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Electron hydrodynamics of two-dimensional anomalous Hall materials
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We study two-dimensional (2D) electron systems in the hydrodynamic regime. We show that a geometrical
Berry curvature modifies the effective Navier-Stokes equation for viscous electron flow in topological materials.
For small electric fields, the Hall current becomes negligible compared to the viscous longitudinal current. In
this regime, we highlight an unconventional Poiseuille flow with an asymmetric profile and a deviation of the
maximum of the current from the center of the system. In a 2D infinite geometry, the Berry curvature leads to
current whirlpools and an asymmetry of the potential profile. This phenomenon can be probed by measuring the
asymmetric nonlocal resistance profile.
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I. INTRODUCTION

The collective motion of electrons in metals can lead
to starkly different physical effects from those in the more
conventional free-electron transport. One particular example
is electron hydrodynamics, where the flow of electrons re-
sembles that of a viscous fluid. This hydrodynamic regime
can be reached at intermediate temperatures (T ∼ 100 K) in
ultraclean samples when the rate of electron-electron scat-
tering that conserves the electrons’ energy and momentum
is larger than the momentum-relaxing scattering rates due
to phonons and impurities. In this regime, the resistance R
decreases with increasing temperature T , in stark contrast
to the proportionality of R to T in ordinary metals caused
by electron-phonon scattering [1,2]. Moreover, when pass-
ing through narrow constrictions, the conductance of viscous
electron fluids can exceed that in the ballistic limit of free elec-
trons [3,4]. Finally, the motion of viscous electrons can create
nonlocal potential disturbances leading to negative nonlocal
resistance and current whirlpools due to electron backflow
[5–7].

Under certain approximations, a macroscopic hydro-
dynamic theory can be derived from the “microscopic”
semiclassical Boltzmann transport equation [8,9]. By taking
averages of microscopic quantities over a local equilibrium
distribution, one can obtain the dynamics of the velocity field
u(r, t ), which turns out to obey the Euler equation or, when
viscosity is taken into account, the Navier-Stokes equation
(NSE). For graphene-like systems, the structure of this NSE
is interesting because it contains features from the relativistic
Dirac-like spectrum of graphene. However, it mainly leads to
hydrodynamic phenomena similar to those observed in classi-
cal, nonrelativistic fluids, like, for instance, a Poiseuille flow
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profile, even for systems that show many interesting quantum
phenomena at the single-particle level like graphene.

Therefore, it is still an open question to what extent
quantum mechanical features of the band structure mani-
fest themselves in the semiclassical hydrodynamic transport
regime. To elucidate this question, we study the hydrodynamic
flow of electrons in graphene-like systems with a nonzero
Berry curvature. The geometrical Berry curvature encodes
the internal structure of the crystal wave functions and can,
for instance, drive electrons perpendicular to an applied elec-
tric field [10]. This Berry curvature is the intrinsic cause of
anomalous Hall transport in multiband systems with either
broken inversion or time-reversal symmetry (TRS). We will
show that in hydrodynamic metals with Berry curvature, the
NSE will reflect quantum effects due to the Berry curvature,
with one of its consequences being a nontrivial electron flow
profile.

In this work, we explore the effects of Berry curvature
on electron hydrodynamics in systems with broken TRS. We
note that our results are distinct from the hydrodynamics in a
system with TRS studied in Refs. [11,12] because the Berry
curvature in systems with (without) TRS is an odd (even)
function of momentum. We derive the NSE including the
Berry curvature and use it to study Poiseuille flow in a channel
geometry as well as vortex formation in an experimentally
relevant two-dimensional (2D) half-plane geometry.

Concerning the Poiseuille flow, we find that the Berry
curvature gives rise to an asymmetric velocity profile where
the maximum flow velocity deviates from the center of the
channel. Moreover, although the ordinary NSE allows for
nonzero vorticity, current whirlpools or vortices are generally
absent in infinite 2D systems (half-plane geometry) in the
absence of Berry curvature. In this case, current whirlpools
arise from the possible current backflow in finite systems [7].
In contrast, we show in this work that the Berry curvature
alters the vorticity equation and can produce sizable current
whirlpools even in an infinite geometry. These features are
reflected directly in the nonlocal resistance, which can thus be
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used as an experimental tool to measure the influence of Berry
curvature on the hydrodynamic flow.

