universal scaling properties.

Here, we propose a possible experimental realization. It
was shown that the spin model with the nearest and next-
nearest Ising interactions can host a first-order phase transition
described by the boson field theory with a negative quartic
interaction, i.e., u < 0 [91]. In addition, the Dirac systems
can be realized in the honeycomb lattice and the square lat-
tice with π -flux per plaquette [92,93]. Recently, steerable
magnetic interactions were implemented experimentally in
various cold-atom systems [94,95]. Moreover, manipulation
and detection of nonequilibrium dynamics have been realized
in plenty of systems [96,97]. In particular, short-time scaling
behaviors were found in recent experiments [98–100]. It is
expected that the FIDCP could be realized in these systems
with tunable interaction between bosons and Dirac fermions.
Based on the model in Ref. [91], we briefly discuss possible
parameter regions to realize the FIDCP in Appendix E.
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VI. SUMMARY AND OUTLOOK

We have studied dynamical phase transitions in Dirac
systems and reported an FIDCP. We have shown that a
first-order DPT for the pure boson model can be rounded
by the fermion fluctuations into a dynamical critical point,
corresponding to the dynamical chiral Ising fixed point in
our case. In the scenario of FIDCP, the quantum Yukawa
coupling is a dynamical DISV, which plays a crucial role
in inducing the FIDCP even though it is irrelevant near the
critical point. The existence of dynamical DISV makes the
notion of continuous/discontinuous transitions in dynamical
phase transitions different from that in equilibrium ones. Fur-
thermore, a DTCP associated with the dynamical DISV was
identified, and its scaling properties were discussed.

Our paper not only shows that the Landau-forbidden crit-
ical point can happen in nonequilibrium but also provides
experimental criteria to detect it. Our results can be gen-
eralized to Dirac/Weyl systems with different boson fields
[101]. Moreover, it is instructive to explore the nonequi-
librium dynamics in itinerant electronic systems with finite
Fermi surfaces, in which the tendency to turn the first-order
transition into a continuous one was found in equilibrium
cases [102,103].
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APPENDIX A: THE GREEN’S FUNCTIONS

To obtain the RG equations, the Gaussian Green’s func-
tions for both fermion and boson fields are needed. For a
general initial boson mass �, the Green’s functions for the
free-boson fields read [44–48]

DR(t − t ′) = −�(t − t ′)
sinωk (t − t ′)

ωk
, (A1)

DK (t, t ′) = −i
1

ωk
[K+cosωk (t − t ′) + K−cosωk (t + t ′)],

(A2)

in which DR is the retarded Green’s function, DK is the
Keldysh Green’s function ωk = √

k2 + r, and K± = 1
2 [ ωk

ω0k
±

ω0k
ωk

], with ω0k being ω0k = √
k2 + �. In the deep quench

limit, in which � � 	2, Eq. (A2) can be simplified as

DK (t, t ′) = −i
�

ω2
k

[cosωk (t − t ′) − cosωk (t + t ′)]. (A3)

In addition, the Green’s functions for the fermion fields are
[48]

GR(t − t ′) = −i�(t − t ′)[e−ik(t−t ′ )P+(k) + eik(t−t ′ )P−(k)],

(A4)

GK (t, t ′) = −i[e−ik(t−t ′ )P+(k) − eik(t−t ′ )P−(k)], (A5)

FIG. 5. For N = 2 and d = 2, the RG flows running from l = 0
(UV) to l → ∞ (IR) are shown. The bare parameters are chosen to be
uc(0) = uq(0) = −3 and g2

c(0) = g2
q(0) = 0.7. (a) shows that uc runs

from a negative value to a positive one. (b) shows uq also changes
sign and then tends to zero. The arrows in (a) and (b) denote positions
of the sign changing for uc and uq, respectively. gc tends to a finite
fixed point, as shown in (c), and gq tends to zero, as shown in (d).

in which k = √
k2

x + k2
y and P± = 1

2 (1 ± k̂ · �σ ), with k̂ =
(kx, ky)/k. Equations (A4) and (A5) can be readily generalized
to higher dimensions by taking more momentum components
into account.

