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Drive dependence of the Hall angle for a sliding Wigner crystal in a magnetic field
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We numerically examine the depinning and sliding dynamics of a Wigner crystal in the presence of quenched
disorder and a magnetic field. In the disorder-free limit, the Wigner crystal Hall angle is independent of crystal
velocity, but when disorder is present, we find that the Hall angle starts near zero at the depinning threshold
and increases linearly with increasing drive before reaching a saturation close to the disorder free value at the
highest drives. The drive dependence is the result of a side jump effect produced when the charges move over
pinning sites. The magnitude of the side jump is reduced at the higher velocities. The drive dependent Hall angle
is robust for a wide range of disorder parameters and should be a generic feature of classical charges driven in
the presence of quenched disorder and a magnetic field.
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I. INTRODUCTION

There are a wide range of systems containing quenched
disorder that exhibit depinning and sliding phenomena [1,2],
including vortices in type-II superconductors [3,4], driven
charge density waves [5,6], skyrmions [7–10], and colloids
on substrates [11–13]. Such systems can exhibit a threshold
for motion and nonlinear velocity-force curves as a function
of increasing external drive. In many cases, the depinning and
sliding dynamics can be imaged directly and compared to bulk
transport measures, showing that different types of sliding
phases are possible including moving crystals and smectic
states [2].

A Wigner or electron crystal is also expected to exhibit
depinning and sliding under an external drive [14–28]. Exper-
imentally, the presence of nonlinear current-voltage curves or
the onset of conduction noise have been argued as providing
evidence for the depinning and motion of Wigner crystals
[15–19,21–24,28]; however, unlike superconducting vortices
or colloidal particles, direct visualization of the depinning
process is not possible, so additional transport measures for
detecting the sliding of a Wigner crystal would be very valu-
able. If the sliding Wigner crystal is subjected to a magnetic
field, it moves at a Hall angle which is proportional to the
strength of the field, but relatively little is known about how
the presence of a finite Hall angle could affect depinning or
the sliding motion of a Wigner crystal. Based on theoretical
calculations in the perturbative limit for a Wigner crystal in
a magnetic field interacting with weak quenched disorder, it
has been argued that the disorder will not affect the Hall angle
[18]; however, it is not clear what happens in the case of strong
disorder. In addition to the two-dimensional Wigner crystal
systems, one-dimensional or quasi-one-dimensional Wigner
crystals can also form [29–32]. There is growing evidence for
such states, particularly in carbon nanotubes [33–35]. Both
one- and two-dimensional Wigner crystal states should exhibit
depinning or sliding under an external drive [36,37].

Depinning and sliding phenomena also appear in magnetic
skyrmion systems [7–10], and it has been shown that the
skyrmion dynamics are very similar to those of electrons in
a magnetic field [7,38]. In particular, the skyrmion motion
exhibits a Hall angle with a value that depends on the mate-
rials parameters [38]. Simulations of skyrmion motion in the
presence of disorder reveal that the skyrmions have a finite
depinning threshold and that the skyrmion Hall angle is not
constant but has a drive dependence, in which the Hall angle
starts near zero at depinning and increases with increasing
drive until reaching the disorder free limit at high drives
[8,9,38–40]. This effect has now been observed directly in
numerous imaging experiments [10,41–45]. Since skyrmions
are extended bubblelike objects, the current or disorder can
distort the shape or change the size of the skyrmions, po-
tentially generating the drive dependence of the skyrmion
Hall angle [41,43,45]. Similar internal distortions could oc-
cur in a Wigner crystal. Size distortions do not appear to
be required, however, since several simulations using point-
like approximations for the skyrmions still found a strong
drive dependence of the Hall angle [8,40,46], suggesting
that this effect could be generic to other particlelike systems
exhibiting a Hall angle in the presence of quenched disorder.
In the particle-based skyrmion model, the drive dependence
is the result of a velocity-dependent side jump effect, where a
particle that passes through a pinning site undergoes a jump in
the direction opposite to that of the Hall angle. The jumps are
more pronounced at lower velocity [8,47,48]. The presence of
such jumps for skyrmions suggests that a similar phenomenon
could arise for any particlelike system with a Hall effect, such
as a Wigner crystal in a magnetic field, and that the side jumps
could be detected by measuring changes in the Hall angle as
a function of drive. This would provide an experimentally
realizable method for confirming the presence of a sliding
Wigner crystal.