II. NAVIER STOKES EQUATION
IN TOPOLOGICAL MATERIALS

We begin by considering a material with a Fermi level in
the conduction band and possessing a Berry curvature �p. We
allow TRS to be broken such that �p is an even function of
the lattice momentum p. Under an externally applied electric
field, the electron distribution function f (p, r, t ) evolves ac-
cording to the semiclassical Boltzmann equation

∂ f

∂t
+ ṙ · ∂ f

∂r
+ ṗ · ∂ f

∂p
= C[ f ], (1)

where momentum and position evolve according to ṗ =
eE and ṙ = vg + va. Here, vg = ∂pεp is the group veloc-
ity which is determined by the dispersion relation εp, va =
(e/h̄)E × �p is the anomalous velocity due to the Berry
curvature, and C is the collision integral due to scatter-
ing processes. In the hydrodynamic regime, C is dominated
by electron-electron interactions which conserve momen-
tum. The electron-electron interaction takes a form of C ∝
[ f f1(1 − f2)(1 − f3)] − [(1 − f )(1 − f1) f2 f3], where fi and
(1 − fi ) are the filled and empty states, respectively. The
strong interactions lead to a fast equilibration of the electrons
and their local distribution function satisfies

f (p, r, t ) = 1

exp [β(r, t )(εp − μ(r, t ) − u(r, t ) · p)] + 1
,

(2)

which is similar to the Fermi-Dirac distribution with an ad-
ditional drift velocity u. Note that the inverse temperature
β, as well as the chemical potential μ and the drift velocity
u generally depend on position and time. The distribution
function (2) ensures that the collision integral due to electron-
electron interactions in Eq. (1) vanishes [9]. A finite relaxation
time or relaxation length causes the true distribution func-
tion to slightly deviate from the local equilibrium distribution
and results in dissipative corrections, which give rise to a
nonzero electron viscosity [13,14]. In this work, we assume
that the Berry curvature does not contribute significantly to the
viscosity. Scattering from impurities and phonons are small
perturbations and can be incorporated using the relaxation-
time approximation. Umklapp scattering is neglected because
it requires a large momentum transfer while the Coulomb
interaction is small in large momentum transfer.

To derive hydrodynamic equations, we define the macro-
scopic number density, the energy density, and the momentum
density, respectively, as O(r, t ) = ∑

p χ (p) f (p, r, t ) where
χ = {1, εp, p} and O = {N, Nε, p̄}. Moreover, we define the
corresponding particle current density, energy current density,
and the stress tensor, respectively, asV(r, t ) = V(0) +Va =∑

p[vg(p) + va(p)]χ (p) f (p, r, t ) where V = {J, Jε,�}. We
can then employ Eq. (1) to obtain continuity equations

∂t N + ∇ · J = 0,

∂t Nε + ∇ · Jε = eE · J(0),

∂t p̄i + ∇ j�i, j = eNEi. (3)

The nonzero values on the right-hand side of Eq. (3) imply
that the momentum and energy flows are not conserved due to
the applied external force and Joule heating, respectively.

Our next goal is to describe the dynamics of the velocity
field u by relating it to the macroscopic quantities in Eq. (3).
Using the local equilibrium distribution (2), we obtain the
following relations:

J(0) = Nu, (4)

J(0)
ε = W u, W = Nε + P. (5)

Here, W is the enthalpy density and P =
kBT

∑
p ln[1 + e−β(εp−u·p−μ)] is the pressure. We note that

Eqs. (4) and (5) are very general and are valid for an arbitrary
dispersion relation εp of the system.

In contrast, the momentum equation in Eq. (3) depends
explicitly on the structure of εp. Therefore, we will focus
on an anomalous Hall system described by a gapped 2D
Dirac Hamiltonian H = d · τ, with τ being the vector of Pauli
matrices and d = (vpx, vpy,�). Here, v is the Fermi veloc-
ity and 2� is the band gap. This system has the dispersion
relation ε±

p = ±
√

v2 p2 + �2 and the Berry curvature �±
p =

v2h̄2�/[2(ε±
p )3]ẑ. A single Dirac cone reflects the broken

TRS that can be found in magnetically doped topological insu-
lators such as Cr-doped bismuth telluride [15] or honeycomb
crystals (graphene, silicene, transition metal dichalcogenides,
etc.) that sit on top of a magnetic substrate [16–18]. Using the
specific local distribution (2) and the Dirac energy dispersion
εp, we find

p̄ = v−2W u, �
(0)
i, j = Pδi, j + W

v2
uiu j . (6)

The forms of these observables coincide with the correspond-
ing expressions for a gapless Dirac dispersion in graphene [9].

The anomalous quantities in Eq. (3) do not have a simple
relationship with u. Therefore, to make progress, we write the
distribution function f in Eq. (2) as

f = f 0 + δ f , δ f = ∂ f 0

∂ε

(
ε − μ

β
δβ − δμ − p · u

)
, (7)

where f 0 is the equilibrium Fermi-Dirac distribution func-
tion, corresponding to constant β and μ, as well as u =
0. Moreover, δ f is a small perturbation accounting for the
nonequilibrium state of the system. If we limit ourselves to
the dynamics of linear order in u, we can assume δβ to be
small and δμ can be absorbed into the external electric field.
In Eq. (7), the terms containing δβ and δμ are even in p while
the term containing u is odd in p.

We note here that within the linear-response regime, the
anomalous velocity does not give rise to a contribution to
the continuity equations for the particle and energy current.
Indeed, defining the electric potential φ via E = −∇φ, one
finds that ∇ · Ja = 0 and ∇ · Ja

ε = 0 because ∂x∂yφ = ∂y∂xφ

[19]. The leading contributions to ∇ · Ja and ∇ · Ja
ε will con-

tain products of φ with either δβ or δμ, but these are beyond
the accuracy of our linear-response calculation and will hence-
forth be neglected. On the other hand, as we will show now,
∇ j�

a
i, j will provide a nontrivial contribution to the Euler

equation.