APPENDIX B: FIDCP in d = 2

Here, we show the FIDCP in d = 2. By solving the RG
equations (3)–(6), we show that in two dimensions the fermion
fluctuations can also round the first-order DPT into a dynami-
cal critical point, similar to the case for d = 3. The results are
plotted in Fig. 5. In Fig. 5, uc/q(0) are chosen to be identical to
those in Fig. 3 in the main text, but g2

c/q(0) is smaller than that
for d = 3. This indicates that in two dimensions, the effects
induced by the fermion fluctuations are more apparent.

In addition, the DTCP for d = 2, which is realized by
tuning gq, is also found, as shown in Fig. 6. For the same other
parameters, ggtr is smaller than its counterpart in d = 3.

APPENDIX C: TRICRITICAL POINT FOR DIFFERENT N

Here, we study the dependence of gqtr (0) on N . We take
the case for d = 3 as an example. Figure 7 shows the results.
From Fig. 7 one finds that the tricritical point g4

qtr (0) decrease
as N increases. By power fitting, one finds that gqtr (0) satisfies
g4

qtr (0) ∝ 1/N approximatively. To determine the reason, one
can estimate the value of gqtr (0) by inspecting Eq. (3), from
which one finds the right-hand side of Eq. (3) changes sign
when

g4(0) >
3uc(0)[6uc(0) − 8(4 − d )]

48N
. (C1)

125116-5



SHUAI YIN AND SHAO-KAI JIAN PHYSICAL REVIEW B 103, 125116 (2021)

FIG. 6. For N = 2 and d = 2, a fixed point corresponding to
a DTCP is determined by tuning gq. Other parameters in the UV
scale are chosen to be uc(0) = uq(0) = −3 and g2

c(0) = g2
q(0). At the

DTCP, g2
qtr (0) � 0.6991382539535241. uc is relevant at the DTCP,

and its fixed-point value is zero. gc tends to a finite value, indicating
this is a nonthermal fixed point. Both uq and gq are irrelevant in the
IR limit.

However, in this approximation, the contributions from the
anomalous dimension have been neglected. This may also be
the reason for the deviation from 1/N , as shown in Fig. 7.

APPENDIX D: FIDCP WITH HIGHER-ORDER
BOSON COUPLING

In the main text, we keep the terms which make leading
contributions in the UV and IR scales near the transition
point. When u < 0, at least one positive higher-order boson
coupling is needed to stabilize the system. In this section, we
show that our main results are not altered by the higher-order
boson couplings. Concretely, we assume that the sixth-order
boson coupling is positive and higher-order terms are ne-
glected. By casting this term into the closed time path integral,
one obtains an additional term,

∫ ∞
0 dt

∫
dd x[− vc

6!
3
2φ5

c φq −
vq

6!
3
2φ5

qφc − vi
6! 5φ3

qφ
3
c ], in Eq. (1). Physically, the coupling v(0)

FIG. 7. Curves of the tricritical point g4
tr versus N . The boson

quartic coupling is chosen to be u(0) = −3. Double logarithmic
scales are used. Power fitting shows that g4

tr ∝ 1/N1.12
f .

FIG. 8. For N = 2 and d = 3, the RG flow for uc running from
l = 0 (UV) to l → ∞ (IR). The bare parameters are chosen to be
uc(0) = −3, vc(0) = 0.1 and g2

c(0) = g2
q(0) = 1.2. uc changes sign

and tends to the dynamical chiral Ising fixed point in the IR scale.
For g2

c/q(0) < g2
c/qtr (0) � 0.9, uc tends to negative infinity.

should be far smaller than |u(0)| and g(0) because it de-
scribes three-body collision processes. In the deep quench
case, vq scales as vq ∼ vq(0)el (2−2d−3ηb), and vi scales as
vi ∼ vi(0)el (4−2d−3ηb). Both of them are less relevant than uq

and play ignorable roles. We then obtain the one-loop RG
equations by taking into account the contribution from vc as

duc

dl
= (4 − d − 2ηb)uc − 3

8
u2

c + 6Ng3
cgq + 1

8
vc, (D1)

dvc

dl
= (6 − 2d − 3ηb)uc + 15

8
u3

c − 15

4
ucvc + 345

4
Ng5

cgq,

(D2)

dg2
c

dl
= (4 − d − ηb − 2η f )g2

c − 3

8
g4

c − 3

8
g3

cgq, (D3)

dg2
q

dl
= (2 − d − ηb − 2η f )g2

q − 3

8
g2

cg2
q − 3

8
gcg3

q. (D4)

By solving Eqs. (D2)–(D4), one finds two nontrivial fixed
points. One is (uc, g2

c, vc) = ( 8ε
3 , 8ε

3 , O(ε2)). This is the
dynamical chiral Ising fixed point [48]. The other is
(uc, g2

c, vc) = (− 16
25 + 88ε

75 , 8ε
3 , 768+384ε

625 ). This is the dynami-
cal tricritical point with uc being its second relevant direction,
as we discussed in the main text. In Fig. 8, we show that the
FIDCP can arise even with a finite vc(0).