We numerically examine a classical model for a Wigner
crystal interacting with random disorder using molecular
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dynamics simulations. Previous studies of this model in the
absence of a magnetic field showed that the system exhibits
a depinning threshold and nonlinear current-voltage (I-V)
curves [19,23,24]. When a magnetic field is applied, a driven
Wigner crystal in a pin-free system moves at a constant Hall
angle. If pinning is present, there is a finite depinning thresh-
old and the I-V curves become nonlinear. In addition, the Hall
angle develops a strong drive dependence, starting at a value
near zero just above depinning and saturating for high drives
at a value close to that found in the pin-free or perturbative
limit. The drive dependence arises when a charge undergoes a
side jump effect upon interacting with the disorder sites. This
effect can be confirmed by measurements of the conduction
both parallel and perpendicular to the drive. It is predicted to
be robust for a wide range of disorder strength and intrinsic
Hall angles, and it occurs for both a Wigner crystal and
a Wigner glass. The drive-dependent Hall effect provides a
method to test for the presence of a Wigner crystal in solid
state systems. Our results should also be general to other
particlelike charged systems in quenched disorder and could
be applied to charged colloids or dusty plasma systems under
a magnetic field.

II. SIMULATION AND SYSTEM

We consider the dynamics of a two-dimensional assembly
of classical electrons coupled to random pinning using molec-
ular dynamics simulations. In the presence of a magnetic field,
the overdamped equation of motion for electron i is given by

αd vi =
N∑

j

∇U (ri j ) + qB × vi + Fp + FD. (1)

Here U (r) = q/r is the repulsive electron-electron interaction
potential, q is the electron charge, qB × vi is the force from
the magnetic field which is oriented perpendicular to the elec-
tron velocity vi, Fp is the pinning force, FD is the force from
the externally applied drive, and αd is the damping term for the
velocity component that is aligned with the net external force
direction. The system contains Ne electrons and Npin pinning
sites. The electron density is given by ρ = Ne/L2 and the pin
density is ρp = Npin/L2, where L = 36 is the sample size. The
pinning is modeled as harmonic traps with a maximum force
of Fp and radius rp. Here we consider the range Fp = 0.0 to
0.65 with rp = 0.35. In this system the driving force would
arise from an applied voltage or electric field which has a fixed
direction. The transition from pinned to sliding would corre-
spond to the onset of conduction, and the Hall angle could
be obtained by simultaneously measuring the conduction both
parallel and perpendicular to the applied driving field. The
Hall angle would be the ratio of the two conduction compo-
nents. The intrinsic Hall angle could be varied by changing the
magnetic field B, while the drive can be varied by changing the
voltage. The disorder is quenched, meaning that it is random
but fixed in space, and it could be produced by atomic defects,
thickness modulations, charge doping, local magnetic defects,
and other localized variations in the material. In our case we
consider disorder sites that tend to trap electrons, as used
in previous simulations [23,24]. There are periodic boundary
conditions in the x and y directions, and due to the long range

nature of the electron-electron interactions, we use a Lekner
summation technique as in previous studies [23,24].

Previous work with this model was performed in the limit
of no magnetic field, B = 0, where it was found that when
pinning is present, there is a finite depinning threshold for
motion, above which the electrons move in the same direc-
tion as the external driving force [23,24]. At finite B, the
combination of the damping and driving causes the elec-
trons to move at a finite Hall angle θH with respect to the
driving direction. Since θH ∝ tan−1(qB/αd ), the Hall angle
increases with increasing B. For convenience, we measure the
magnetic field in units of B = αd/q. We apply a dc driving
force FD = FDx̂ and measure the net velocity both parallel
and perpendicular to the drive direction, 〈V||〉 = N−1 ∑N

i vi · x̂
and 〈V⊥〉 = N−1 ∑N

i vi · ŷ, giving a measured Hall angle of
θHall = tan−1(〈V⊥〉/〈V||〉).