125106-2



ELECTRON HYDRODYNAMICS OF TWO-DIMENSIONAL … PHYSICAL REVIEW B 103, 125106 (2021)

For small fields, the drift velocity u is proportional to E.
When TRS is broken, �a

i, j is zero to first order in E because
�p is even in p. The leading term in �a

i, j emerges to first order
in E and u and reads

�a
i, j = e

h̄

∑
p

piε jkl Ek�l

(
−∂ f 0

∂ε

)
p · u

= uiε jkl EkBl ,

Bl = Bi,l = e

h̄

∑
p

p2
i �l

(
−∂ f 0

∂ε

)
. (8)

We note that Bl is related to the Berry curvature at the Fermi
surface and is independent of subscript i in the rotationally
symmetric 2D system considered in this work (Bx,l = By,l ).
Taking the derivative of the anomalous stress tensor, we obtain

∂ j�
a
i, j = Blε jkl∂ j (uiEk )

= ui(∇ × E · B) + (E × B · ∇ )ui. (9)

Combining Eqs. (5), (6), and (9) with Eq. (3), we obtain the
Euler equation for anomalous Hall (AH) materials

∂t (ρu) + [ρ(u · ∇ )u + u∇ · (ρu)]

+ u(∇ × E · B) + (E × B · ∇ )u = eNE, (10)

where we introduced the mass density ρ = W/v2. Here, we
assumed that the pressure gradient term ∇P acts analogously
to the electric field and can thus be discarded. In the following,
we focus on the steady state, and therefore simplify the Euler
equation using ∂t u = 0 and ∇ × E = 0. Moreover, we assume
the electron fluid to be incompressible, which is a good ap-
proximation at small u. In this case, Eq. (4) leads to ∇ · u = 0.
Finally, we arrive at the steady-state Navier-Stokes equation
(NSE)

ρ(u · ∇ )u + (E × B · ∇ )u = eNE + η∇2u, (11)

where we added a phenomenological viscous term with a
strength η, arising from dissipative electron-electron interac-
tions in Eq. (1) [13,14].

III. POISEUILLE FLOW

We apply the NSE of Eq. (11) for the simplest case where
electrons are only allowed to move in one direction, i.e., uy =
0 and ux ≡ ux(y), due to an applied electric field E = Exx̂. We
also focus on the case of a 2D AH material where B = Bẑ.
Equation (11) then becomes

−ExB∂yux = eNEx + η∂2
y ux. (12)

The convective term (u · ∇ )u disappears because ∂xux = 0.
We make Eq. (12) dimensionless by defining ỹ = y/w, where
w is the width of the one-dimensional (1D) channel. Thus we
obtain

−b∂̃yũx = 1 + ∂2
ỹ ũx, (13)

where

b = wBEx

η
, ũx = ux/u0, u0 = w2eNEx

η
. (14)

Applying no-slip boundary conditions ũx(0) = ũx(1) = 0, the
solution of this ordinary differential equation becomes

ũx (̃y) = eb(1−ỹ) − eb(1 − ỹ) − ỹ

b(1 − eb)
. (15)

In the limit b → 0, we recover from Eq. (12) the familiar
Poiseuille flow profile, where ũ = ỹ(1 − ỹ)/2, i.e., a parabolic
profile with the highest velocity at the center at y = w/2.
However, when the Berry curvature is nonzero, the velocity
profile deviates from the ordinary Poiseuille result and the
location of the velocity maximum is controlled by the size and
sign ofB. We will see below how Berry curvature modifies the
Poiseuille flow in a concrete model.

We recall Eq. (3) that the current consists of J = J(0) + Ja.
In Poiseuille geometry, J(0) = (Jx, 0) where Jx = eNux is the
longitudinal current. On the other hand, the anomalous or
Hall current Ja = (0, Jy), where Jy = (e2/h)CEx, and C =
(2π )−1 ∑

±
∫

d2p �±
p f 0 is the Berry flux. We evaluate Jx and

Jy up to linear order in Ex thus C and N are given by integral
of f 0.

To observe the Poiseuille flow in AH materials, the magni-
tude of the viscous longitudinal current Jx must exceed the
Hall current Jy. We use a gapped Dirac model with � =
100 meV. The Fermi energy μ = � is set to the bottom of
the conduction band at 100 K to suppress the contribution
of possible chiral edge states in the gap. Using these param-
eters, we obtain N = 2 × 1010 cm−2, B/e = 0.005 fs/nm2,
C = 0.47 (note that gapped Dirac bands have Chern numbers
±1/2 for the valence and conduction bands, respectively). In
Fig. 1(a), the Hall current Jy is linearly proportional to the
electric field while the longitudinal current Jx at the center
y = w/2 is initially proportional to Ex and then saturates for
large Ex. Importantly, at very small electric fields, the viscous
longitudinal current Jx dominates over the Hall current Jy.
The saturation of Jx can be seen from Eq. (12): when the Ex

term becomes much larger than the viscous term, ux becomes
independent of Ex.