APPENDIX E: POSSIBLE EXPERIMENTAL REALIZATION

It has been demonstrated that the first-order phase transi-
tion with negative quartic coupling can be realized with the
following spin Hamiltonian in the square lattice [91]:

Hs = J1

∑
〈i, j〉

sz
i s

z
j − J2

∑
〈〈i, j〉〉

sz
i s

z
j − hz

∑
i

sz
i − �

∑
i

sx
i , (E1)

in which sx/z is the Pauli matrix, J1 > 0, J2 < 0, 〈·〉
and 〈〈·〉〉 represent the nearest and next-nearest cou-
plings, respectively, hz is the longitudinal field, and �

is the transverse field. The expectation value of sz, i.e.,
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〈sz〉, can be decomposed into the ferromagnetic part
and the antiferromagnetic part. For the A sublattice,
〈sz〉 = m f + φ, while for the B sublattice, 〈sz〉 = m f − φ. For
J1 = J2, the ferromagnetic order parameter m f is just a back-
ground field. Accordingly, the low-energy effective theory for
this model can be described by its antiferromagnetic order
parameter φ, whose free energy reads

f = f0 + r

2
φ2 + u

4!
φ4 + · · · , (E2)

in which φ is the antiferromagnetic order parameter, f0 is
independent of φ, r = 2(J1 + J2)[1 − 4�2(J1+J2 )

(h2
z +�2 )3/2 )], and u =

24(�2−4h2
z )�2(J1+J2 )4

8(h2
z +�2 )7/2 . Accordingly, for u < 0, i.e., � < 2hz,

model (E2) hosts an equilibrium Landau-Devonshire first-
order phase transition by tuning r [83]. Moreover, as we
discussed in the main text, this model also exhibits first-order
dynamical phase transition after a sudden quench.

In addition, a square lattice with the π flux per plaquette
hosts a gapless Dirac fermion with the Hamiltonian as follows
[92]:

Hf = iψ̄γ · ∇ψ, (E3)

in which γ is the gamma matrices, ψ̄ = ψ†γ 0, and the sum-
mation over the flavors of ψ is implicit.

Then, the coupling between models (E2) and (E3) is the
usual Yukawa coupling,

Hco = gφψ̄ψ. (E4)

The effective action describing the quench dynamics of the
lattice model (E2)–(E4) is just Eq. (1) in the main text. So
the FIDCP described in the main text could be realized in
the quench dynamics of these systems by tuning the coupling
strength.

In addition, one can also consider model (E1) in the hon-
eycomb lattice. In this case, r = 3(J1 + 2J2)[1 − 9�2(J1+2J2 )

(h2
x+�2 )3/2 )],

and u = 81(�2−4h2
z )�2(J1+2J2 )4

4(h2
z +�2 )7/2 . Also, for � < 2hz, u < 0, and

the system features a dynamical first-order phase transition,
as we discussed in the main text. Moreover, it is well known
that the band structure in the honeycomb lattice exhibits Dirac
points [93]. When the fermion surface is at the Dirac points,
the effective Hamiltonian is Eq. (E3).

It has been demonstrated that many magnetic phases and
their dynamics have been realized in various kinds of lat-
tice systems, including the honeycomb lattice, with ultracold
fermions [94]. Thus, the FIDCP reported in the main text
may also be detected in these systems. In particular, as we
discussed in the main text, for small g, the dynamical phase
transition in the short-time region should be first order, and
the equilibrium phase transition after thermalization should
also be first order; however, for large g, the dynamical phase
transition in the short-time region should be continuous, giv-
ing the critical initial slip behavior [48], and the equilibrium
phase transition after thermalization is still first order. This
difference can provide sharp signatures to detect the FIDCP in
experiments.
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