III. RESULTS

In Fig. 1(a) we show the electrons, pinning sites, and
electron trajectories for a system with Fp = 0.1, Ne/Npin =
0.803, electron density ρ = 0.16, and B = 0.0 at FD = 0.06
where the drive is applied in the x direction. A Wigner crys-
tal forms and moves parallel to the driving direction, giving
θHall = 0.0. Figure 1(b) shows the same system at a finite
magnetic field where the intrinsic or disorder free Hall angle is
θH = tan−1(qB/αd ) = 26.56◦. Here the Wigner crystal moves
at a finite angle of θHall = 25◦ which is slightly less than the
disorder free θH .

In Fig. 2(a) we plot 〈Vx〉 and 〈Vy〉 versus FD for the system
in Fig. 1(b), and in Fig. 2(b) we show the corresponding
θHall = tan−1(〈Vy〉/〈Vx〉) versus FD. A depinning transition ap-
pears near FD = 0.0075, and the nonlinear behavior of the
velocity-force curve becomes a linear behavior when FD >

0.04. The dashed line in Fig. 2(b) indicates the pin-free value
of θH , making it clear that when quenched disorder is present,
there is an extended region of drive over which θHall increases
from zero and then at higher drives begins to saturate to a
value close to the pin-free value. In Figs. 2(c) and 2(d) we
plot 〈Vx〉, 〈Vy〉, and θHall versus FD for a sample with a smaller
magnetic field giving θH = 5.7◦, where we observe the same
behavior. We find that for a wide range of θH , Fp, and Npin,
the general trends illustrated in Fig. 2 persist. Namely, there
is a strong drive dependence of the Hall angle for drives up to
five times the depinning threshold, followed by a crossover to
a saturation regime with a weaker drive dependence.

The velocity dependence of the Hall angle is the result of
a side jump effect that occurs as the charges move though
the pinning sites. To illustrate this effect, in Fig. 3 we plot
the trajectories of a single electron interacting with a pinning
site with Fp = 0.5. To better highlight the side jumps we use
a large intrinsic Hall angle of θH = 75◦, and we apply the
external drive at an angle of −75◦ from the x axis so that in the
absence of pinning the electron motion would be parallel to
the x axis. For FD = 0.2 the electron is trapped by the pinning
site and undergoes a spiraling motion to reach the minimum
energy position of the tilted pin, as shown in Fig. 3(a). For
drives that are large enough to permit the electron to escape
the trap, the electron trajectory is bowed across the pinning
site and the point of exit of the electron is shifted in the
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FIG. 1. Images of the Wigner crystal system showing the electrons (blue open circles), pinning sites (orange filled circles), and electron
trajectories over a period of time (light blue lines). The driving force FD = 0.06 is applied along the x direction in both cases and the pinning
strength is Fp = 0.1. (a) At zero magnetic field, B = 0, the Hall angle θHall = 0. (b) For a finite magnetic field of B = 0.5 where the intrinsic
Hall angle is θH = 26.56◦, the Wigner crystal moves along a direction close to that of the Hall angle.

negative y direction compared to the point of entry. Figure 3(b)
illustrates this effect for FD = 0.275, 0.3, 0.4, 0.5, 0.7, 1.0, and
1.5, where the shift or jump gradually decreases in size with
increasing FD. The side jumps are in the direction opposite to
the Hall angle, so that for repeated interactions with pinning
sites, the overall average electron motion is at an angle that is
smaller than the intrinsic Hall angle θH . As the velocity of the
electron increases, its direction of motion approaches θH .