In the regime where Jx exceeds Jy, there exists a window
of size ∝ Ex where the Berry curvature dramatically modifies
the Poiseuille profile as shown in Fig. 1(b). We vary Ex in
Eq. (15) and show that at intermediate Ex, the maximum
velocity departs from the center to a position controllable by
Ex [see Fig. 1(c)]. This asymmetric Poiseuille flow can be
observed with the state-of-the-art methods such as scanning-
probe microscopy based on nitrogen-vacancy centers [20].

IV. BERRY CURVATURE AND VORTICITY

We shift our attention now to 2D geometries. We can obtain
the vorticity field ω = ∇ × u from the NSE by taking the curl
on both sides of the Eq. (11). The result is

(E × B · ∇ )ω = η∇2ω, (16)

where ω = ωẑ because the system is confined to two-
dimensions. This equation implies that the Berry curvature
contributes in a nontrivial way to the vorticity. However, we
should point out that a nonzero vorticity ω is not equivalent to
the existence of current whirlpools. For instance, in previous
works it was shown that, despite ω being nonzero for viscous
electrons, no current whirlpool emerge in a semi-infinite 2D
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FIG. 1. Current profile in viscous Hall materials. (a) Longitudinal current Jx at y = w/2 (red) and Hall current (blue) Jy as a function of
electric field. (b) Longitudinal current profile as a function of position for several values of electric field. (c) Maximum current position ymax

as a function of electric field. In (a)–(c) we used a gapped Dirac model with � = 100 meV, T = 100 K, w = 1 μm, and η = 6 × 10−3 h̄N and
μ is at the bottom of the conduction band.

geometry [7,21]. In contrast, it was found that the whirlpools
solely arise from current backflow in a finite geometry. How-
ever, as we will show below, the nontrivial vorticity in Eq. (16)
will give rise to current whirlpools even in the absence of
boundaries.

Turning to the analysis of the 2D flow, we apply Eq. (11)
in a half-plane geometry with an injected current at the origin
(x = y = 0) as shown in Fig. 2. Here we assume a flow at
low Reynolds number or small u such that we can neglect
the convective term (u · ∇ )u as well as the Hall current. We
express Eq. (11) in units of acceleration by dividing both sides
by the mass density mN ,

1

mN
(−∇φ × B · ∇ )u = − e

m
∇φ + ν∇2u − u

τ
, (17)

where we introduced the kinematic viscosity ν = η/ρ =
η/(mN ). We also added a relaxation time τ due to momentum-
relaxing scattering processes (electron-phonon or electron-
impurity) that allows us to define a length scale D = √

ντ

known as the diffusion length. Suppose we apply a current
density Jy = Iδ(r) at the origin. We can scale the quantities to
get a dimensionless equation

K (−∇̃φ̃ × ẑ · ∇̃ )̃u = −∇̃φ̃ + ∇̃2ũ − ũ, (18)

where φ̃ = φ/φ0, φ0 = Im/Ne2τ , ũ = u/u0, u0 = I/NeD,
(̃x, ỹ) = (x/D, y/D), and K = I�2b(μ, T )/(eD2N2hv2kBT ).
To get K , we have used B = Bzẑ where Bz =
e�2b(μ, T )/hv2kBT and b(μ, T ) is a dimensionless integral
of Eq. (8) [see Eq. (B1) in Appendix B]. Hereafter, we drop
all the “tilde” accents for better readability while keeping
dimensionless quantities.

Equation (18) is nonlinear because of the coupling between
φ and u on the left-hand side (LHS). Using perturbation

FIG. 2. The half-plane geometry with a single contact.

theory in this coupling, we can linearize this equation by
introducing

u = u(0) +Kδu, φ = φ(0) +Kδφ. (19)

Comparing terms in Eq. (18), we obtain the following equa-
tions for the unperturbed result and the perturbation:

−∇φ(0) + ∇2u(0) − u(0) = 0, (20)

−∇δφ + ∇2δu − δu = (−∇φ(0) × ẑ · ∇ )u(0). (21)

The incompressibility condition ∇ · u = 0 leads to the
Laplace equation ∇2φ(0) = 0 for the unperturbed electric
potential. In contrast, the perturbation satisfies a Poisson equa-
tion with ∇2δφ �= 0 due to the right-hand side of Eq. (21),
implying the presence of an induced charge by the Berry cur-
vature. As we show later, for the half-plane geometry, ∇2δφ

from Eq. (21) displays an electric dipole originating from the
coupling of electric field and drift velocity induced by the
Berry curvature [see inset of Fig. 6(b)].

This half-plane geometry preserves translational invariance
in the x direction, so we seek solutions in the form of Fourier
transforms

u(x, y) =
∫

dkuk (y)eikx, φ(x, y) =
∫

dkφk (y)eikx. (22)

The solutions of Eq. (20) follow from Ref. [7]. To be specific,
we use no-slip boundary conditions where u(0)

x vanishes for
y = 0 and u(0)

y (y = 0) = δ(x) arising from the injected current
at the origin. We obtain (see the Appendix)

u(0)
k,x (y) = ikq

|k|(|k| − q)
(e−|k|y − e−qy),

u(0)
k,y(y) = − 1

(|k| − q)
(qe−|k|y − |k|e−qy), (23)

φ
(0)
k (y) = − 1

|k|
q

|k| − q
e−|k|y,

where q = √
k2 + 1.

The solutions of the first-order correction, δu and δφ

in Eq. (21), consist of homogeneous and inhomogeneous
solutions. The homogeneous solutions obey the same equa-
tion as the unperturbed solution, but with different boundary
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FIG. 3. (a) Unperturbed solution u(0)
x , (b) correction δux , and (c) total velocity ux after Fourier transformation. We set K = 1.

conditions. The complete first-order corrections have the form

δuk,x (y) = −a1i

k
e−|k|y − a3

q
e−qy + δux,1e−(q+|k|)y,

δuk,y(y) = a1

|k|e−|k|y − a3ik

q2
e−qy + δuy,1e−(q+|k|)y, (24)

δφk (y) = a1

k2
e−|k|y + δφ1e−(q+|k|)y,

where the inhomogeneous solutions are

δux,1(y) = q3 + 2q2|k| − |k|3
(q − |k|)(5k2q + 2(k2 + q2)|k| ,

δφ1(y) = ik|k|
q2 + q|k| − 2k2

, (25)

as well as δuy,1 = [ik/(|k| + q)]δux,1 which follows from ∇ ·
δu = 0. Imposing boundary conditions where δu vanishes at
the boundary δuk,x (y = 0) = δuk,y(y = 0) = 0, we obtain the
coefficients

a1 = ik3(−k2 + q2 + q|k|)
(q − |k|)2[5k2q + 2|k|(k2 + q2)]

,

a3 = q3(−k2 + q2 + q|k|)
(q − |k|)2[5k2q + 2|k|(k2 + q2)]

. (26)

We note that a1 is antisymmetric as a function of k while
a3 is symmetric. As a result, δuk,x is symmetric while δuk,y

and δφk are antisymmetric as functions of k. Importantly, the

unperturbed counterparts of these functions have the opposite
symmetry: u(0)

k,x is antisymmetric while u(0)
k,y and φ

(0)
k are sym-

metric.
Combining the unperturbed solution in Eq. (23) with the

first-order correction in Eq. (24), we can obtain the velocity
and potential profile in real space via a numerical Fourier
transformation using Eq. (22).

In Figs. 3 and 4, we display the components of u(0), δu and
of the full solution u. Inheriting the symmetry from its Fourier
components, u(0)

x (u(0)
y ) is antisymmetric (symmetric) in x,

whereas δux (δuy) is symmetric (antisymmetric). The opposite
symmetries of the unperturbed solution and the perturbation
produce asymmetric flow structures in the full solution u due
to constructive and destructive superpositions. Far from the
inlet, u is dominated by u(0), while near the inlet, u is strongly
modified by the perturbation δu. Importantly, the values of uy

are not homogeneously positive but can also become negative
near the inlet. This indicates nontrivial backflow due to the
vorticity generated by the Berry curvature (16).

A stream plot of u(0) is shown in Fig. 5(a). The color fol-
lows the value of uy: red (blue) indicates a positive (negative)
value. The light red stream lines are an order of magnitude
weaker than the main stream lines. The unperturbed flow
u(0) spreads out from the inlet as expected [21]. Although
no current whirlpool is present, the vorticity ω = ∇ × u(0) is
nonzero as indicated by the curved stream lines away from
x = 0. The unperturbed vorticity ω changes sign at x = 0.
Interestingly, the δu stream shows an intricate flow pattern

FIG. 4. (a) Unperturbed solution u(0)
y , (b) correction δuy, and (c) total velocity uy after Fourier transformation. We set K = 1.
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FIG. 5. Stream plots of (a) the unperturbed flow profile u(0), (b) the perturbation δu, and (c) the total solution u. The inset shows the stream
of −∇φ (0) × ẑ with the same x and y scales as the main figure. We set K = 1.

where the sign of the vorticity changes twice along azimuthal
direction (up-down-up), see Fig. 5(b). This complex structure
is related to the coupling of the Berry curvature B ∝ ẑ to the
electric field −∇φ(0) as shown in the inset. The −∇φ(0) × ẑ
profile is rather insensitive to the choice of boundary condi-
tions, and the vortices in δu will persist even if we impose
no-stress boundary conditions. In Fig. 5(c), we show the re-
sulting u stream forK = 1. Away from the inlet, u approaches
u(0). In the vicinity of the inlet, the flow is highly asymmet-
ric and exhibits whirlpools as a remnant of the contribution
from δu. Although boundaries are inevitable in experiments,
the size of whirlpools from Berry curvature determined by
diffusion length D = √

ντ will be distinct from whirlpools
from the boundary effects determined by sample size W if
W 	 D.