In Fig. 4(a) we plot a dynamic phase diagram as a function
of FD versus electron density ρ for the system in Figs. 2(c)
and 2(d) at fixed pinning density ρp = 0.2 for θH = 5.7◦. The
pinned state is defined as the regime in which both velocity
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FIG. 2. (a) The x and y velocities 〈Vx〉 (blue circles) and 〈Vy〉 (red
squares) vs FD for the system in Fig. 1(b) with Fp = 0.1 and B =
0.5. (b) The corresponding Hall angle θHall = tan−1(〈Vy〉/〈Vx〉). The
dashed line indicates the disorder free value of θH = 26.56◦. (c) 〈Vx〉,
〈Vy〉 and (d) θHall vs FD for a system with a smaller magnetic field
of B = 0.1 which gives θH = 5.7◦. Here there is a low drive regime
where the Hall angle increases linearly with FD and a higher drive
regime where the increase in θHall with drive is much slower.

components are zero. In the flowing state, the Wigner crystal
moves nearly along the intrinsic Hall angle direction, and we
define the transition into this state to occur when the measured
Hall angle is at least 90% as large as the intrinsic Hall angle.
We also mark the regime in which the Hall angle increases
linearly with drive, and the region where the crystal is moving
but the Hall angle is zero. The latter regime is likely the result
of a transverse barrier to motion. Such a transverse pinning
effect can also arise in the absence of a magnetic field, as was
proposed by Giamarchi and Le Doussal [49,50] for vortices
and other particlelike objects moving over random disorder,
where the system forms one-dimensional moving channels.
Previous numerical studies on sliding Wigner crystals in the
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y
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y

FIG. 3. An electron interacting with an attractive pinning well
that has Fp = 0.5. Here the intrinsic Hall angle is θH = 75◦ and the
external drive is applied at an angle of −75◦ to the x axis such that,
in the pin-free limit, the electron moves parallel to the x axis. (a) At
FD = 0.2, the electron becomes trapped in the pin. (b) FD = 0.275
(light blue), 0.3 (dark green), 0.4 (dark blue), 0.5 (orange), 0.7 (light
purple), 1.0 (light green), and 1.5 (red) showing the evolution of the
side jump as the electron passes across the pinning site for drives
above the depinning threshold. The side jump is in the direction
opposite to the Hall angle, and the size of the side jump decreases
as the driving force increases.

125107-3



C. REICHHARDT AND C. J. O. REICHHARDT PHYSICAL REVIEW B 103, 125107 (2021)

0.05 0.1 0.15 0.2
�

0

0.05

0.1

F
D

10 20 30 40
�H

0

0.05

0.1

F
D

0 0.1 0.2 0.3 0.4 0.5 0.6
Fp

0

0.2

0.4

0.6

0.8

F
D

0 0.1 0.2 0.3 0.4 0.5
�p

0

0.5

1
F

D

(a) (b)

(c) (d)

FIG. 4. (a) Dynamic phase diagram as a function of FD vs elec-
tron density ρ for the system in Fig. 2 with Fp = 0.1, pin density
ρp = 0.2, and B = 0.1, where the intrinsic Hall angle is θH = 5.7◦.
Colors indicate the pinned regime (brown), the flowing saturated
regime (blue), the linearly increasing Hall angle regime (orange)
and the sliding but zero Hall angle state (green). (b) Dynamic phase
diagram as a function of FD vs intrinsic Hall angle θH for the same
system at fixed ρ = 0.16. (c) Dynamic phase diagram as a function
of FD vs pinning strength Fp for a system with ρ = 0.0926, ρp = 0.2,
and θH = 5.7◦. (d) Dynamic phase diagram as a function of FD vs
pinning density ρp for a sample with θH = 5.7◦, ρ = 0.0926, and
Fp = 0.5.

absence of a magnetic field also found a transverse barrier for
motion when an additional driving force was applied trans-
verse to the sliding direction [23]. Although the pinning is
random, spatial symmetry breaking occurs due to the Wigner
crystalline structure. Once the system is moving, the fluc-
tuations induced in the crystal by the underlying disorder
are anisotropic and are strongest in the direction of motion.
As a result, the crystal forms what is effectively a series of
one-dimensional moving channels, where fluctuations in the
channels are the result of the electrons finding the easiest
flow path. After these channels form, they create a trans-
verse barrier to motion induced by an external drive applied
perpendicular to the channels. Giamarchi and Le Doussal
[49,50] proposed that any systems forming a crystalline struc-
ture moving over random disorder will show a transverse
depinning barrier. Such effects have been studied for su-
perconducting vortex lattices moving over random disorder
in the absence of a magnus force [51–53]. Other works on
smectic states moving over quenched disorder also predicted
a transverse barrier to motion [54]. The novel aspect of the
system that we consider here is that no external transverse
driving force is applied. Instead, the magnus force acts as an
effective additional applied transverse drive due to the finite
Hall angle. If the pinning is not random but is instead periodic,
the transverse barrier becomes even stronger and a series of
steps can appear in the transverse response. Such effects were
proposed for electrons moving over periodic scattering arrays
[55] and for skyrmion motion in periodic arrays [48].