If the applied current and the Berry curvature Bz in experi-
mental setups are small, they might result only in small values
ofK . Therefore, even if whirlpools may exist, observing them
might be challenging. Fortunately, the profile of the electric
potential is far more sensitive to the presence of Berry curva-
ture and one can therefore utilize it as an experimental tool to
study Berry curvature effects in electron hydrodynamics.

In Fig. 6(a), we show the unperturbed profile of φ(0) repro-
ducing previous works [7,21]. It is well known that the sign
change of the potential φ(0) as a function of x is a hallmark

of viscous flow that leads to a negative non-local resistance
even without current backflow. On the other hand, δφ is an-
tisymmetric in x and changes sign multiple times along the
azimuthal direction [see Fig. 6(b)]. The asymmetric profile of
δφ reflects an electric dipole moment induced by the Berry
curvature as shown in the ∇2δφ plot in the inset of Fig. 6(b).

Both φ(0) and δφ formally diverge at the origin as a result
of imposing a current profile of the form uy = δ(x) at y = 0.
This singularity and the antisymmetry of δφ greatly deform
the total potential φ near the origin even for small K = 0.1.
Meanwhile, further away from the origin, φ resembles the
unperturbed potential φ(0) because δφ decays faster than φ(0)

[see Eq. (24)]. Scanning the potential along x close to the
origin at y = 0.03D, we can compare the potential profile with
and without Berry curvature in Fig. 7(a). The potential with
Berry curvatureK = 0.1 (red) reaches significantly larger val-
ues than the one without Berry curvature (blue). Importantly,
near x = 0 its sign changes, in contrast to the symmetric pro-
file of φ(0). From this, we can deduce the nonlocal resistance
defined as Rnl = [φ(x) − φ(0)]/I in Fig. 7(b). Without Berry
curvature, Rnl only shows negative values when sweeping
along the x axis. For nonzero Berry curvature, in contrast, we
observe areas of both positive and negative Rnl when crossing
x = 0. While the results of our perturbative analysis only hold
for a δ-shaped inlet current, we expect that these qualitative

FIG. 6. (a) Unperturbed solution φ (0), (b) the correction δφ, and (c) the total potential φ after Fourier transformation. The inset shows
∇2δφ with the same x and y scales as the main figure. We set K = 0.1.
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FIG. 7. (a) The electric potential and (b) the nonlocal resistance
profile without Berry curvature (blue) and with Berry curvature (red),
K = 0.1.

features of φ and Rnl will not change even if we consider a
finite inlet width.

V. NUMERICAL SOLUTION OF THE NSE

To check the validity of the perturbative results, we solve
Eq. (18) using the finite-element method. We first rewrite
Eq. (18) in a variational form by multiplying the equation by
a vector-valued test function v and then integrating over the
entire system volume �. Finally, the ∇2u term is integrated
by parts using Green’s identity, and we obtain the variational
form

−K
∫

�

dr v · (∇φ × B · ∇ )u +
∫

�

dr v · (∇φ − u)

+
∫

�

dr∇u · ∇v −
∫

∂�

dsv · ∂u
∂n̂

= 0, (27)

where n̂ is the unit normal pointing out from the surface.
Similarly we write the continuity equation in a variational
form as well ∫

�

dr (∇ · u)q = 0, (28)

where q is a scalar test function. The variational problem
consists in finding u and φ such that Eqs. (27) and (28) are
satisfied for all test functions v and q.

To this end we have to specify the geometry, boundary
conditions, and the function spaces. To stay as close a pos-
sible to our analytical calculation, we choose a rectangular
geometry with a narrow inlet and outlet at the lower and upper
edge, respectively [6,7]. Thus our geometry is a rectangle of
width W = 2D and height H = 1D, where D is the diffusion
length. The inlet and outlet have widths win/out = 0.1D. The
boundary conditions on the inlet are uin

y = 1 and φin = 1 while
on the outlet we choose uout

y = 1 (as required by the continuity
equation in an incompressible medium) and φout = −1. On
the rest of the boundary we apply no-slip boundary conditions.
For the finite-element analysis, we use the space of Lagrange
polynomials of second order as the function space for the
velocity and the space of Lagrange polynomials of first order
as the function space for the potential. Together these form a
Taylor-Hood element appropriate for the numerical solution
of Navier-Stokes equations. We numerically implemented the
problem using the FENICS package [22].

FIG. 8. Stream plots of (a) unperturbed u(0) and (b) δu = u −
u(0). We set K = 0.01.

We present the results of the numerical calculations in
Figs. 8 and 9. Figure 8(a) shows the velocity profile u(0)

for a system without Berry curvature. This can be directly
compared to the results of Refs. [6,7]. The flow exhibits a pair
of whirlpools due to the backflow caused by the boundaries
and the location of the whirlpools is comparable with what
has been obtained in Ref. [6].

Introducing a small Berry curvature (K = 0.01), we obtain
small change in u. This is shown in Fig. 8(b), where we
plotted the difference δu = u − u(0). Most notably, δu shows
a circular flow with a whirlpool in the center. The upward
velocity in the right is reduced while in the left it is increased
by the Berry curvature. As a result, the whirlpools will shift
towards the left of the geometry.

We note that we did not observe an additional whirlpool at
the inlet, in contrast to what the perturbative solution in the
half-plane geometry predicted. Generally speaking, a quan-
titative agreement between analytical and numerical results
is not expected because of the use of different geometries
(infinite versus finite systems, infinitesimal versus finite inlet
and outlet widths), as well as the smallK value chosen for the
numerical simulation. Nevertheless the different symmetries
of u and δu in x are an excellent agreement with the analytical
solution for the half-plane geometry, resulting in an asym-
metric flow profile u. We note that large values for K make

FIG. 9. Potential profiles (a) φ (0) without the Berry curvature and
(b) δφ = φ − φ (0). We set K = 0.01.
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Eq. (27) highly nonlinear, and the ensuing onset of turbulence
makes it challenging to reach convergence in the numerical
solution.

The profile of the electric potential in the rectangular
geometry qualitatively reproduces previous results [6,7] as
shown in Fig. 9(a). While the analytical solution rests on
assuming a δ-shaped current inflow, the inlet and outlet in
our numerical solutions have finite widths. As a consequence,
there is no singularity of the potential at the inlet and outlet.
In contrast, sign changes of the potential near the inlet and
outlet agree with the analytical predictions and can be seen as
a signature of viscous flow.

The Berry curvature modifies the potential profile as shown
in Fig. 9(b). Similar to previous analysis, the change of po-
tential δφ = φ − φ(0), plotted in Fig. 9(b) makes it easier to
recognize the effect of the Berry curvature. Focusing on the
lower half, the asymmetric profile of δφ will expand the blue
(red) region of φ(0) in the right (left) side. As a result, the
tails of the positive potential (red) near the bottom and of
the negative potential (blue) near the top will be diverted to
the left. The symmetries of φ(0) and δφ in the rectangular
geometry are consistent with those in half-plane geometry
obtained from perturbation theory.

VI. CONCLUSION

In summary, we derived the Navier-Stokes equation for
a two-dimensional electron liquid in the presence of Berry
curvature in a system with broken time-reversal symmetry.
For a Fermi energy slightly above the gap and at an intermedi-
ate temperatures, the longitudinal viscous current can exceed
the Hall current at small electric fields. This allows for the
observation of an unconventional one-dimensional Poiseuille
flow in which the maximum velocity deviates from the center
of the channel due to the Berry curvature. In the case of a
two-dimensional geometry, the Berry curvature induces an
electric dipole momentum leading to several interesting con-
sequences: current whirlpools as well as asymmetric velocity
and potential profiles. The changes of the flow velocity profile
and the potential due to the Berry curvature have an opposite
symmetry as the corresponding unperturbed quantities. Our
analytical results based on a perturbative method to solve
the Navier-Stokes equation were qualitatively confirmed by a
numerical study based on finite-element methods. We showed
that the presence of Berry curvature can be analyzed experi-
mentally by a nonlocal resistance measurement in the vicinity
of the inlet current.

ACKNOWLEDGMENTS

The authors acknowledge helpful discussions with K.
Moors. All authors acknowledge support by the National
Research Fund, Luxembourg under Grants No. ATTRACT
7556175, No. CORE 13579612, and No. CORE 11352881.

APPENDIX A: SOLUTION OF HOMOGENEOUS
NAVIER-STOKES EQUATION

Here we show the procedures used to solve the homoge-
neous Navier-Stokes equation following Ref. [7]. We start

with the dimensionless Eq. (20) or the homogeneous part of
Eq. (21)

−∇φ(0) + ∇2u(0) − u(0) = 0. (A1)

The incompressibility condition reads ∇ · u = 0. Writing out
the Fourier components and noting that ∂x = ik, we get

−
(

(ik)φ(0)
k

∂yφ
(0)
k

)
+ (−k2 + ∂2

y )

(
u(0)

k,x

u(0)
k,y

)
−

(
u(0)

k,x

u(0)
k,y

)
= 0. (A2)

From Eq. (A2), we can write a matrix equation

∂y

⎛⎜⎜⎜⎜⎜⎝
ku(0)

k,x

ku(0)
k,y

∂yu(0)
k,x

k2φ(0)

⎞⎟⎟⎟⎟⎟⎠ = k

⎛⎜⎜⎜⎜⎝
0 0 1 0

−i 0 0 0
q2

k2 0 0 i
k2

0 −q2 −ik2 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

ku(0)
k,x

ku(0)
k,y

∂yu(0)
k,x

k2φ
(0)
k

⎞⎟⎟⎟⎟⎟⎠,

(A3)
where q = √

1 + k2. The eigenvalues are

λ1,2 = ∓1, λ3,4 = ∓q

|k| , (A4)

and the eigenvectors: ω1 = (−i, 1, i, 1)T , ω2 =
(−i,−1,−i, 1)T , ω3 = (−|k|/q,−ik2/q2, 1, 0)T , and
ω4 = (|k|/q,−ik2/q2, 1, 0)T .