In Fig. 4(a), for ρ < 0.075, the system forms a pinned
Wigner glass rather than a pinned Wigner crystal, resulting
in an increase in the depinning threshold with decreasing

ρ. Figure 4(b) shows a dynamic phase diagram as a func-
tion of FD versus the intrinsic Hall angle θH over the range
θH = 2.86◦ to 45◦ for the same system at fixed ρ = 0.16. In
Fig. 4(c) we display the dynamic phase diagram as a function
of FD versus pinning strength Fp for a system with θH = 5.7◦
and ρ = 0.0926, while in Fig. 4(d) we plot a dynamic phase
diagram as a function of FD versus pinning density ρp for
a system with fixed ρ = 0.0926, Fp = 0.5, and θH = 5.7◦.
These results indicate that the dynamic phases we observe are
robust over a wide range of parameters.

IV. DISCUSSION

Experimentally, the drive dependence of the Hall angle
could be detected by measuring the transport above a depin-
ning threshold in a system where a Wigner crystal is expected
to form in the presence of a magnetic field. One possible
method for measuring both velocity components accurately
for varied drives is by creating a cross-shaped geometry of
contacts similar to that used for simultaneously detecting the
transverse and longitudinal velocity components of moving
superconducting vortices [56–59]. An experimental protocol
could consist of entering a regime in which a Wigner crystal is
expected to be present and performing a series of experiments
in which the driving force is swept for selected fixed values
of the external magnetic field B, where different choices of B
give different values of the Hall angle. It could also be possible
to change the effective pinning in the system by introducing
periodic arrays of artificial defects, similar to the controlled
pinning used in superconducting vortex [60–62] and skyrmion
systems [63,64], or by irradiating the sample [65,66].

The drive dependence should be the most pronounced for
large magnetic fields. There have already been some limited
experimental studies of Wigner crystal sliding in a magnetic
field which show that there is a minimum threshold longitu-
dinal velocity which must be exceeded before sliding begins
to occur in the transverse direction [67]. Other systems in
which a similar effect could appear include a sliding quantum
crystal [68,69], creep motion of a Wigner crystal near melting
[27,70], or driven electron liquid crystal states [71–73]. In
some regimes in these systems, the particle picture breaks
down, and in these regimes, the drive dependence of the Hall
effect could be absent. Additionally, a similar drive dependent
Hall effect should occur for charged colloids or dusty plasmas
driven in the presence of quenched disorder and a magnetic
field.

V. SUMMARY

We have examined the depinning and sliding of a Wigner
crystal in the presence of a magnetic field where in the ab-
sence of disorder the crystal moves at a Hall angle that is
independent of the crystal velocity. When disorder is present,
we find a pinned phase at low drive as well as a sliding phase
in which the Hall angle is not constant but is initially zero
near the depinning threshold and gradually increases with
increasing drive until at high drives it reaches a saturation
value close to the intrinsic Hall angle. This effect is the result
of the side jump that occurs when the electrons move over the
pinning sites, where the jump is in the direction opposite to the
Hall angle. The magnitude of the side jump decreases with
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increasing velocity, which is similar to the behavior of the
side jump effect observed for skyrmions driven over quenched
disorder. We also find a regime in which the electrons slide
only along the direction of drive and exhibit a finite barrier
to transverse motion. The drive dependence of the Hall angle
is robust over a wide range of intrinsic Hall angles, disorder
densities, and pinning strengths, and could serve as a way to
confirm the existence of a sliding Wigner crystal. Our results
should be general to the broad class of driven systems with a
Hall angle in the presence of disorder.
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