The solutions of Eq. (A3) are linear combinations of the
four eigenstates ⎛⎜⎜⎜⎜⎜⎝

ku(0)
k,x

ku(0)
k,y

∂yu(0)
k,x

k2φ
(0)
k

⎞⎟⎟⎟⎟⎟⎠ =
4∑

i=1

aiωie
kλiy, (A5)

where ai is the coefficient satisfying the boundary conditions.
For the unperturbed solution, the injected current as shown in
Fig. 2 becomes one of the (dimensionless) boundary condi-
tions in real space

u(0)
y (x = 0, y = 0) = δ(x). (A6)

In Fourier space it becomes

u(0)
k,y(y = 0) = 1. (A7)

The general form of the boundary condition at the edge y = 0
reads (

∂yu(0)
x + ∂xu(0)

y

)∣∣
y=0 = 1

lb
u(0)

x (y = 0), (A8)

where the limit lb = 0 corresponds to no-slip boundary condi-
tions, while lb → ∞ describes no-stress boundary conditions.
In the Fourier space, these become(

∂yu(0)
x + (ik)

)∣∣
y=0 = 1

lb
u(0)

x (y = 0). (A9)

We also require u(0)
x and u(0)

y to vanish at infinity

u(0)
x (y = ∞) = 0, uy(y = ∞) = 0. (A10)
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Because of Eq. (A10), we need to choose different signs of k
such that each factor eλiky decays to zero at y → ∞. Equation
(A5) then reads

⎛⎜⎜⎜⎜⎜⎝
ku(0)

k,x

ku(0)
k,y

∂yu(0)
k,x

k2φ(0)

⎞⎟⎟⎟⎟⎟⎠ =
{

a1ω1 exp(−ky) + a3ω3 exp (−qy) k � 0,

a2ω2 exp(ky) + a4ω4 exp (−qy) k < 0.

(A11)
For k > 0, we use Eqs. (A7) and (A9) to get

a1 = −k

[
klb(k2 + q2) + q|k|

k(k + k2lb − lbq2) − q|k|
]
, (A12)

a3 = ikq2

[
(1 + 2klb)

k(k + k2lb − lbq2) − q|k|
]
. (A13)

Similarly, we obtain for k < 0,

a2 = k

[
klb(k2 + q2) − q|k|

k(−k + k2lb − lbq2) + q|k|
]
, (A14)

a4 = ikq2

[
(−1 + 2klb)

k(−k + k2lb − lbq2) + q|k|
]
. (A15)

We write the unperturbed solutions as follows:

u(0)
k,x = ik

|k|
[

[lb(k2 + q2) + q]e−|k|y

|k| − q + lb(k2 − q2)
− [q(1 + 2|k|lb)]e−qy

|k| − q + lb(k2 − q2)

]
,

u(0)
k,y =

[−[lb(k2 + q2) + q]e−|k|y

|k| − q + lb(k2 − q2)
+ [|k|(1 + 2|k|lb)]e−qy

|k| − q + lb(k2 − q2)

]
,

φ
(0)
k = − 1

|k|
[

lb(k2 + q2) + q

|k| − q + lb(k2 − q2)
e−|k|y

]
. (A16)

For no-slip boundary conditions (lb → 0), we then obtain
Eq. (23),

u(0)
k,x = ikq

|k|(|k| − q)
[e−|k|y − e−qy],

u(0)
k,y = − 1

(|k| − q)
[qe−|k|y − |k|e−qy],

φ
(0)
k = − 1

|k|
q

|k| − q
e−|k|y. (A17)

For the homogeneous solution of the first-order correction
Eq. (21), we use the same procedure up to Eq. (A11) and then
use boundary conditions δu = 0 at y = 0.

APPENDIX B: NUMERICAL EVALUATION OF Bz

Here we show the numerical evaluation of Bz in a gapped
Dirac system

Bz = e

h̄

∑
p

p2
x�z

(−∂ f 0

∂ε

)
, ε =

√
v2 p2 + �2

= e

h̄

1

(2π h̄)2

∫
d2pp2 cos2 θ

v2h̄2�

2ε3

(
e(ε−μ)/kBT

kBT (1+ e(ε−μ)/kBT )2

)
= e

h

�2

v2kBT
b(μ̃, T̃ ), (B1)

where

b(μ̃, T̃ ) = 1

4

∫ ∞

1
dx

(
1 − 1

x

)
e(x−μ̃)/T̃

(1 + e(x−μ̃)/T̃ )2
, (B2)

and μ̃ = μ/� and T̃ = kBT/�. In Eq. (B1) we transformed
the p-integral over momenta into an integral over energies ε.
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